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Abstract. Gordon presented an example of a function that is Den-
joy integrable but not Lebesgue integrable in the book: The integrals of
Lebesgue, Denjoy , Peron and Henstock. This example showed thst, the
class of Denjoy integrable functions is larger than the class of Lebesgue
integrable functions. We are going to show that the set of Denjoy inte-
grable functions that are not Lebesgue integrable, contains an infinite
dimensional vector space.
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1 Introduction

Finding infinite dimensional algebraic structures and infinitely generated
algebras in different subsets of various spaces is relatively new trend in
mathematical analysis.

Recall that a subset S of a vector space V' is called lineable if SU{0}
contains an infinite dimensional vector subspace of V. Also if V is a
topological vector space then S is called spaceable if S U {0} contains
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a closed infinite dimensional vector subspace of V. These notions were
first appeared in an unpublished notes of Enflo and Gurariy. Aron and
Gurariy published those notes in [2]. We should mention that Enflo’s
and gurariy’s unpublished notes were completed in collaboration with
Seoane-Sepulvida and finally published in [6].

The origin of lineability is due to Gurariy ([!2, 13]) who showed
the existence an infinite dimensional linear space such that every non-
zero element of which is a continuous nowhere differentiable function on
C[0;1]. Many examples of vector spaces of functions on R or C enjoying
certain special properties have been constructed in the recent years.
More recently, many authors got interested in this subject and gave a
wide range of exampls.For more results on lineability we refer the reader
to [7].

Our concern in this paper is the set of Denjoy integrable functions
that are the extension of Lebesgue measurable functions. To define
Denjoy integrable functions we need a variation of the bounded variation
functions. The notion of bounded variation and absolute continuity on
an interval play a key role in the theory of Lebesgue integral. The
extension of these concepts from intervals to arbitrary sets will play
a major role in the development of the integrals that generalize the
Lebesgue integral. First we bring some definitions and primary results.

Definition 1.1. Let F : [a,b] — R be an arbitrary function. The
oscillation of the function F' on the interval [a, b] is

w(F,[a,b]) =sup{|F(y) — F(z)| :a <z <y <d}.
Definition 1.2. Let F : [a,b] — R and let E C [a, b].

(a) The weak variation of F' on E and the strong variation of F' on
E are defined by

V(F,E) = sup{)_ |F(d;) = F(ei)|};
=1

Vk(Fv E) = sup{Zw(F, [Ci7di])}7
=1
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respectively, where the supremum in each case is taken over all the
finite collections {[c;,d;] : 1 < i < n} of non-overlapping intervals that
have endpoints in F.

(b) The function F' is absolutely continuous on E (F is AC on E) if
for each € > 0 there exits § > 0 such that > | |F(d;)—F(¢;)| < € when-
ever {[c;,d;] : 1 <1i < n} is a finite collection of non-overlapping intervals
that have endpoins in E and satisfy > . ,(d; — ¢;) < 6. The function
F is absolutely continuous in the restricted sense on E (F' is AC, on
E) if for each ¢ > 0 there exits § > 0 such that Y 1", w(F,[c;,di]) < €
whenever {[¢;,d;] : 1 < i < n} is a finite collection of non-overlapping
intervals that have endpoins in E and satisfy > ., (d; — ¢;) < 6.

(¢) The function F' is generalized absolutely continuous on E (F
is ACG on E) if F|g is continuous on E and E can be written as a
countable union of sets on each of which F'is AC. The function F' is
generalized absolutely continuous in restricted sense on F (F' is ACG,
on E) if F|g is continuous on E and E can be written as a countable
union of sets on each of which F' is AC,.

It is easy to see that the concept of weak variation and strong vari-
ation of a function coincide on an closed interval. In this case f is
AC(ACG) if and only if it is AC,(ACG,).

The following theorem helps us showing that the Denjoy integral
(that will be defined in the sequel)of an ACG function can be uniquely
determined up to an additive constant.

Theorem 1.3. Let [ : [a,b] = R be ACG on [a,b]. If f' =0 almost
everywhere on |a,b|, then f is constant on [a,b].

Proof. See page 104 of [10]. O

Now we want to define Denjoy integrable functions. This definition
will be achieved by expanding a nice property of Lebesgue measurable
functions that is presented in the following theorem.

Theorem 1.4. ([10]) Let F' be a real valued continuous function defined
on [a,b]. If F is differentiable nearly everywhere on [a,b] and if F' is
Lebesgue integrable on [a, b], then ff F' = F(x)—F(a) for each x € [a,].

The phrase "nearly everywhere” in the above theorem means that
the property holds on all points but a countable set. The hypothesis
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that F’ be Lebesgue measurable on [a, ] is necessary. As an instance
take
26in (%), if O<z<1
_J x%sin xZ)’ if 0<zx<
Fl) { 0, if £=0

This function has derivative at each point of [0, 1], but F' is not abso-
lutely continuous on [0, 1]. Consequently the function F” is not Lebesgue
integrable on [0,1]. In fact if F’ is Lebesgue integrable on [0,1], put
G(z) = [ F' for each z € [0,1]. The function F and G are ACG, on
[0,1] and their derivatives are equal almost everywhere on [0,1]. On
the other hand F(0) = G(0), thus by Theorem 1.3, the functions F
and G are equal on [0,1]. But this implies that F' is AC on [0,1], a
contradiction.

This rose the following question:

Is there an integration process that holds the following property?
Let F : [a,b] — R be a continuous function. If F' is differentiable
nearly everywhere on [a,b], then F’ is integrable on [a,b] and [ F' =
F(x) — F(a) for each z € [a, b].

An integral with this property is said to recover a function from
its derivative. In addition, any integral that satisfies the above theo-
rem should include the Lebesgue integral. That is, any function that
is Lebesgue integrable should be integrable in the new sense and the
integrals should be equal. In 1912, A. Denjoy developed an integration
process that satisfies the theorem quoted above. He called the process of
computing the value of his integral ”totalization” and showed that every
derivative met the criteria for this process and that the original function
was recovered. This totalization is a rather complicated process that
involves the use of transfinite numbers. A few months after Denjoy’s
work, N. Lusin connected the new integral and the notion of generalized
absolute continuity. This is the approach that will be followed here.

As it is shown in [10], a function f : [a,b] — R is Lebesgue integrable
on [a,b] if and only if there exists an AC function F' : [a,b] — R such
that F' = f, almost everywhere on [a, b]. The Denjoy integral is a simple
generalization of this characterization of the Lebesgue integral.

Definition 1.5. A function f : [a,b] — R is Denjoy integrable on [a, b]
if there exists an ACG, function F : [a,b] — R such that F' = f
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almost everywhere on [a,b]. The function f is Denjoy integrable on a
measurable set E C [a,b] if fxg is Denjoy integrable on [a, b].

By theorem 1.3, the Denjoy integral of a function is uniquely deter-
mined up to an additive constant. If we add the condition that F'(a) = 0,
then the function F is unique. We will denote this function by (D) [ f.
It is shown in [10] that Denjoy integral recovers a function from its
derivative. Actually they proved the following theorem.

Theorem 1.6. Let F' : [a,b] — R be a continuous function. If F is
differentiable nearly everywhere on |a,b|, then F' is Denjoy integrable

on la,b] and (D) [T F' = F(x) — F(a) for each x € [a,b].

The Denjoy integral has all of the usual properties of an integral.

2 Main theorem

In this section we are going to prove that the set of Denjoy integrable
functions that are not Lebesgue integrable contains an infinite dimen-
sional vector space. First we need the following lemma.

Lemma 2.1. Let n € N be arbitrary and define F, : [0,1] = R by

z"sin (5 ), if 0<x<1
F”(x):{o ) if ©=0

Then F, is ACG on [0,1] but it is not AC on [0,1].

Proof. Since F, is continuous on each interval [1/m, 1], for all m >
1, so it is ACG on [0,1]. To prove that F' is not AC on [0,1], let

1/
0 < § be arbitrary. For each m > 1 put a,, = [WZ—H} " and b, =

[%]l/n. Let M, N € N be chosen such that M < N and 3>~ ﬁ >
1. Then {[am, bm] : M < m < N} is a finite collection of non-overlapping

intervals in [0, 1] that satisfy .~ (b — a;) < 4, but

N

N

2
E | (b;) — Fu(a;)| = E ) >1
=M M

1=
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Theorem 2.2. The set of Denjoy integrable functions that are not
Lebesgue integrable is lineable

Proof. For all ¢ > 1, define n; = i! and put G; = F,,;. By lemma 2.1,
G; is ACG but not AC on [0, 1]. Since the concept of ACG and ACG,
coincide on closed intervals, so G; is ACG, on [0, 1].

Now for each i > 1 put g; = G;. By the definition 1.5 and the discus-
sion before the definition, each g; is Denjoy integrable but not Lebesgue
integrable. We are going to prove that each finite linear combination of
elements of {g; : n > 1} is still Denjoy integrable and is not Lebesgue
integrable. Also we will show that the above set is linearly independent.

To this end let 47 < io < --- < 4 be integers and ag,...,qx be
arbitrary constants. Let a1g;, + ...+ axg;, = 0. Since Denjoy integral
recovers a function from its derivative and also since ¢;(0) = 0 for all
i >1,s0 a1Gy, + ...+ oGy, = 0. But the set of zeros of Gij is {kl%z] :
k € N} U {0}. Since ij,j = 1,...,k are distinct, so G;;,i = 1,...,k has
at most finite number of common zeros. This implies that the system
of equations [;][x;] = 0 has infinite number of solutions in R¥. This is
impossible unless the coefficient matrix is zero. This shows that a; = 0
forj=1,...,k.

To prove that each finite linear combination of elements of {g; : i >
1} is Denjoy integrable and is not Lebesgue integrable, it suffices to show
that each finite linear combination of elements of {G; : i > 1} is ACG
but not AC on [0,1]. Let i1 < i3 < --- < i; be distinct integers and
a1, ...,qap be arbitrary constants and consider the linear combination
a1Gy; + ...+ o Gj,.. The proof that this linear combination is ACG, is
just similar to the one we brought above to show that a single function
is ACG on [0, 1].

To show that this combination is not AC on [0,1], we follow the
same process that we employed in lemma 2.1. Let § > 0 be arbitrart
and consider a,,, b;,, M and N like in the proof of the lemma. Now we
have

N k N 9

Y D 1Gs (b)) = Gy (an)] = > Jaa | > |oul.
- : 4i+1

n=M j=1 =M

This completes the proof.
O
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Remark 2.3. Here we proved Ng-lineability of the set of Denjoy inte-
grable functions that are not Lebesgue integrable. One can ask whether
it is the maximum dimension of the vector space? Or is there any algebra
contained in this set of functions?
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