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Abstract. In this paper, a new optimized method based on polynomi-
als is proposed for solving variable-order fractional differential equations
(V-FDEs) and systems of V-FDEs. To do this, a general polynomial of
degree m with unknown coefficients is considered as an approximate
solution for the problem under study. By using the initial conditions
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demonstrate the accuracy and efficiency of the proposed method some
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1. Introduction

Fractional differential equations (FDEs) are generalized form integer or-
der ones, which are obtained by replacing integer order derivatives by
fractional order ones [1, 2]. FDEs have been successfully applied in vari-
ous fields of physics and engineering such as biophysics, bioengineering,
quantum mechanics, finance, control theory, image and signal process-
ing, viscoelasticity and material sciences [3, 4]. The exact solutions of
most FDEs can’t be solved, so approximate and numerical techniques
[5, 6, 7, 8], should be used. Several numerical and approximate methods
such as variational iteration method [5], homotopy perturbation method
[9], Adomian decomposition method [10], homotopy analysis method [11]
and collocation methods in [12, 13], finite element method in [14], finite
difference method [15, 16] and wavelets method [17, 18, 19, 20, 21] have
been given in recent years to solve FDEs.

Variable-order fractional derivatives are an extension of constant-order
fractional derivatives and have been introduced in several physical fields
[17, 18, 19]. Many authors have introduced different definitions of variable-
order differential operators, each of these with a specific meaning to
suit desired goals. These definitions such as Riemann-Liouville, Grn-
wald, Caputo, Riesz [20, 21, 22], and some notes as Coimbra definition
[23, 24]. Since the equations described by the variable-order derivatives
are highly complex and also difficult to handle analytically, it is advis-
able to consider their numerical solutions. Although there exist enor-
mous literatures on the numerical investigation for constant fractional
order differential equations, the investigation of numerical methods of
variable-order FDEs are quite limited. Several numerical methods have
been proposed for V-FDEs in recent years, e.g. [25, 26, 27, 28, 29, 30, 31].
In this paper, we consider the general form of the V-FDEs as:

507 ult) = £t u(t), D7 ult) 5D (). §DP u(t), (1)
on the interval ¢ € [0, 1], subject to the initial conditions:

u®(0) = i=0,1,..,¢—1, (2)
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where ¢ is the integer such that ¢ — 1 < a(t) < ¢, 0 < aq(t) < as(t) <
.. < an(t) < at). Also, the real numbers uéi), 1=20,1,...,qg — 1, are
assumed to be given. Moreover, D} (t)u(t) denotes the variable-order
fractional derivative of order a(t) in the Caputo sense for u(t), which is

defined in [31, 32] by:

t q
6D (t) = F(q_la(t)) /0 -0 T 0
It is worth noting that there are two types of variable-order fractional
differential definitions. One considers the derivative order without any
memory related to past derivative order values, and the other with
memory related to past derivative order values. In this study, we have
adopted the definition of variable-order fractional derivatives in which
the derivative order has no memory of past derivative order values. It
should be also denoted that based on the definition expressed in Eq. (3)
for any ¢ — 1 < a(t) < ¢, we have the following useful property [32]:

F(m + 1) _ (t)
T g <meN,
(C)Dta(t)tm ! I'm—a(t)+1) (4)

0, 0. w.
It is well-known that the Taylor series approximation for any analytic
function u(t) around ¢ = 0 is expressed as:

o0

OO
uty =300 (5)

7!
i=0

where u()(0) is the ith derivative of u evaluated at t = 0.

It is worth to mention that in practical uses only a number of finite
terms of the above series is considered as an approximation of the Tay-
lor series.

The main aim of this paper is to propose an efficient and accurate op-
timized method based on the polynomials for solving V-FDEs. In par-
ticular the efficiency and reliability of the proposed technique will be
demonstrated through extensive numerical analysis, considering several
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examples with known exact solution.

The structure of the remainder of this paper is as follows: In Section 2,
the proposed method is described for solving the problem under study.
In Section 3, some numerical examples are given. Finally, a conclusion
is drawn in Section 4.

2. Description of the Proposed Method

In this section, we apply a new optimized method based on polynomials
to find approximate solutions for V-FDEs in Eq. (1).

2.1 Function approximation

Let X = L?[0,1], and assume that P,,(t) =[1 ¢t t* ... t™1) Y, =
span{1,t,t? ..., t™} and @(t) be an arbitrary element in X. Since Y,
is a finite dimensional vector subspace of X, u(t) has a unique best
approximation out of Yy, such as ug(t) € Yi,, that is

Va(t) € Y, [l a(t) —uo(t) <] at) —a(t) || -

Since ug(t) € Yy, there exist the unique coefficients ag, a1, ..., ap, such
that
m
i(t) 2 ug(t) =Y ait' = AT P(t), (6)
i=0
and
AT = [ap a1 ... am)

Let the function u(t) defined in Eq. (6) be an approximate solution for
Eq. (1). By using the initial conditions in Eq. (2), we have
1.,
ai:i—'&(z)(O), i=0,1,...,q— 1. (7)

The coefficients ag, a1, ..., aqs—1 are chosen as the fixed coefficients. Now
by replacing 4(t) and corresponding derivatives in Eq. (1), we define the
residual function:

g(t,ag, agyi, ... am) =

eDWaet) — £t a), s Vat), cDXDa), ... s Vat)),  (8)
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and then the error function:

1
e(a(Ia Ag+15 - - - 7am) = / gz(tv Qq; Ag+1, - - - 7am)dt' (9)
0

Now to obtain an approximate solution for Eq. (1), we choose the free
coefficients, a4, ag+1, - - ., an optimally. to do this, we solve the following
system of algebraic equations:

oe(aq, Ag11, - -, am)

da;

=0, 1=q,q+1,....m .

Theorem 2.1.1. Let X be a normed space, (Y,) be a sequence in X
such that Y1 C Yo C --- C X and UY,, = X. If v € X and y, the best
approximation of x in Yy i.e. d(xz,y,) = dist(z,Yy), then y, — x.

Proof. Since (Y;,) is an increasing sequence of sets, therefore
lyn — || = dist(z, V)

is an decreasing sequence of sets in [0, 00) and this sequence has a limit.
For example ||y, — z|| — « for some o > 0. If o > 0, then

dist(z,Yn) = [lyn — || = [lyn1 — 2| = --- = @ >0,

and
Vn € N, dist(z,Yy) > «a,
then
Vn € N, Yy € Y,, dist(z,Y,) = a.
Therefore

Bz, %) N (UY,) = 0.

So, UY,is not dense in X which contradicts to what we assume. This
contradiction shows aw = 0. Thus ||y, —z| — « = 0 and then y,, — z. O
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3. Numerical Results

The purpose of this section is to show that the proposed method designed
in this paper provides good approximations for V-FDEs. It is worth men-
tioning that all numeric computation is performed by MAPLE software
with enough decimal digits.

Example 3.1. Consider the following V-FDE:

- — 2t2—a(t) tl—a(t)
0Ds Mw+“”_r@—a@»_r@_a@)+ﬁ‘“ (10)

where 0 < a(t) < 1 and the initial condition is u(0) = 0. It can be verified
that the exact solution for this problem is u(t) = t> — t. This problem
solved by the proposed method for a(t) = 1 — 0.5et. We estimate u(t)
by truncation Eq. (6) after the five terms as:

a(t) = ATPy(t), (11)

where AT =[ag a1 az a3 a4) and Py(t) =[1 ¢t t* 3 t47T.

Coefficient ag is chosen as the fixed coefficient, and by the initial condi-
tion we have, ag = 0. Coefficients a1, a9, ag and a4 are chosen as the free
coefficients. Therefore the approximate solution for Eq. (10) is given as:

a(t) = AT Py(t) = art + aot® + azt® + aqt™. (12)
Substitute Eq. (12) into Eq. (10) and define the residual function:

2t2704(t) tlfa(t)

2
T6-a@) "Te—a@) ©Th

g(ta ai, az, as, a’4) = ng(t)a(t) +a(t) -
and then the error function:
1
e(al,az,a37a4)=/ g2 (t, a1, a2, as, as)dt.
0

The values for the free coefficients are obtained by minimizing
e(ai,as,as,ay) as:

Oe(ai,az,as,as)

8(3@

=0, 2=1,2,3,4.
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By solving the above system of algebraic equations the free coefficients
are obtained as:

ay = —1, a2=1, a3:0, CL4=O,
and therefore, we gain the exact solution.
Example 3.2. Consider the following V-FDE:

DX (t) + sint §DPDu(t) + cost u(t)

6t3—®) 6sint 3P0 . (13)
= + + t° cost,
[4—aft)  T-p6(1)

where the initial conditions are u(0) = u (0) = 0, and 1 < a(t) <
2, 0 < B(t) < 1. The exact solution for this problem is u(t) = ¢3. This
problem is also solved by the proposed method for a(t) = 2 —sin?(t) and

_3

B(t) =1 — “5—. We consider m = 4 in Eq. (6) for approximate solution
of Eq. (13) as:

a(t) = ATPy(t) = ap + art + ast® + agt® + ast™.

By the initial conditions, we obtain the fixed coefficients:

/

apo=u(0)=0 , a3 =2 (0)=0.

Coefficients a9, a3 and a4 are chosen as the free coefficients. By applying
the same process in Example 3., the free coefficients are obtained as
followig:

a2=0, a3:1, a4:0,

and therefore we gain the exact solution.

Example 3.3. Consider the following nonlinear problem:

(e c 2 C
507 u() + ¢! §07 u(t) + 5 607 u(t) + Vi (u(t))?
2et$2-B(t) 42—t 0
= + +12,
PE-A1) "~ 2t-DIB-0)
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where 2 < a(t) < 3,1 < (t) < 2and 0 < v(t) < 1, with the initial
conditions u(0) = «/(0) = 0, v”(0) = 2. The exact solution for this
problem is u(t) = t2. We also solve this problem by the proposed method
for a(t) =3 — fe~, B(t) = 2 — cos?t and y(t) = 1 — § cost. Consider
the truncation of Eq. (6) with first four terms as:

a(t) = AT P3(t) = ag + a1t + agt? + ast®.
By the initial conditions, we obtain the fixed coefficients:

) ()
G=(0)=0 . a =@ (0)=0 . ap= O

Coefficient ag is chosen as the free coefficient. By applying the same
process in example 1, the free coefficient is obtained as:

az = 0.
Thus, we get @(t) = t2, which is the exact solution.
Example 3.4. Consider the following nonlinear V-FDE:

§D; V() + sin(t) (u(t)? = f(t),

)
where f(t) = +sin(t) t7, 0 < a(t) < 1 and the initial condi-

tion is u(0) = 0. The exact solution for this problem is u(t) = t2. This
problem solved by the proposed method for a(t) = 1 — 0.5¢~¢. To solve
this problem, we estimate u(t) by consider Eq. (6) with m = 6 as:

a(t) = AT Pﬁ(t)7

where AT = [ag a1 a2 a3 a4 as ag) and Pg(t) = [1 t 12 ¢ t* ¢ t5]7. The
coefficient ag is chosen as the fixed coefficient, and by the initial condi-
tion we have ag = 0. The coefficients aq, as, ag, a4, as, ag are chosen as
the free coefficients. If we use the same process in Example 3., the free
coefficients a1, a9, as, aq, as, ag are obtained as follows:

a1 = 0.001145942683, az = —0.027441178290, a3 = 0.396466775615,
aq = 0.843570591951, as = —0.273010798021, ag = 0.059278716669.



A NEW OPTIMIZED METHOD FOR SOLVING ... 93

From Theorem 2.1, @(t) tends to exact solution of the problem under
study.

The graph of the absolute error for this problem by the presented method
for m = 6 is shown in Fig. 1. From Fig. 1, it can be seen that the proposed
method provides a good approximate solution for this problem.

x107

0 0.2 0.4 0.6 0.8 1
t

Figure 1. The graph of the absolute error for Example 3.4.

Example 3.5. Consider the following system of V-FDEs:

EN0) _ 2P 3
cDMu(t) + v(t) = e "
c Bt _ 42 — 6t37ﬂ(t) _

oD v(t) — tru(t) = T @)

where 0 < a(t),B(t) < 1, with the initial conditions u(0) = v(0) =
0. The exact solutions are u(t) = t2 and v(t) = 3. We also have solved
this system by the proposed method for a(t) = 1 — cos?(t) and 3(t) =
1- %e*t. Consider the truncation of Eq. (6) with first four terms for
approximate solution of Eq. (14) as:

a(t) = ATPy(t), (1) = BTQs(t),

where AT = [a() a] a ag], Pg(t) = [1 t t2 tS]T, BT = [bo b1 b2 bg}
and Q3(t) =[1 t t* 3]7T.
By applying the initial conditions, we obtain the fixed coefficients as:

ap=u(0) =0 , by=0(0)=0.
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Coefficients a1, a9, asz, by, ba, bg are chosen as the free coefficients. Define
the error function:

E(Cbl, az, as, bla b2, b3) -

1
/ (9%(@ a1, az,az, by, ba, b3) + g3(t, a1, as, as, by, ba, b3)>dt,
0

where
2t2_a(t)
" by, b, bg) = D Da(t) + 6(t) — ———— 43
gl( ,ay, az,as, 01,02, 3) 0+t ’LL( )+U() 1“(3_a(t))
¢ B(0) 2~ 6¢>~°1) 4
t by, by, bs) = SD t)—tu(t) — = +t.
92( ,a1,a2,as,01, 02, 3) oMt o(t) u() F(4—a(t)) +

The values for the free coefficients are obtained by minimizing
e(ai,az,as, by, b, b3) as following:

ar=0 , b=0, ao=1 , by=0, a3=0 , by=1.

Thus, we get @(t) = t* and 9(t) = t3, which are the exact solutions.

4. Conclusion

In this paper, a class of variable order fractional differential equations
(V-FDEs) solved by using an efficient and accurate computational method
based on polynomials. The proposed method is very convenient for solv-
ing such problems and also requires less computational work to obtain an
approximate solution for the problem under study. The main advantage
of the proposed method is its fast convergence to the exact solution. Sev-
eral numerical examples provided to demonstrate the powerfulness of
the proposed method. Also, this method has been successfully applied
to calculate the approximate solutions for systems of V-FDEs.
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