Journal of Mathematical Extension

Vol. 11, No. 2, (2017), 85-92

ISSN: 1735-8299

URL: http://www.ijmex.com

A Method for Construction of Wavelets in Hardy Space of Analytic Functions

F. Abdollahi

Shiraz University

E. Rahimi*

Shiraz Branch, Islamic Azad University

Abstract. The main aim of this paper is to construct an orthonormal wavelet on $H^2(\mathbb{D})$, the Hardy space of analytic functions on the open unit disc with square summable Taylor coefficients.

AMS Subject Classification: 42C40; 30H10

Keywords and Phrases: Hardy space, orthonormal basis, wavelet, multiresolution analysis.

1. Introduction

The development of wavelets can be linked to several separate trains of thought, starting with Haar's work in the early 20th century (see [6]). He showed that the appropriate translates and dilates of Haarfunction form an orthonormal basis of $L^2([0,1])$. In [8], Mallat introduced the idea of a multiresolution analysis (MRA), where the general theory of finding a wavelet starting from an MRA scheme was developed. In [9], Meyer extended the concept of MRA to n-dimensions. Meyer constructed the first non-trivial wavelets, unlike the Haar wavelets.

Received: May 2016; Accepted: June 2016

^{*}Corresponding author

Wavelet turn out to have many advantages in studying various function spaces. They form an unconditional basis for variety of function spaces, e.g. $L^p(\mathbb{R})$, Hardy and $Sobolov\ spaces$. (see [1, 2, 7])

In [5], Goh gave a general approach of constructing orthonormal wavelet for a separable Hilbert space of complex-valued functions, and his construction is applied to several Hilbert spaces like the space of analytic functions on the unit disk.

In [10, 11], Pap generated a multiresolution in the *Hardy space* of analytic functions on the open unit disc and a multiresolution in the *Bergman space*. In [10], the method that was used is based on the analysis where instead of dilation and translations, it is used the *Blaschke group*.

The theory of *Hardy spaces* is very rich with many highly developed branches and originated in the context of complex function theory and Fourier analysis in the beginning of the twentieth century.

Let \mathbb{D} denote the open unit disc in the complex plane, and the Hardy space, $H^2(\mathbb{D})$, be the set of all functions $f(z) = \sum_{n=0}^{\infty} \hat{f}(n)z^n$ holomorphic in \mathbb{D} such that

$$\sum_{n=0}^{\infty} |\hat{f}(n)|^2 < \infty,$$

where $\hat{f}(n)$ denotes the *n*th Taylor coefficient of f (see [12]). For systematic exposition of the subject see books by Duren [3] and Garnet [4].

We denote by \mathbb{Z} the set of all integers, by \mathbb{N}_0 the set of all nonnegative integers, by $\mathbb{N}_{\mathbb{M}}$ the set $\{0, 1, 2, \dots, M-1\}$ for positive integer M and by $L^2[0, 1]$ the Hilbert space of all square-integrable functions with the inner product

$$\langle f, g \rangle = \int_0^1 f(t) \overline{g(t)} dt,$$

for $f, g \in L^2[0, 1]$.

Many examples of wavelets have been produced using the related concept of a *multiresolution analysis*.

Definition 1.1. A sequence of closed subspaces $\{V_j\}_{j\in\mathbb{N}_0}$ in $L^2[0,1]$ is

called a multiresolution analysis (MRA) for $L^2[0,1]$ if the following conditions are satisfied:

- i) $V_j \subseteq V_{j+1}$;
- ii) $\overline{\bigcup_{j\in\mathbb{N}_0}V_j}=L^2[0,1];$
- iii) There exists $\phi \in L^2[0,1]$ such that for every $j \in \mathbb{N}_0$,

$$\{\phi_{i,l}(.) = 2^{\frac{j}{2}}\phi(2^{j}. - l) : l \in \mathbb{N}_{2^{j}}\}$$

is an orthonormal basis for V_j . Herein, ϕ is called a scaling function of the MRA, and ϕ is said to generate the MRA.

Definition 1.2. Given an MRA $\{V_j\}_{j\in\mathbb{N}_0}$, and let for every $j\in\mathbb{N}_0$, $W_j=V_{j+1}\ominus V_j$. If there exists $\psi\in W_0$, such that

$$\{\phi, \psi_{j,l}(.) = 2^{\frac{j}{2}}\psi(2^{j}. - l) : l \in \mathbb{N}_{2^{j}}, j \in \mathbb{N}_{0}\}$$

is an orthonormal basis for $L^2[0,1], \psi$ is called an orthonormal wavelet of the MRA.

Let T and D be the translation and dilation unitary operators in $B(L^2(\mathbb{R}))$ given by (Tf)(t)=f(t-1) and $(Df)(t)=\sqrt{2}f(2t)$. Then $\psi_{j,l}(t)=2^{\frac{j}{2}}\psi(2^jt-l)=(D^jT^l\psi)(t)$ for all $j,l\in\mathbb{Z}$, and so we have ψ an orthonormal wavelet of the MRA if and only if $\{\phi,\psi_{j,l}:l\in\mathbb{N}_{2^j},j\in\mathbb{N}_0\}$ is an orthonormal basis for $L^2[0,1]$.

If we cosider $\phi = \chi_{[0,1]}(t)$ and $\psi(t) = \chi_{[0,\frac{1}{2}]}(t) - \chi_{[\frac{1}{2},1]}(t)$ then the system $\{\phi, \psi_{j,l} : l \in \mathbb{N}_{2^j}, j \in \mathbb{N}_0\}$ is an orthonormal basis for $L^2[0,1]$. (see [13])

In section 2 of the present paper, by using the definition of multiresolution analysis and orthonormal wavelet on $L^2[0,1]$, and this fact that $L^2([0,1])$ and $H^2(\mathbb{D})$ are isomorphic, we generalize these concepts to $H^2(\mathbb{D})$. Also by virtue of Haar wavelet on $L^2[0,1]$ we give an example of wavelet on Hardy space.

2. Wavelet on Hardy Space

In this section we extend the concept of MRA from $L^2[0,1]$ to $H^2(\mathbb{D})$. In our situation, the main definition is as follows:

Definition 2.1. A multiresolution analysis (MRA) on the Hardy space consists of a sequence $\{V_j\}_{j\in\mathbb{N}_0}$ of closed subspaces of $H^2(\mathbb{D})$ satisfying

- i) $V_j \subseteq V_{j+1}$;
- ii) $\overline{\bigcup_{i\in\mathbb{N}_0}V_j}=H^2(\mathbb{D});$
- iii) There exists an isometric isomorphism S from $L^2[0,1]$ onto $H^2(\mathbb{D})$ and $\phi \in L^2[0,1]$ such that for every $j \in \mathbb{N}_0$,

$$\{S\phi_{j,l}(.)=2^{\frac{j}{2}}S\phi(2^{j}.-l):l\in\mathbb{N}_{2^{j}}\}$$

is an orthonormal basis for V_j . Herein, $S\phi$ is called a scaling function of the MRA, and $S\phi$ is said to generate the MRA.

Definition 2.2. If S is an isometric isomorphism from $L^2[0,1]$ onto $H^2(\mathbb{D})$, an orthonormal wavelet on $H^2(\mathbb{D})$ is a unit vector $S\psi \in L^2[0,1]$ with the property that the set

$$\{S\phi, S\psi_{j,l}(.) = 2^{\frac{j}{2}}S\psi(2^{j}. - l) : l \in \mathbb{N}_{2^{j}}, j \in \mathbb{N}_{0}\}$$

is an orthonormal basis for $H^2(\mathbb{D})$, where $S\phi$ is a scaling function of the MRA on $H^2(D)$.

Theorem 2.3. Let S be an isometric isomorphism from $L^2[0,1]$ onto $H^2(\mathbb{D})$, $\{V_j'\}_{j\in\mathbb{N}_0}$ be an MRA on $L^2[0,1]$ with the scaling function ϕ and orthonormal wavelet ψ . Put $V_j = S(V_j')$. Then $\{V_j\}_{j\in\mathbb{N}_0}$ is an MRA on $H^2(\mathbb{D})$ and $\{S\phi, S\psi_{j,l} : l \in \mathbb{N}_{2^j}, j \in \mathbb{N}_0\}$ is an orthonormal basis for $H^2(\mathbb{D})$. Furthermore $S\psi$ is an orthonormal wavelet on $H^2(\mathbb{D})$.

Proof. We have ψ is an orthonormal wavelet of the MRA on $L^2[0,1]$ if and only if $\{\phi, \psi_{j,l} : l \in \mathbb{N}_{2^j}, j \in \mathbb{N}_0\}$ is an orthonormal basis for $L^2[0,1]$. The proof is completed by using the following facts. Since S is an isometric isomorphism, for each $j, l, m, n \in \mathbb{N}_0$, we have

$$\langle S\psi_{j,l}, S\psi_{m,n} \rangle = \langle \psi_{j,l}, \psi_{m,n} \rangle$$
 and $\langle S\psi_{j,l}, S\phi \rangle = \langle \psi_{j,l}, \phi \rangle$.

Because S is onto, for any $f \in H^2(\mathbb{D})$ there is $g \in L^2[0,1]$ such that f = S(g), and so

 $\langle S\psi_{j,l}, f \rangle = \langle S\psi_{j,l}, S(g) \rangle = \langle \psi_{j,l}, g \rangle$ and $\langle S\phi, f \rangle = \langle S\phi, S(g) \rangle = \langle \phi, g \rangle$. \square Now let $\varphi : \mathbb{Z} \longrightarrow \mathbb{N}_0$ be defined as

$$\varphi(n) = \begin{cases} 2n & \text{if } n \ge 0; \\ -(2n+1) & \text{if } n < 0. \end{cases}$$

Since $\{e_k(t) = \chi_{[0,1]}e^{2\pi ikt} : k \in \mathbb{Z}\}$ is an orthonormal basis for $L^2[0,1]$, for given $f \in L^2[0,1]$ we have $f(t) = \sum_{k \in \mathbb{Z}} \langle f, e_k \rangle e_k(t)$ a.e. Define an operator $S : L^2[0,1] \longrightarrow H^2(\mathbb{D})$ by

$$S(f) = S(\sum_{k \in \mathbb{Z}} \langle f, e_k \rangle e_k) = \sum_{k \in \mathbb{Z}} \langle f, e_k \rangle z^{\varphi(k)}.$$

Since $\{z^n : n \in \mathbb{N}_0\}$ is an orthonormal basis for $H^2(\mathbb{D})$ and φ is bijection, S is an isometric isomorphism.

Lemma 2.4. If $0 \le a \le b \le 1$,

$$S(\chi_{[a,b]}) = -\frac{1}{2\pi i} \left[z^{-1} \ln(\frac{1-e^{2\pi i b}z^2}{1-e^{2\pi i a}z^2}) - \ln(\frac{1-e^{-2\pi i b}z^2}{1-e^{-2\pi i a}z^2}) \right] + b - a.$$

Proof. For $k \neq 0$ we have

$$\langle \chi_{[a,b]}, e_k \rangle = \int_a^b e^{-2\pi ikt} dt = \frac{e^{-2\pi ikb} - e^{-2\pi ika}}{-2\pi ik}.$$

So

$$\begin{split} F(t) &= \sum_{k=-\infty,k\neq 0}^{\infty} \frac{e^{-2\pi i k t} z^{\varphi(k)}}{k} \\ &= \sum_{k=-\infty}^{-1} \frac{e^{-2\pi i k t} z^{\varphi(k)}}{k} + \sum_{k=1}^{\infty} \frac{e^{-2\pi i k t} z^{\varphi(k)}}{k} \\ &= \sum_{k=-\infty}^{-1} \frac{e^{-2\pi i k t} z^{-(2k+1)}}{k} + \sum_{k=1}^{\infty} \frac{e^{-2\pi i k t} z^{2k}}{k} \\ &= -z^{-1} \sum_{k=1}^{\infty} \frac{e^{2\pi i k t} z^{2k}}{k} + \sum_{k=1}^{\infty} \frac{e^{-2\pi i k t} z^{2k}}{k} \\ &= z^{-1} \ln(1 - e^{2\pi i t} z^2) - \ln(1 - e^{-2\pi i t} z^2). \end{split}$$

So we have

$$S(\chi_{[a,b]}) = -\frac{1}{2\pi i} (F(b) - F(a)) + b - a$$

$$= -\frac{1}{2\pi i} \left[z^{-1} \ln(\frac{1 - e^{2\pi i b} z^{2}}{1 - e^{2\pi i a} z^{2}}) - \ln(\frac{1 - e^{-2\pi i b} z^{2}}{1 - e^{-2\pi i a} z^{2}}) \right] + b - a. \quad \Box$$

Lemma 2.5. For $\psi_1(t) = \chi_{[0,\frac{1}{2}]}(t) - \chi_{[\frac{1}{2},1]}(t)$, $\phi_1(t) = \chi_{[0,1]}(t)$ we have $S(\psi_1) = \frac{1}{\pi i z}(z-1)\ln(\frac{1+z^2}{1-z^2})$ and $S(\phi_1) = 1$ and the system

$$\left\{1, -\frac{2^{\frac{j}{2}-1}}{\pi i} \left[z^{-1} \ln \left(\frac{1 - e^{2\pi i (\frac{l}{2^{j}} + \frac{1}{2^{j+1}})} z^{2}}{1 - e^{2\pi i (\frac{l}{2^{j}})} z^{2}} \right) - \ln \left(\frac{1 - e^{-2\pi i (\frac{l}{2^{j}} + \frac{1}{2^{j+1}})} z^{2}}{1 - e^{-2\pi i (\frac{l}{2^{j}})} z^{2}} \right) \right] - \frac{2^{\frac{j}{2}-1}}{1 - e^{2\pi i (\frac{l}{2^{j}} + \frac{1}{2^{j}})} z^{2}} \left[z^{-1} \ln \left(\frac{1 - e^{2\pi i (\frac{l}{2^{j}} + \frac{1}{2^{j+1}})} z^{2}}{1 - e^{2\pi i (\frac{l}{2^{j}} + \frac{1}{2^{j+1}})} z^{2}} \right) - \ln \left(\frac{1 - e^{-2\pi i (\frac{l}{2^{j}} + \frac{1}{2^{j}})} z^{2}}{1 - e^{-2\pi i (\frac{l}{2^{j}} + \frac{1}{2^{j+1}})} z^{2}} \right) \right] : l \in \mathbb{N}_{2^{j}}, j \in \mathbb{N}_{0} \right\}$$

is an orthonormal basis for $H^2(\mathbb{D})$.

Proof. By Lemma 2.4 we have

$$\begin{split} S(\psi_1) &= S(\chi_{[0,\frac{1}{2}]}) - S(\chi_{[\frac{1}{2},1]}) \\ &= -\frac{1}{2\pi i} \left[z^{-1} \ln \left(\frac{\frac{1-e^{\pi i}z^2}{1-z^2}}{\frac{1-e^{2\pi i}z^2}{1-e^{\pi i}z^2}} \right) - \ln \left(\frac{\frac{1-e^{-\pi i}z^2}{1-z^2}}{\frac{1-e^{-2\pi i}z^2}{1-e^{-\pi i}z^2}} \right) \right] \\ &= -\frac{1}{2\pi i} \left[z^{-1} \ln \frac{(1-z^2e^{-\pi i})^2}{(1-z^2)(1-e^{2\pi i}z^2)} - \ln \frac{(1-z^2e^{-\pi i})^2}{(1-z^2)(1-e^{-2\pi i}z^2)} \right] \\ &= \frac{1}{\pi i z} (z-1) \ln \left(\frac{1+z^2}{1-z^2} \right). \end{split}$$

Since $l \in \mathbb{N}_{2^j}, j \in \mathbb{N}_0$ we have

$$\begin{split} S(\psi_{j,l}) &= 2^{\frac{j}{2}} (S(\chi_{[\frac{l}{2^{j}},\frac{l}{2^{j}}+\frac{1}{2^{j+1}}]}) - S(\chi_{[\frac{l}{2^{j}}+\frac{1}{2^{j+1}},\frac{l}{2^{j}}+\frac{1}{2^{j}}]})) \\ &= -\frac{2^{\frac{j}{2}-1}}{\pi i} \Bigg[z^{-1} \ln \left(\frac{1-e^{2\pi i (\frac{l}{2^{j}}+\frac{1}{2^{j+1}})}z^{2}}{1-e^{2\pi i (\frac{l}{2^{j}})}z^{2}} \right) - \ln \left(\frac{1-e^{-2\pi i (\frac{l}{2^{j}}+\frac{1}{2^{j+1}})}z^{2}}{1-e^{-2\pi i (\frac{l}{2^{j}}+\frac{1}{2^{j+1}})}z^{2}} \right) \\ &= -\frac{2^{\frac{j}{2}-1}}{\pi i} \Bigg[z^{-1} \ln \left(\frac{1-e^{2\pi i (\frac{l}{2^{j}}+\frac{1}{2^{j+1}})}z^{2}}{1-e^{2\pi i (\frac{l}{2^{j}})}z^{2}} \right) - \ln \left(\frac{1-e^{-2\pi i (\frac{l}{2^{j}}+\frac{1}{2^{j+1}})}z^{2}}{1-e^{-2\pi i (\frac{l}{2^{j}})}z^{2}} \right) \end{split}$$

By using Lemma 2.5 we know $\phi(z) = 1$ is a scaling function on Hardy space and $\psi(z) = \frac{1}{\pi i z}(z-1)\ln(\frac{1+z^2}{1-z^2})$ is an orthonormal wavelet on $H^2(\mathbb{D})$.

Acknowledgements

The authors would like to thank the referee(s) for their useful and helpful comments and suggestions..

References

- [1] I. Daubechies, Ten Lectures on Wavelets, CBMS-NSR Series in Appl. Math., SIAM, Philadelphia, (1992).
- [2] N. F. Dudley Ward and J. R. Partigton, A construction of rational wavelets and frames in Hardy-Sobolev spaces with applications to system modeling, SIAM J. Control Optim, 36 (1998), 654-679.
- [3] P. L. Duren, Theory of H^P spaces, Pure and Applied Mathematics, Academic Press, New York, (1970).
- [4] J. B. Garnet, Bounded Analytic Functions, Academic Press Inc., New York, (1981).
- [5] S. S. Goh, Wavelet bases for Hilbert spaces of functions, Complex Variables and Elliptic Equations, 52 (2007), 245-260.
- [6] A. Haar, Zur Theorie der orthogonalen Funktionensysteme, Math. Ann., 69 (1910), 331-371.
- [7] E. Hernandez and G. Weiss, A First Course on Wavelets, CRC Press, Boca Raton, (1996).
- [8] S. Mallat, A theory of multiresolution approximations and wavelet orthonormal basis of $L^2(\mathbb{R})$, Trans. Amer. Math. Soc., 315 (1989), 69-87.
- [9] Y. Meyer, ondelettes et operateurs .I : ondeletts, Hermann, paris, (1990). [English translation : wavelets and operators, cambridge university press, (1992).]
- [10] M. Pap, Hyperbolic wavelets and multiresolution in $H^2(\mathbb{T})$, J. Fourier Anal. Appl., 17(5) (2011), 755-766.

- [11] M. Pap, Multiresolution in the Bergman space, Annales Univ. Sci. Budapest. Sect. Comp., 39 (2013), 333-353.
- [12] J. H. Shapiro, Composition operators and classical function theory, Springer-Verlag, (1993).
- [13] D. F. Walnut, An introduction to wavelet analysis, *Applied and Numerical Harmonic Analysis*, Birkhauser, Boston, (2002).

Farshid Abdollahi

Department of Mathematics Professor of Mathematics Shiraz University Shiraz, Iran

E-mail: abdollahi@shirazu.ac.ir

Elham Rahimi

Department of Mathematics Associate Professor of Mathematics Shiraz Branch, Islamic Azad University Shiraz, Iran

E-mail: rahimie@shirazu.ac.ir