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Abstract. This article presents the Mendeleev method to solve the ini-
tial value problems. The construction of this method using Mendeleev’s
quadrature is due to Pleshakov [Comp. Math. and Math. Phys., 52
(2012), 211-212.] to approximate the integral [** f(s,Y(s))ds. We
derive the local truncation error and show the stability region of the pro-
posed method. The computational comparisons show that Mendeleev’s
method is better than Euler’s method, midpoint method and Heun’s
method.
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1. Introduction

An initial value problem (IVP) is usually presented in the form

Yi(z) = f(2,Y(x)),
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where
Y(il'()) = Y() .

Problem (1) can be solved by the third order Runge Kutta based on arithmatic
means (classic). In the development, some authors replace the arithmatic mean
with other variation means such as geometric mean [3], harmonic mean [§],
heronian, root-mean-square, centroidal and contraharmonic [9]. Further im-
provement has been made by Ababneh and Rosita [1] which adds some weights
to contraharmonic mean.

In this article, we present the Mendeleev method to solve the initial value
problem (1). The presentation begins with the construction of the Mendeleev
method in the second section. In the third and fourth sections, respectively, we
derive the local truncation error and give the discussion of the stability of the
proposed method. Furthermore, the fifth section performs the computational
comparisons between the proposed method, Euler’s method [2, p. 16] midpoint
method [4, p. 28] Heun’s method [2, p. 58] and Shampine’s method [7]. A
conclusion is given at the end of the discussion.

2. Mendeleev’s Quadrature for Solving Initial
Value Problems

Mendeleev’s quadrature for computing a definite integral f;”l

two-sided approximations as follows [6]:

/:Hl f(x)dr ~ # (f(ll?i) +3f <:cZ + %(xiﬂ - zi)>)7 (2)

i

f(z)dz gives

i

and

/:7-,# flx)de ~ W (Sf <x1 + %(l'iJrl - J:Z-)) + f(xiﬂ)). (3)

b

Formulas (2) and (3) are called the left and right Mendeleev’s quadratures,
respectively.

Suppose that z lies in the interval [z, zo + ], partitioned into n subintervals
whose step size is h = £, that is

n’
z; =x9+1th, 1=0,--- ,n.

Integrating both sides of (1) from z; to ;11 we obtain

V(o) = (o) + " (s, Y (5))ds. (4)

i
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If we approximate the right-side integral of (4) with the right Mendeleev’s
quadrature (3), then we get

/wml f(s,Y (s))ds = Z(Sf <:c1 + g, Y(xi + Z)) + f(@ita, Y(:cm))), (5)

i
where h = z;41 — x;.

By substituting (5) into the equation (4), we obtain
h h h
Y(@ipr) =Y (o) + (3fl @i+ 5.V {2+ 5 ) ) + fl@er, Yi@ia)) ). (6)

The Taylor expansion of Y (z; + %) about z; is rewritten as

h h h
By replacing the value of Y (z; + %) in (6) with approximation (7), we have

lwien) =Yoo+ g (37 (0 5.V (@) + 5100 ) + Slain V) ).
0

The differential equation Y'(z) = f(z,Y (z)) at x = z; is discretized as follows:

o) = o)+ (31 (a0 5@ + 5106 ) + faisr, i) ). )

so that we obtain the implicit Mendeleev’s method to solve the initial value
problem (1),

Yi+1 = Yi+ %(3f(131 + %7% + %f(yz)) + f(xi+17yi+1))7 } (10)
Yo = Yo.

The Taylor expansion of Y(,,. ) about ;41 = z; can be written as
V@i) = Viey + WY = Vi) + b (Viay): ()

If the value of Y, . ) on the right side of (8) is replaced by approximation (11),
then we get the explicit Mendeleev’s method

Yi+1 = yi+Z(3f(1:i+Z,yﬂr’;f(yi))+f(x<i+h>,yi+hf(yi))),} (12)
yo = Yo
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Equation (12) can also be written as

Yie1 = Yi + Z(?ﬂfs + k2), (13)
where
ki = f(zi,y:),
ko = f(xi,yi + hk1), (14)
ks = f<%‘+ g;yiJr ;Lk1>

In a similar way, if we use the left Mendeleev’s quadrature (2), then we get

Yit1 = yi-f—Z(f(mi,yi)+3f($i+gh,yz‘+§hf(yi)))7} (15)
Yo = Yo.

Formula (15) has been constructed by Shampine [7].

3. Local Truncation Error

Taylor expansion of Y (x;41) about x;11 = x; can be written as

1 1
Yigr =Y+ Y (w1 — i) + 3V (@i — 2)° + 2V (w1 — 23)°

2 6
+ O((ip1 — 2)"). (16)

Suppose f = f(Y;) and f, = $L, such that
Y/ =f(Yi) = f, (17)
vi= 9L g (18)
v (g )+ ) = Pl i 9

If we substitute (17), (18), and (19) into (16), then we get
1 1
Yipr = Yo+ hf + 5h2ffy + o2 (ffyy + £7) + O(RY), (20)

where h = ;41 — z;.
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The Taylor expansions of the function ks in (14) about y; + Af = y; and ks in
(14) about y; + % f = y; can be written respectively as

B = Jli 4 ) = T+ RFSy+ 302 P, (21)
and )
b= Ji+ 50 = £+ 55,4 5 (5) 12 (22)

If we substitute (21) and (22) into equation (13), then we obtain

1 1
Yitl = Yi + hf + §h2ffy + 6h3f2fyy~ (23>

To get the local truncation error (LTE) of the explicit Mendeleev’s method,
we calculate the difference between the numerical solution (23) and the exact
solution (20)
h3
LTE = K+1 —Yi+1 = Fffy (24)

The error formula (24) is affected by the step size h. The shorter the h, the
smaller the generated error.

4. Stability Region

Looking at the differential equations (1), consider an example of the initial
value problem (test problem) as follows [2, p. 128]:

Y'(z) = AY(z), x>0,

Y(0) = L (25)

The constant A may be a complex number. The exact solution of the problem
(25) is Y (x) = &=,

If we use the explicit Mendeleev’s method (12) to solve the problem (25),
then we obtain

1
Yir1 = i + hAy; + §h2A2yi. (26)

By letting hA = z, equation (26) can be written as

1
Yit1 = (1 +z+ 222)%- (27)
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Figure 1. The stability regions of the Euler method and the explicit
Mendeleev’s method

Figure 1 shows that the stability region of the explicit Mendeleev’s method is
larger then that of the Euler method.

5. Numerical Results

In this section, we intend to compare the proposed method with other methods
such as Euler’s method, midpoint method, Heun’s method and Shampine’s
method. We calculate the relative error of these examples using MATLAB v7.6
based on the number of n subintervals that varies.

Example 5.1. Y/(z) = Y(lm)’ 0<z <1, Y(0)=1, with the exact solution
Y(z) =2z +1.

Example 5.2. Y/(z) =
exact solution Y (z) =

s - 2(Y (@)%, 0< 2 <1, Y(0) =0, with the

T
1422
Example 5.3. Y'(z) = (Y(2))?(Inz)? —22Y (z)(In2)*+2Inz+2, 1<z <2,
Y (1) = 0, with the exact solution Y (z) = 2z1lnz.

Example 5.4. Y'(z) = (Y(2))? + (22Y (z) +2)sin®*(2z), 1<2<2, Y(1)=
—1, with the exact solution Y (z) = —2.
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Table 1: The relative error (||Y; — yi|loo) for Example 5.1

n Fuler Midpoint Heun Shampine Mendeleev
8  0.02094 0.00081 0.00004  0.00052 0.00054
16 0.01018 0.00020 0.00000  0.00013 0.00013
32 0.00502 0.00005 0.00000  0.00003 0.00003
64 0.00249 0.00001 0.00000  0.00001 0.00001
128 0.00124 0.00000 0.00000  0.00000 0.00000

Table 2: The relative error (||Y; — yil|oo) for Example 5.2

n Fuler Midpoint Heun  Shampine Mendeleev
8 0.03302 0.00182 0.00377  0.00232 0.00229
16 0.01604 0.00042 0.00087  0.00053 0.00053
32 0.00792 0.00010 0.00021  0.00013 0.00013
64 0.00394 0.00002 0.00005  0.00003 0.00003
128 0.00196 0.00001 0.00001  0.00001 0.00001

Table 3: The relative error (||Y; — yil|«) for Example 5.3

n Euler Midpoint Heun Shampine Mendeleev
8  0.09896 0.00045 0.00284  0.00073 0.00078
16 0.05050 0.00011 0.00068  0.00018 0.00018
32 0.02556 0.00003 0.00016  0.00004 0.00004
64 0.01286 0.00001 0.00004  0.00001 0.00001
128 0.00645 0.00000 0.00001  0.00000 0.00000

Table 4: The relative error (||Y; — yi|/«) for Example 5.4

n Euler Midpoint Heun Shampine Mendeleev
8 0.02811 0.00158 0.00086  0.00121 0.00128
16 0.01324 0.00037 0.00017  0.00028 0.00029
32 0.00644 0.00009 0.00004  0.00007 0.00007
64 0.00318 0.00002 0.00001  0.00002 0.00002
128 0.00158 0.00001 0.00000  0.00000 0.00000
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Tabel 1 shows that for Example 5.1, Heun’s method is more accurate than the
other methods. However, for Example 5.2, 5.3 and 5.4, the numerical results
show that the relative error of the Mendeleev’s method is smaller than the
Euler’s method, midpoint method and Heun’s method.

Furthermore, the relative error is plotted againts the number of n subintervals
as depicted in Figure 2.
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Figure 2. The relative error for IVP

(a) Example 5.1 (b) Example 5.2
(c¢) Example 5.3 (d) Example 5.4
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Conclusion

Mendeleev’s quadrature [6] can be used for solving initial value problems.
Numerical results show that the proposed method is better than the Euler’s
method, midpoint method and Heun’s method.
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