
Journal of Mathematical Extension
Vol. 11, No. 3, (2017), 103-127
ISSN: 1735-8299
URL: http://www.ijmex.com

Optimal and Adaptive Control of
an Epidemic Model of Influenza with

Unknown Parameters

H. Saberi Nik∗

Young Researchers and Elite Club,
Neyshabur Branch, Islamic Azad University

T. Zarasvand
Young Researchers and Elite Club,

Neyshabur Branch, Islamic Azad University

Abstract. This paper deals with the nonlinear dynamics, chaos, op-
timal and adaptive control of an epidemic model for H1N1 influenza with
unknown parameters. Two different control strategies are explored. First,
we use the optimal control theory to reduce the infected individuals and
the cost of vaccination. Then, we study the problem of optimal control of
unstable steady-states of H1N1 influenza system using a nonlinear con-
trol approach. Finally, we propose the Lyapunov stability to control of
the chaotic epidemic model of influenza with unknown parameters by a
feedback control approach. Matlab bvp4c and ode45 have been used for
solving the autonomous chaotic systems and the extreme conditions ob-
tained from the Pontryagin’s maximum principle (PMP). Furthermore,
numerical simulations are included to demonstrate the effectiveness of
the proposed control strategies.

AMS Subject Classification: 49J15; 37B25; 37N25; 37N35

Keywords and Phrases: Optimal control, influenza, epidemic model,
lyapunov function, pontryagin’s maximum principle
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Influenza is an infectious viral disease, which is commonly known as the flu. At
least four pandemic of influenza occurred in the 19th century, and three oc-
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joints and throat, headache, fatigue, cough, reddened eyes, irritated watering
eyes, mouth, throat and nose. It also includes gastrointestinal symptoms such
as diarrhoea and abdominal pain among children. In influenza, the incubation
period is the time period between the entrance of the flu virus into the body
and the clinical onset of the disease. Influenza has an incubation period of 1-4
days. The latent period is the time between clinical signs appearing and the
onset of symptoms. Influenzas latent period is very short as compared to the
incubation period with its length as one day. During this stage there is a very
low level of infectivity. The latent period of an infectious period is followed by
2-10 days. During the infectious stage there is a very high level of infectivity. In-
fectious period can however be decreased by medications. Recovery is usually
rapid, but some patients may have lingering depression and asthenia for several
weeks. The recovery period starts as soon as the infectious period ends. For in-
fluenza, immunity is not permanent. Influenza virus changes dramatically as
different strain and our immune system fails to recognize it quickly. After re-
covering, a person is usually partially susceptible to different strains of a virus
within a few years [1, 2, 3, 4]. Influenza is an infectious disease caused by a virus
commonly known as influenza virus and transmitted among humans mainly in
three ways: (i) by direct contact with infected individuals; (ii) by contact with
contaminated objects and (iii) by inhalation of aerosols that contain virus par-
ticles. There are millions of people who suffer or die annually from influenza
worldwide. Although different control and prevention strategies are available
to control influenza transmission, influenza has been a major cause of morbid-
ity and mortality among humans all over the world. Comparative knowledge
of the effectiveness and efficacy of different control strategies is necessary to
design useful influenza control programs. The ability of mathematical model-
ing to predict the effectiveness of combined control strategies and positively
influence public health policy is well established [5, 6]. Based on approaches
using optimal control theory, mathematical modeling studies have been carried
out to define optimal strategies involving various interventions such as lim-
ited vaccine supply [7] and social distancing [8]. Combined models of antiviral
treatment and social distancing, or vaccination and antiviral treatment have
also been proposed for influenza control and the application of optimal con-
trol theory. In addition, age-structured models of influenza transmission have
indicated that optimal vaccine allocations differ markedly between age groups
because both the risk of infection and its severity are dependent on age [9, 10].

Some authors discussed the problem of chaos and stability analysis of some
biological models such as cancer and tumor model, genital herpes epidemic,
chaotic and hyperchaotic systems and many other models, see, for example,
[11, 12, 13, 14, 18]. In this paper, two control strategies are considered for
optimal control of the diffusive epidemic model for H1N1 influenza. First, we
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investigate the impact of a vaccination campaign on the spread of the influenza
epidemy. The second proposed control strategy is to design the optimal control
inputs u1, u2, u3, and u4 such that the state trajectories tend to the unstable
equilibrium point E0(1, 0, 0, 0) in a given finite time interval [0, tf ]. Further-
more, an adaptive control law and a parameter estimation update law are in-
troduced for the epidemic model for H1N1 influenza with completely unknown
parameters. The global asymptotic stability of a diffusive epidemic model are
derived.

The paper is organized as follows: In Section 2, we analyze the dynamics of
the model and stability analysis. Section 3 is devoted to the optimal control of
the system with time dependent controls. In Section 4, the dynamic estimators
of uncertain parameters in the diffusive epidemic model system is investigated
based on the Lyapunov stability theory from the conditions on the asymptotic
stability of this system about its steady states. In Section 5, we summarize the
main results obtained in this paper.

2. Model and Stability Analysis

The model for influenza [19] consists of a system of nonlinear ordinary differ-
ential equations, where population is divided into four subgroups: susceptible
(those at risk of contracting the disease), exposed (those who are infected but
not yet infectious), infective (those who are infectious and capable of trans-
mitting the disease), and recovered (those who have not attained permanent
immunity). It has been assumed that only susceptible populations are affected
by the infectious populations. Since recovery does not give immunity, individ-
uals move from the susceptible-exposed-infectious class to the susceptible class
upon recovery when the temporary immunity disappears. The model consists
of the following system of ordinary differential equations:

Ṡ = −β IS
N

− µS + rN + δR (1)

Ė = β
IS

N
− (µ+ σ + κ)E (2)

İ = σE − (µ+ α+ γ)I (3)
Ṙ = κE + γI − µR− δR (4)
S + E + I +R = N, (5)

where the variables S,E, I and R represent the proportion of the populations
in each of the four categories: susceptible individuals, exposed individuals, in-
fected individuals and recovered individuals, respectively. Here N represents
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the total population. The parameters representation is as: β the transmission
coefficient of the disease; µ, the natural mortality rate; r, the birth rate; σ−1,
the incubation period; κ and γ, the recovery rate for both exposed and infected
populations; α, the disease induced morality rate and δ−1, the loss of immunity
period.

In terms of the dimensionless proportions of susceptible, exposed, infectious and
recovered individuals it is assumed that µ = (r − α I

N ), s = S
N , e = E

N , i =
I
N

and r1 =
R

N
. After some manipulations and replacing s by S, e by E, i by I

and r1 by R Eqs. (1)-(5) can be written as

Ṡ = −βIS + αIS − rS + δR+ r

Ė = βIS − (σ + κ+ r)E + αIE

İ = σE − (α+ γ + r)I + αI2 (6)
Ṙ = κE + γI − rR+ αRI − δR

S + E + I +R = 1.

Table 1: Parameters used in the numerical solution.
parameter biological meaning value

β transmission cofficient 0.514000000
σ−1 mean duration of latency (days) 2.000000000
γ−1 mean recovery time for clinically ill(days) 5.000000000
δ−1 duration of immunity loss(days) 365.0000000
µ natural mortality rate per day 5.500× 10−8

r birth rate per day 7.140× 10−5

κ recovery rate of latents per day 1.857× 10−4

α flu induced, mortality rate per day 9.300× 10−6

 degree of seasonality 0.500000000

2.1 Equilibria and stability analysis

In what follows, we examine the behavior of the trajectories of the system (6)
near the equilibrium points. We now investigate the linear stability analysis of
disease-free equilibrium, E0 = (1, 0, 0, 0) .

Proposition 2.1. The equilibrium point E0 is unstable when α = 9.3× 10−6

, β = 0.514 , γ = 1
5 , δ = 1

365 , κ = 1.857e− 4 , σ = 1
2 and r = 7.14× 10−5.

Proof. The Jacobian matrix of given by the system (6) is :

106 H. SABERI NIK AND T. ZARASVAND

the total population. The parameters representation is as: β the transmission
coefficient of the disease; µ, the natural mortality rate; r, the birth rate; σ−1,
the incubation period; κ and γ, the recovery rate for both exposed and infected
populations; α, the disease induced morality rate and δ−1, the loss of immunity
period.

In terms of the dimensionless proportions of susceptible, exposed, infectious and
recovered individuals it is assumed that µ = (r − α I

N ), s = S
N , e = E

N , i =
I
N

and r1 =
R

N
. After some manipulations and replacing s by S, e by E, i by I

and r1 by R Eqs. (1)-(5) can be written as
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Ė = βIS − (σ + κ+ r)E + αIE
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J =





−r 0 (α− β) δ
0 −(σ + κ+ r) β 0
0 σ −(α+ γ + r) 0
0 κ γ −r − δ



 . (7)

The Jacobian matrix at equilibrium E0(1, 0, 0, 0) is obtained as:

J(E0) =





−0.0000714 0 −0.514 0.0027
0 −0.5001 0.514 0
0 .5000 −.2001 0
0 .0002 .2000 −0.0028



 , (8)

which has the eigenvalues:

λ1 = −0.0001, λ2 = −0.0028, λ3 = 0.1786, λ4 = −0.8788. (9)

It is observed that the eigenvalue λ3 is positive. According to the Lyapunov
theorem, the equilibrium point E0 is unstable.

The influenza system can exhibit limit cycles, quasi-periodic and chaotic at-
tractors. Fig. 1 illustrate the oscillatory behavior of the system (6). In the
following we display different limit cycles and attractors of the influenza model
without control. Such limit cycles and attractors in Figs. 2 and 3 respectively
agree well with the previous stability analysis that indicates that the system
has a chaotic behavior. Therefore, it is useful to study the problem of optimal
control for the interested model as will presented in the following section.

3. Optimal Control

In this section, we use the optimal control theory to analyze the behavior of
the model (6). Two different control strategies are explored.

3.1 The first optimal control problem

We suggest u(t) for control of the disease in infectious and exposed populations
that can be vaccination and quarantine. The mathematical system with control
is given by the nonlinear differential equations:






Ṡ = −(1− u)βIS + αIS − rS + δR+ r

Ė = (1− u)βIS − (σ + κ+ r)E + αIE

İ = σE − (α+ γ + r)I + αI2

Ṙ = κE + γI − rR+ αRI − δR.

(10)
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Our goal is to reduce the infected individuals, exposed individuals and the
cost of vaccination. Mathematically, the problem is to minimize the objective
functional

J =
 T
0
[CI(t) + W

2 u
2(t)]dt. (11)

Our problem is to find optimal control u(t), such that

J(u∗(t)) = min
U

J(u(t)), (12)

where U is the set of admissible controls defined by

U = {u(t)|0  u(t)  1 , t ∈ [0, T ]}.

The necessary conditions that optimal solution must satisfy are derived from
Pontryagin’s Maximum Principle. The problem of minimizing Hamiltonian H
given by

H = CI +
W1

2
u2(t) + q1(t)[−(1− u)βIS + αIS − rS + δR+ r]

+ q2(t)[(1− u)βIS − (σ + κ+ r)E + αIE] + q3(t)[σE − (α+ γ + r)I
+ αI2] + q4(t)[κE + γI − rR+ αRI − δR]. (13)

By applying the Pontryagin’s maximum principle [20] and the existence result
of optimal control from [21], we obtain the following theorem:
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Figure 1. The densities of the Susceptible, Exposed, Infected and Recoverd
populations for α = 9.3× 10−6 , β = 0.514 , γ = 1

5 , δ = 1
365 ,

κ = 1.857× 10−4 , σ = 1
2 and r = 7.14× 10−5 and the initial densities

S(0) = 0.9999, E(0) = 0, I(0) = 0.0001, R(0) = 0.
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Figure 2. The limit cycles for α = 9.3× 10−6 , β = 0.514 , γ = 1
5 , δ = 1

365 ,
κ = 1.857× 10−4 , σ = 1

2 and r = 7.14× 10−5 and the initial densities
S(0) = 0.9999, E(0) = 0, I(0) = 0.0001, R(0) = 0
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Figure 3. Influenza 3D dimensional phase plot which represent the attractors
for α = 9.3× 10−6 , β = 0.514 , γ = 1

5 , δ = 1
365 , κ = 1.857× 10−4 , σ = 1

2
and r = 7.14× 10−5 and the initial densities

S(0) = 0.9999, E(0) = 0, I(0) = 0.0001, R(0) = 0
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Theorem 3.1. There exist optimal control u∗(t) corresponding solutions S∗, E∗, I∗

and R∗ that minimizes J(u(t)) over U . In order for the above statement to be
true, it is necessary that there exist continuous functions qi(t), i = 1, ..., 4 such
that






q̇1(t) = ((1− u)βI − αI + r)q1 − ((1− u)βIq2
q̇2(t) = ((σ + κ+ r)− αI)q2 − σq3 − κq4

q̇3(t) = −C + ((1− u)βS − αS)q1 − ((1− u)βS + αE)q2
+ (−2αI + (α+ γ + r)q3 − (γ + αR)q4

q̇4(t) = −δq1 + (r − αI + δ)q4,

(14)

with the transversality conditions,

qi(T ) = 0 , i = 1, 2, 3, 4. (15)

Furthermore, the optimal control u∗(t) given by

u∗ = min

max


0,
βIS(q2 − q1)

W1


, 1


. (16)

Proof. The existence of optimal control can be proved by using the results from
[21] (see Theorem 2.1). The adjoint equations and transversality conditions can
be obtained by using Pontryagin’s Maximum Principle :

dq1(t)
dt

= −∂H
∂S

,
dq2(t)
dt

= −∂H
∂E

,
dq3(t)
dt

= −∂H
∂I

,
dq4(t)
dt

= −∂H
∂R

,

with qi(T ) = 0 for i = 1, · · · , 4 and evaluated at the optimal control and
corresponding states, which results in the adjoint System (14). The Hamilto-
nian H is minimized with respect to the control at the optimal control, so we
differentiate H with respect to u(t) on the set U giving the following optimality
condition:

∂H
∂u

=W1u+ βIS(q1 − q2) = 0. (17)

And therefore

u∗ =
βIS(q2 − q1)

W1
. (18)

By standard variation arguments with the control bounds, we obtain the prop-
ertie:

u∗ = min

max


0,
βIS(q2 − q1)

W1


, 1


.  (19)
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Fig. 4 shows a time optimal educational schedule for T = 2000 days. As a result
of the decrease of the number of infectious, the susceptible population will
increase and the recovered population will decrease. Fig. 5 shows the optimal
treatment policy.

Figure 4. The optimal trajectories computed for Strategy 1 and using only
one control function
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Figure 5. The optimal control functions as a function of time computed for
Strategy 1.
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Fig. 4 shows a time optimal educational schedule for T = 2000 days. As a result
of the decrease of the number of infectious, the susceptible population will
increase and the recovered population will decrease. Fig. 5 shows the optimal
treatment policy.

Figure 4. The optimal trajectories computed for Strategy 1 and using only
one control function
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3.2 The second optimal control problem

The main objective of this section is to arrive at a suitable mathematical for-
mulation of the optimal control problem for the epidemic model for H1N1
influenza. Optimal control is defined by the admissible u1, u2, u3 and u4 which
minimize the total cost given by

J =
1
2

 tf

0

(α1(S − Sf )2 + α2(E − Ef )2 + α3(I − If )2 + α4(R−Rf )2

+ β1u1
2 + β2u2

2 + β3u3
2 + β4u4

2)dt, (20)

subject to:





Ṡ = −βIS + αIS − rS + δR+ r + u1(t),
Ė = βIS − (σ + κ+ r)E + αIE + u2(t),
İ = σE − (α+ γ + r)I + αI2 + u3(t),
Ṙ = κE + γI − rR+ αRI − δR+ u4(t),

(21)

where αj and βj (j = 1, 2, 3, 4) are positive constants, u1, u2, u3 and u4 are
the control inputs, which will be satisfied the optimality conditions, obtained
via the PMP. The proposed control strategy is to design the optimal control
inputs u1, u2, u3 and u4 such that the state trajectories tend to an unstable
equilibrium point in a given finite time interval [0, tf ]. Hence, the boundary
conditions are considered as:






S(0) = S0, S(tf ) = Sf ,

E(0) = E0, E(tf ) = Ef ,

I(0) = I0, I(tf ) = If ,

R(0) = R0, R(tf ) = Rf ,

(22)

where Sf , Ef , If and Rf denotes the coordinates of equilibrium point E0 =
(1, 0, 0, 0).

To solve the above optimal control problem, we will derive the optimality con-
ditions as a nonlinear two-point boundary value problem (TPBVP) via the
PMP. In the following, we shall find it convenient to use the function H, called
the Hamiltonian, defined as:

H = −1
2
(α1(S − Sf )2 + α2(E − Ef )2 + α3(I − If )2 + α4(R−Rf )2

+ β1u1
2 + β2u2

2 + β3u3
2 + β4u4

2) + λ1[−βIS + αIS − rS

+ δR+ r + u1] + λ2[βIS − (σ + κ+ r)E + αIE + u2]
+ λ3[σE − (α+ γ + r)I + αI2 + u3]
+ λ4[κE + γI − rR+ αRI − δR+ u4], (23)
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where λ1, λ2,λ3 and λ4 are the co-state variables. Using this notation, the
optimality conditions can be written as follows:






Ṡ = ∂H
∂λ1

,

Ė = ∂H
∂λ2

,

İ = ∂H
∂λ3

,

Ṙ = ∂H
∂λ4

(24)






λ̇1 = −∂H
∂S ,

λ̇2 = −∂H
∂E ,

λ̇3 = −∂H
∂I ,

λ̇4 = −∂H
∂R ,

(25)






∂H
∂u1

= 0,
∂H
∂u2

= 0,
∂H
∂u3

= 0,
∂H
∂u4

= 0,

(26)

Substituting the Hamiltonian function H from (23) into (25), the co-state equa-
tions can be derived in the form:

λ̇1 = α1(S − Sf )− λ1(αI − r − βI)− λ2βI,

λ̇2 = α2(E − Ef )− λ2[αI − (σ + κ+ r)]− λ3σ − λ4κ,

λ̇3 = α3(I − If )− λ1(αS − βS)− λ2(βS + αE)− λ3[2αI − (α+ γ + r)]
− λ4(γ + αR),

λ̇4 = α4(R−Rf )− λ1δ − λ4(αI − r − δ), (27)

and to obtain the optimal control laws, we have






β1u1 − λ1 = 0,
β2u2 − λ2 = 0,
β3u3 − λ3 = 0,
β4u4 − λ4 = 0.

(28)

Let us solve Eq. (28) to obtain the expressions for u1
∗(t), u2

∗(t), u3
∗(t), and
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u4
∗(t); that is:






u1
∗ = λ1

β1
,

u2
∗ = λ2

β2
,

u3
∗ = λ3

β3
,

u4
∗ = λ4

β4
.

(29)

If these expressions are substituted into (21), we have a set of first order non-
linear ODEs as:

The boundary conditions for these equations are given by Eq. (22). Notice that,
as expected, we are confronted by a nonlinear TPBVP. By solving this problem,
we can obtain the optimal control law and the optimal state trajectories.

In the next section, we will discuss the numerical solution of the above-mentioned
nonlinear TPBVP using the MATLAB in-built solver bvp4c, which is a finite
difference code to solve TPBVPs.

In the following numerical simulations, the MATLAB’s bvp4c in-built solver is
used to solve the systems. Here, the initial values for the state variables are
taken as S(0) = 0.9999, E(0) = 0, I(0) = 0.0001, R(0) = 0, and α1 = 0.3, α2 =
5.5, α3 = 0.1, α4 = 1.001, β1 = 50, β2 = 3, β3 = 5, β4 = 10. The behaviors
of the state and control variables are displayed in Figs. 6 and 7.
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Figure 6. Time history of the state functions for equilibrium point E0.
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Figure 7. Time history of the parameter estimates for equilibrium point E0.

4. Adaptive Control of the Chaotic and Hyper-
Chaotic System

This section is concerned to study the adaptive control of the epidemic model
for H1N1 influenza. In order to study the adaptive control of the epidemic
model for H1N1 influenza using nonlinear feedback control approach, we start
by assuming that the system (6) can be written in the following suitable form






Ṡ = −βIS + αIS − rS + δR+ r + v1,

Ė = βIS − (σ + κ+ r)E + αIE + v2,

İ = σE − (α+ γ + r)I + αI2 + v3,

Ṙ = κE + γI − rR+ αRI − δR+ v4,

(31)

where S,E, I and R are the states of the system, α, β, γ, δ, µ, σ, κ and r are
unknown parameters of the system, and v1, v2, v3 and v4 are the adaptive con-
trollers to be designed.

Theorem 4.1. The controlled system (31) will asymptotically and globally con-
verge to the unstable equilibrium point E0 = (1, 0, 0, 0), under the adaptive
controller:

V =





v1
v2
v3
v4



 =





β1IS − α1IS + r1S − δ1R− r1 −m1(S − Sf )
−β1IS + (σ1 + κ1 + r1)E − α1IE −m2(E − Ef )
−σ1E + (α1 + γ1 + r1)I − α1I

2 −m3(I − If )
−κ1E − γ1I + r1R− α1RI + δ1R−m4(R−Rf )



 , (32)
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4. Adaptive Control of the Chaotic and Hyper-
Chaotic System

This section is concerned to study the adaptive control of the epidemic model
for H1N1 influenza. In order to study the adaptive control of the epidemic
model for H1N1 influenza using nonlinear feedback control approach, we start
by assuming that the system (6) can be written in the following suitable form






Ṡ = −βIS + αIS − rS + δR+ r + v1,

Ė = βIS − (σ + κ+ r)E + αIE + v2,

İ = σE − (α+ γ + r)I + αI2 + v3,

Ṙ = κE + γI − rR+ αRI − δR+ v4,

(31)

where S,E, I and R are the states of the system, α, β, γ, δ, µ, σ, κ and r are
unknown parameters of the system, and v1, v2, v3 and v4 are the adaptive con-
trollers to be designed.

Theorem 4.1. The controlled system (31) will asymptotically and globally con-
verge to the unstable equilibrium point E0 = (1, 0, 0, 0), under the adaptive
controller:

V =





v1
v2
v3
v4



 =





β1IS − α1IS + r1S − δ1R− r1 −m1(S − Sf )
−β1IS + (σ1 + κ1 + r1)E − α1IE −m2(E − Ef )
−σ1E + (α1 + γ1 + r1)I − α1I

2 −m3(I − If )
−κ1E − γ1I + r1R− α1RI + δ1R−m4(R−Rf )



 , (32)
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and the following parameter estimation update law






α̇1 = IE(E − Ef ) + IS(S − Sf ) + I(I − If ) + I2(I − If )
+ IR(R−Rf ) +m5(α− α1),

β̇1 = IS(E − Ef )− IS(S − Sf ) +m6(β − β1),
δ̇1 = R(S − Sf )−R(R−Rf ) +m7(δ − δ1),
γ̇1 = I(R−Rf )− I(I − If ) +m8(γ − γ1),
κ̇1 = E(R−Rf )− E(E − Ef ) +m9(κ− κ1),
σ̇1 = E(I − If )− E(E − Ef ) +m10(σ − σ1),
ṙ1 = (S − Sf )− S(S − Sf )− E(E − Ef )− I(I − If )

−R(R−Rf ) +m11(r − r1),

(33)

where α1, β1, γ1, δ1, µ1, σ1, κ1 and r1 are estimate values of uncertain parame-
ters α, β, γ, δ, µ, σ, κ and r and mi(i = 1, · · · , 11) are positive constants, respec-
tively.

Proof. By substituting (32) into (31), we get the closed-loop system as






Ṡ = −(β − β1)IS + (α− α1)IS − (r − r1)S + (δ − δ1)R+ (r − r1)
−m1(S − Sf ),

Ė = (β − β1)IS − [(σ − σ1) + (κ− κ1) + (r − r1)]E + (α− α1)IE
−m2(E − Ef ),

İ = (σ − σ1)E − [((α− α1) + (γ − γ1) + (r − r1)]I + (α− α1)I2

−m3(I − If ),
Ṙ = (κ− κ1)E + (γ − γ1)I − (r − r1)R+ (α− α1)RI − (δ − δ1)R

−m4(R−Rf ).

(34)

For the derivation of the update law for adjusting the parameter estimates, the
Lyapunov approach is used. We consider the following quadratic Lyapunov
function

V (S,E, I,R, α̃, β̃, γ̃, δ̃, κ̃, σ̃, r̃) =
1
2
[(S − Sf )2 + (E − Ef )2 + (I − If )2

+ (R−Rf )2 + α̃2 + β̃2 + γ̃2 + δ̃2 + κ̃2 + σ̃2 + r̃2], (35)

where α̃ = α − α1, β̃ = β − β1, γ̃ = γ − γ1, δ̃ = δ − δ1, κ̃ = κ − κ1, σ̃ = σ − σ1

and r̃ = r − r1.

The time derivative of the Lyapunov function V along with the trajectories of
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(34), we obtain

V̇ = (S − Sf )Ṡ + (E − Ef )Ė + (I − If )İ + (R−Rf )Ṙ+ α̃ ˙̃α+ β̃
˙̃
β + γ̃ ˙̃γ

+ δ̃
˙̃
δ + κ̃ ˙̃κ+ σ̃ ˙̃σ + r̃ ˙̃r, (36)

then,

V̇ = [(α− α1)IS − (β − β1)IS − (r − r1)S + (δ − δ1)R+ (r − r1)
−m1(S − Sf )](S − Sf )
+ [(β − β1)IS − ((σ − σ1) + (κ− κ1) + (r − r1))E + (α− α1)IE
−m2(E − Ef )](E − Ef )

+ [(σ − σ1)E − ((α− α1) + (γ − γ1) + (r − r1))I + (α− α1)I2

−m3(I − If )](I − If )
+ [(κ− κ1)E + (γ − γ1)I − (r − r1)R+ (α− α1)RI − (δ − δ1)R
−m4(R−Rf )](R−Rf )

− (α̇1)(α− α1)− (β̇1)(β − β1)− (δ̇1)(δ − δ1)− (γ̇1)(γ − γ1)
− (κ̇1)(κ− κ1)− (σ̇1)(σ − σ1)− (r1)(r − r1), (37)

hence, we have

V̇ = −m1(S − Sf )2 −m2(E − Ef )2 −m3(I − If )2 −m4(R−Rf )2

+ (α− α1)[(S − Sf )IS + (E − Ef )IE − (I − If )I + (I − If )I2

+ (R−Rf )IR− α̇1] + (β − β1)[(E − Ef )IS − (S − Sf )IS − β̇1]

+ (δ − δ1)[(S − Sf )R− (R−Rf )R− δ̇1] + (γ − γ1)
[(R−Rf )I − (I − If )I − γ̇1] + (κ− κ1)[(R−Rf )E − (E − Ef )E − κ̇1]
+ (σ − σ1)[(I − If )E − E(E − Ef )− σ1] + (r − r1)
[((S − Sf )− (S − Sf )S − (E − Ef )E − (I − If )I − (R−Rf )R− ṙ1]. (38)

Substituting (33) into (38), the time derivative of the Lyapunov function be-
comes

V̇ = −m1(S − Sf )2 −m2(E − Ef )2 −m3(I − If )2 −m4(R−Rf )2

−m5(α− α1)2 −m6(β − β1)2 −m7(δ − δ1)2 −m8(γ − γ1)2 −m9(κ− κ1)2

−m10(σ − σ1)2 −m11(r − r1)2 < 0. (39)

Since the Lyapunov function V is positive denite and its derivative V̇ is negative
denite in the neighborhood of the zero solution for system (31), according



122 H. SABERI NIK AND T. ZARASVAND

to the Lyapunov stability theory, the equilibrium solution of the controlled
system (31) is asymptotically stable, namely, the controlled system (31) can
asymptotically converge to its equilibrium points with the adaptive control law
(32) and the parameter estimation update law (33). This completes the proof.

For the numerical simulations, we solve the controlled novel chaotic system (31)
with the adaptive control law (32) and the parameter update law (33). In the
following numerical simulations, the MATLAB’s ode45 in-built solver is used
to solve the systems. The initial values and system parameters are selected as
S(0) = 0.9999, E(0) = 0, I(0) = 0.0001, R(0) = 0, α = 9.3 × 10−6, β =
0.514, γ = 1

5 , δ =
1

365 , κ = 1.857× 10−4, σ = 1
2 and r = 7.14× 10−5. For the

adaptive and update laws, we take m1 = 1, m2 = 1, m3 = 1, m4 = 1, m5 =
1, m6 = 1, m7 = 8, m8 = 1, m9 = 1, m10 = 1, m11 = 1.

Suppose that the initial values of the parameter estimates are chosen as
α1, β1, γ1, δ1, µ1, σ1, κ1 and r1. Figs. 8 and 9, show that the controlled chaotic
system (31) converges to E0 = (1, 0, 0, 0) asymptotically with time. Also,
these figures show that the parameter estimates α1, β1, γ1, δ1, µ1, σ1, κ1 and r1
converge to the system parameter values α = 9.3× 10−6 , β = 0.514 , γ = 1

5 ,
δ = 1

365 , κ = 1.857 × 10−4 , σ = 1
2 and r = 7.14 × 10−5 asymptotically with

time.
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Figure 8. Time history of the state functions for equilibrium point E0.
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Figure 8. Time history of the state functions for equilibrium point E0.
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Figure 9. Time history of the parameter estimates for equilibrium point
E0.

5. Conclusion

We study the problem of optimal and adaptive control of a epidemic model of
influenza with unknown parameters. The chaotic behavior of continuous time
influenza model is investigated. We investigate the impact of a vaccination
campaign on the spread of the influenza model. Also, based on the Pontryagin
Minimum Principle (PMP), this system is stabilized to its equilibrium points.
The stability and instability of the steady-states of this system are studied using
the linear stability approach. In addition, we proposed Lyapunov stability to
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control the chaotic system by a feedback control approach. In fact, we used the
feedback control approach for estimating the system of unknown parameters.

Finally, extensive numerical examples and simulation are introduced.
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