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1. Introduction

The development of wavelets can be linked to several separate trains of
thought, starting with Haar’s work in the early 20th century (see [6]). He
showed that the appropriate translates and dilates of Haar function
form an orthonormal basis of L?([0,1]). In [8], Mallat introduced the
idea of a multiresolution analysis (MRA), where the general theory of
finding a wavelet starting from an MRA scheme was developed. In [9],
Meyer extended the concept of MRA to n-dimensions. Meyer constructed
the first non-trivial wavelets, unlike the Haar wavelets.
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Wavelet turn out to have many advantages in studying various function
spaces. They form an unconditional basis for variety of function spaces,
e.g. LP(R), Hardy and Sobolov spaces. (see [1, 2, 7])

In [5], Goh gave a general approach of constructing orthonormal wavelet
for a separable Hilbert space of complex-valued functions, and his con-
struction is applied to several Hilbert spaces like the space of analytic
functions on the unit disk.

In [10, 11], Pap generated a multiresolution in the Hardy space of
analytic functions on the open unit disc and a multiresolution in the
Bergman space. In [10], the method that was used is based on the anal-
ysis where instead of dilation and translations, it is used the Blaschke
group.

The theory of Hardy spaces is very rich with many highly developed
branches and originated in the context of complex function theory and
Fourier analysis in the beginning of the twentieth century.

Let D denote the open unit disc in the complex plane, and the Hardy
space, H?(D), be the set of all functions f(z) = > oo, f(n)z" holomor-
phic in D such that

Y 1f(n)P< oo,
n=0

where f(n) denotes the nth Taylor coefficient of f (see [12]). For sys-
tematic exposition of the subject see books by Duren [3] and Garnet
[4].

We denote by Z the set of all integers, by Ny the set of all nonnegative
integers, by Ny the set {0,1,2,..., M — 1} for positive integer M and
by L?[0,1] the Hilbert space of all square-integrable functions with the
inner product

1
(f.9) = /0 F()gtDt,

for f,g € L?[0,1].
Many examples of wavelets have been produced using the related concept
of a multiresolution analysis.

Definition 1.1. A sequence of closed subspaces {V;}jen, in L*[0,1] is
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called a multiresolution analysis (MRA) for L?[0,1] if the following con-
ditions are satisfied:

i) V; C Vit

i) Ujen, Vi = L7[0,1];

iii) There exists ¢ € L]0, 1] such that for every j € Ny,

{6() =28(27. — 1) : 1 € Ny}

is an orthonormal basis for V;. Herein, ¢ is called a scaling function of
the MRA , and ¢ is said to generate the MRA.

Definition 1.2. Given an MRA {V}}jen,, and let for every j € No, W; =
Vit1 ©Vj. If there exists 1 € Wy, such that

{6, ju(.) = 25(27. — 1) : 1 € Ny, j € No}

is an orthonormal basis for L*[0,1],% is called an orthonormal wavelet

of the MRA.

Let T and D be the translation and dilation unitary operators in B(L?(R))
given by (Tf)(t) = f(t — 1) and (D)(t) = V3f(2t). Then ty(t) =
234p(27t — 1) = (DIT')(¢t) for all j,| € Z, and so we have ¥ an or-
thonormal wavelet of the MRA if and only if {¢,v,; : | € Ny;,j € Ng}
is an orthonormal basis for L?[0, 1].

If we cosider ¢ = x[o,1)(t) and (t) = X[o,%](t) X[ 1] (t) then the system
{#,4;1 : 1 € Ng;,j € No} is an orthonormal basis for L2[0,1]. (see [13])

In section 2 of the present paper, by using the definition of multireso-
lution analysis and orthonormal wavelet on L?[0,1], and this fact that
L?([0,1]) and H?(D) are isomorphic, we generalize these concepts to
H?(D). Also by virtue of Haar wavelet on L?[0,1] we give an example
of wavelet on Hardy space.
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2. Wavelet on Hardy Space

In this section we extend the concept of MRA from L?[0,1] to H?*(D).
In our situation, the main definition is as follows:

Definition 2.1. A multiresolution analysis (MRA) on the Hardy space
consists of a sequence {V;}jen, of closed subspaces of H*(D) satisfying

i) V; CVjqn;
i) Ujen, Vi = H*(D);
iii) There exists an isometric isomorphism S from L?[0,1] onto H*(D)
and ¢ € L?[0,1] such that for every j € Ny,

(S¢;u() =22S¢(27. — 1) : 1 € Ny, }

is an orthonormal basis for V. Herein, S¢ is called a scaling function
of the MRA, and S¢ is said to generate the MRA .

Definition 2.2. If S is an isometric isomorphism from L?[0,1] onto
H?(D), an orthonormal wavelet on H*(D) is a unit vector Sy € L?[0,1]
with the property that the set

(S0, Sbj1() = 2580(27. — 1) 1 1 € Nyy, j € No}

is an orthonormal basis for H*(D), where S¢ is a scaling function of the

MRA on H?*(D).

Theorem 2.3. Let S be an isometric isomorphism from L%[0,1] onto
H?(D), {V]}jen, be an MRA on L?[0,1] with the scaling function ¢ and
orthonormal wavelet . Put V; = S(V/). Then {V;};en, is an MRA
on H2(D) and {S¢, Sj; : 1 € Ny;,j € No} is an orthonormal basis for
H?(D). Furthermore St is an orthonormal wavelet on H?*(D).

Proof. We have v is an orthonormal wavelet of the MRA on L2[0,1]
if and only if {¢,1;; : | € Ny;,j € No} is an orthonormal basis for
L?[0,1]. The proof is completed by using the following facts. Since S is
an isometric isomorphism, for each j,1,m,n € Ny, we have

<S¢j,l357/)m,n> = <7,[}j,l;q;z)m,n> and <S¢j,las¢> = <71Z)j,la ¢>
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Because S is onto, for any f € H?(D) there is ¢ € L?[0, 1] such that
f=5(g), and so

<S'(/)j,laf> = <S'¢]7l,8(g)> = <¢j7l,9> and <S¢7 f> = <S¢a S(g)> = <¢>g> 0
Now let ¢ : Z — Ny be defined as

(n) = 2n if n > 0;
o) = —(2n+1) ifn<0.

Since {e(t) = X[0,1j¢*™** : k € Z} is an orthonormal basis for L?[0, 1],
for given f € L?[0,1] we have f(t) = > .oz (f,ex)er(t) a.e. Define an
operator S : L?[0,1] — H?*(D) by

S(F) =S5O (frexder) =D (fren)2?®).
keZ kEZ
Since {2 : n € Ny} is an orthonormal basis for H?(ID) and ¢ is bijection,
S is an isometric isomorphism.
Lemma 2.4. If0<a<b< 1,
1 |: 4 1— eQﬂinZ 1— 6727rib22
27 In(

SXfa ) = = 1 — e2zmiaz2) — n(l _ o—2mia 2 )} tb—a.

2mi
Proof. For k # 0 we have

b ik —2mikb _ ,—2mika
- t
(X[a,b]?ek>:/ e Tt =
a

e
—2mik

e

So
0 e—2mikt (k)

F(t) = -

k=—00,k#0
Zl: o—2mikt (k) . i o—2mikt (k)
N k k
k=—o00 k=1
ZI: e—2mikt ,—(2k+1) . i o—2mikt 2k
N k k

k=—o00 k=1

e 627rikt22k N e e—2m‘kt22k
- Y Y
k k
k=1 k=1

= 27 ln(1 — e2™2%) — In(1 — e 222).

-1
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So we have

S(Xjap) = —L.(F(b)—F(a))—i—b—a

21
__2mib 2 __—2mib 2
1 1 — e ™0z 1—e z

= -1
T 2mi [Z ln(l_ezmw)_ln(l_e_w)]—i-b—a. O

Lemma 2.5. For ¢ (t) = X[o,%](t) — X[y (t), ¢1(t) = X1 (t) we have
S(yr) = iz (Z -1) ln( ) and S(¢1) =1 and the system

1 251 i, (L= 2Tt arer) 2 N 2oyt g 52
,——— |z In —In
Iy’ 1— 627”(5)22 1—¢e 27”(29)22
231 -1 1- 27”(2J+21j)212 1 1-e ~2milys o ) 2
- z n — In
T 1— 2m( 2j+1)22 1—e 2m( 2;+1)22

IZEsz,j ENO}

is an orthonormal basis for H*(D).
Proof. By Lemma 2.4 we have

S(T/)l) = S(X[oé]) - S(X[l 1])

1 1— 67”22 1—e~Tiz2

— = |y 1—2° n | ==
27TZ 17627”22 176_27”'22
1—e™iz2 1—e—miz2

_ [len( (1—z%™)? (1 — 22 mi)? ]

- —In
21

1—22)(1 —e?miz2) (1 —22)(1 — e2miz2)

1 1+ 22
= —(z—-1)1 .
m'z(Z ) n<1—22>

Since | € Ny;, j € Ng we have
S = 22(S(xL

27 2J 2J+ ]

1

) S X[ ) 1 L
27+172] 2J
Ay 1- 2J+1 —2mi( 55 2] 2J+1)Z2
. 2m 2] 22 —2mi( 23 22
2%_1 1 1—¢ 27+1 _27” 2J+1)22
= —)|Z ln
™ 271'2 2] 22 72m 23 22

251

m
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By using Lemma 2.5 we know ¢(z) = 1 is a scaling function on Hardy

space and 1(z) = (2 — 1)In( if;i) is an orthonormal wavelet on
H?(D).
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