Auto-Average Length of Finite Groups

E. Motaghi
Ferdowsi University
M. R. R. Moghaddam*
Khayyam University
M. A. Rostamyari
Khayyam University

Abstract

Let g and h be arbitrary elements of a given finite group G. Then g and h are said to be autoconjugate if there exists some automorphism α of G such that $h=g^{\alpha}$. In this article, we introduce and study auto-average length of autoconjugacy classes of finite groups. Also, we construct some sharp bounds for the auto-average length of finite groups.

AMS Subject Classification: 20E45; 20B30; 05A05; 05A16
Keywords and Phrases: Autoconjugate, autoisoclinism, autocommutator subgroup, autocentre

1. Introduction

Let G be any group then the autocommutator of the element $g \in G$ and the automorphism α in $\operatorname{Aut}(G)$ is defined to be

$$
[g, \alpha]=g^{-1} g^{\alpha}=g^{-1} \alpha(g)
$$

Using this definition, the subgroup

$$
K(G)=\langle[x, \alpha]: x \in G, \alpha \in \operatorname{Aut}(G)\rangle,
$$

Received: February 2017; Accepted: June 2017

* Corresponding author
is called the autocommutator subgroup of G. The concept of autocommutator subgroups has been already studied in [4, 5]. Also

$$
L(G)=\{g \in G:[g, \alpha]=1, \forall \alpha \in \operatorname{Aut}(G)\}
$$

is called the autocentre of G. Clearly if α runs over the inner automorphisms of G, then $K(G)$ and $L(G)$ will be the commutator subgroup, G^{\prime}, and the centre, $Z(G)$, of G, respectively. One notes that, $K(G)$ and $L(G)$ are characteristic subgroups of G.
A group G acts on a non-empty set Ω, if for every pair $(\omega, g) \in \Omega \times G$, the element $\omega^{g} \in \Omega$ such that

$$
\begin{array}{ll}
O_{1} . & \omega^{1_{G}}=\omega \\
O_{2} & \left(\omega^{g_{1}}\right)^{g_{2}}=\omega^{g_{1} g_{2}}
\end{array}
$$

for all $g_{1}, g_{2} \in G$ and $\omega \in \Omega$. Clearly, $\omega^{G}=\left\{\omega^{g} \mid g \in G\right\}$ is the orbit of $\omega \in \Omega$ and $G_{\omega}=\left\{g \in G \mid \omega^{g}=\omega\right\}$ is the stabilizer of ω in G. From now on we assume that G is a finite group, then it is easily seen that $\left|\omega^{G}\right|=\left[G: G_{\omega}\right]$ and $|G|=\left|\omega^{G}\right|\left|G_{\omega}\right|$, for all ω in Ω.
As $\operatorname{Aut}(G)$ acts on the group G, the set of all elements of G which are autoconjugate to the fixed element g in G is called the autoconjugacy class of g and

$$
\left|g^{\operatorname{Aut}(G)}\right|=\left|\operatorname{Aut}(G): \operatorname{Aut}(G)_{g}\right|,
$$

in which $\operatorname{Aut}(G)_{g}=C_{\operatorname{Aut}(G)}(g)$, and it is the stabilizer of g in $\operatorname{Aut}(G)$.
We denote $\kappa(G)$ to be the conjugacy number of G. Then $\mu(G)=|G| / \kappa(G)$ is the average length of conjugacy classes of the finite group G. One notes that conjugacy classes length gives some characterization of the group. Furthermore, the average length of a group has strong restriction to the group. Shi and Xiao [7] proved that if $Z(G)$ is trivial, then $\mu(G)=2$ if and only if $G / Z(G) \cong S_{3}$. Du [3] generalized this result, so that if $|Z(G)|$ is odd, then $\mu(G)=2$ if and only if $G / Z(G) \cong S_{3}$.

We define $\mu_{a}(G)=|G| / \kappa_{a}(G)$, where $\kappa_{a}(G)$ is the autoconjugacy number of G. By class equation: $|G|=C_{g_{1}}+C_{g_{2}}+\ldots+C_{g_{k}}$, where $C_{g_{i}}$'s are the length of autoconjugacy classes of elements g_{1}, \ldots, g_{k} of G. We call $\mu_{a}(G)$ to be the auto-average length of autoconjugacy classes of the finite group G. It is easy to see that

$$
\begin{equation*}
\mu_{a}(G)=\frac{1}{\kappa_{a}(G)} \sum_{i=1}^{\kappa_{a}(G)}\left|g_{i}^{\operatorname{Aut}(G)}\right| . \tag{1}
\end{equation*}
$$

2. Main Results

In this section, we study the auto-average length of autoconjugacy classes of finite groups. Also, we construct some sharp bounds for the auto-average length of finite groups.

In the following we construct upper and lower bounds for $\mu_{a}(G)$.
Theorem 2.1. Let G be a finite non-trivial group. Then

$$
1 \leqslant \mu_{a}(G) \leqslant|K(G)|
$$

Proof. Consider

$$
[g, \operatorname{Aut}(G)]=\langle[g, \alpha]: \alpha \in \operatorname{Aut}(G)\rangle
$$

which is the autocommutator subgroup of g and $\operatorname{Aut}(G)$. On the other hand, we have

$$
\left|g^{\operatorname{Aut}(G)}\right|=\left|g^{-1} g^{\operatorname{Aut}(G)}\right|=|[g, \operatorname{Aut}(G)]| \leqslant|K(G)|
$$

Using equation (1),

$$
\begin{aligned}
\mu_{a}(G) & =\frac{1}{\kappa_{a}(G)} \sum_{i=1}^{\kappa_{a}(G)}\left|g_{i}^{\operatorname{Aut}(G)}\right| \\
& \leqslant \frac{1}{\kappa_{a}(G)} \sum_{i=1}^{\kappa_{a}(G)}|K(G)| \leqslant|K(G)|
\end{aligned}
$$

It is clear that $\mu_{a}(G) \geqslant 1$ and the equality holds exactly, when G is trivial or isomorphic with \mathbb{Z}_{2}. Thus we obtain our claim.

Theorem 2.2. Let $g_{1}, g_{2}, \ldots, g_{k}$ be a complete set of representatives for autoconjugacy classes of G. Then

$$
\mu_{a}(G)=\frac{|\operatorname{Aut}(G)|}{\kappa_{a}(G)} \sum_{i=1}^{\kappa_{a}(G)} \frac{1}{\left|C_{\operatorname{Aut}(G)}\left(g_{i}\right)\right|}
$$

Proof. Using the equation (1), we have

$$
\mu_{a}(G)=\frac{1}{\kappa_{a}(G)} \sum_{i=1}^{\kappa_{a}(G)}\left|g_{i}^{\operatorname{Aut}(G)}\right|
$$

$$
\begin{aligned}
& =\frac{1}{\kappa_{a}(G)} \sum_{i=1}^{\kappa_{a}(G)}\left|\operatorname{Aut}(G): C_{\operatorname{Aut}(G)}\left(g_{i}\right)\right| \\
& =\frac{1}{\kappa_{a}(G)} \sum_{i=1}^{\kappa_{a}(G)} \frac{|\operatorname{Aut}(G)|}{\left|C_{\operatorname{Aut}(G)}\left(g_{i}\right)\right|} \\
& =\frac{|\operatorname{Aut}(G)|}{\kappa_{a}(G)} \sum_{i=1}^{\kappa_{a}(G)} \frac{1}{C_{\operatorname{Aut}(G)}\left(g_{i}\right)} .
\end{aligned}
$$

The following remark is helpful for calculating the auto-average length of elements of a direct product of groups, when the orders of direct factors are coprime.

Remark 2.3. Let H and K be two finite groups with coprime orders. Using Theorem 2.1 of [6], we have $\operatorname{Aut}(H \times K)=\operatorname{Aut}(H) \times \operatorname{Aut}(K)$. Hence

$$
\mu_{a}(H \times K)=\frac{|H \times K|}{\kappa_{a}(H \times K)}=\frac{|H| \times|K|}{\kappa_{a}(H) \times \kappa_{a}(K)}=\mu_{a}(H) \times \mu_{a}(K) .
$$

As an example, one can calculate that $\mu_{a}\left(\mathbb{Z}_{6}\right)=\frac{3}{2}$ and it is easy to see that $\mu_{a}\left(\mathbb{Z}_{2}\right) \times \mu_{a}\left(\mathbb{Z}_{3}\right)=\frac{3}{2}$.
In the following results we construct some upper and lower bounds for $\mu_{a}(G)$, which are more precise than the one given in Theorem 2.1.

Proposition 2.4. Let G be a finite group. Then

$$
\mu_{a}(G) \leqslant \frac{1}{\kappa_{a}(G)}\left(|L(G)|+|Z(G) \backslash L(G)| \frac{|\operatorname{Aut}(G)|}{|\operatorname{Inn}(G)|}+|G \backslash Z(G)| \frac{|\operatorname{Aut}(G)|}{2}\right)
$$

Proof. By equation (1), one has
$\mu_{a}(G)=\frac{1}{\kappa_{a}(G)}\left(\sum_{g_{i} \in L(G)}\left|g_{i}^{\operatorname{Aut}(G)}\right|+\sum_{g_{i} \in Z(G) \backslash L(G)}\left|g_{i}^{\operatorname{Aut}(G)}\right|+\sum_{g_{i} \in G \backslash Z(G)}\left|g_{i}^{\operatorname{Aut}(G)}\right|\right)$.
Clearly, for every $g \in Z(G)$ and $\phi_{x} \in \operatorname{Inn}(G)$ we have $g^{\phi_{x}}=g^{x}=g$. Thus $\operatorname{Inn}(G) \subseteq C_{\text {Aut }(G)}(g)$ and for all $g \in Z(G) \backslash L(G)$,

$$
\left|g^{\operatorname{Aut}(G)}\right|=\frac{|\operatorname{Aut}(G)|}{\left|C_{\operatorname{Aut}(G)}(g)\right|} \leqslant \frac{|\operatorname{Aut}(G)|}{|\operatorname{Inn}(G)|} .
$$

Also for every $g \in G \backslash Z(G)$, one can easily check that $\left|C_{\operatorname{Aut}(G)}(g)\right|>2$ and

$$
\left|g^{\operatorname{Aut}(G)}\right|=\frac{|\operatorname{Aut}(G)|}{\left|C_{\operatorname{Aut}(G)}(g)\right|} \leqslant \frac{|\operatorname{Aut}(G)|}{2}
$$

Therefore

$$
\mu_{a}(G) \leqslant \frac{1}{\kappa_{a}(G)}\left(|L(G)|+|Z(G) \backslash L(G)| \frac{|\operatorname{Aut}(G)|}{|\operatorname{Inn}(G)|}+|G \backslash Z(G)| \frac{|\operatorname{Aut}(G)|}{2}\right)
$$

Proposition 2.5. Let G be a finite group, then

$$
\mu_{a}(G) \geqslant 2-\frac{|L(G)|}{\kappa_{a}(G)} \geqslant \frac{3}{\kappa_{a}(G)} .
$$

Proof. Using equation (1)

$$
\begin{aligned}
& \mu_{a}(G)=\frac{1}{\kappa_{a}(G)} \sum_{i=1}^{\kappa_{a}(G)}\left|g_{i}^{\operatorname{Aut}(G)}\right| \geqslant \frac{1}{\kappa_{a}(G)} \\
& \left(\sum_{g_{i} \in L(G)}\left|g_{i}^{\operatorname{Aut}(G)}\right|+\sum_{g_{i} \in G \backslash L(G)}\left|g_{i}^{\operatorname{Aut}(G)}\right|\right) .
\end{aligned}
$$

It is clear that for every $g \in G \backslash L(G)$, one has $\left|g^{\operatorname{Aut}(G)}\right| \geqslant 2$ and hence

$$
\mu_{a}(G) \geqslant \frac{1}{\kappa_{a}(G)}\left(|L(G)|+\left(\kappa_{a}(G)-|L(G)|\right)^{2}\right) \geqslant 2-\frac{|L(G)|}{\kappa_{a}(G)} \geqslant \frac{3}{\kappa_{a}(G)}
$$

The equality holds exactly when $\left|g^{\operatorname{Aut}(G)}\right|=2$, for every $g \in G \backslash L(G)$.
For example, the equality in the above theorem holds for the groups $\langle 1\rangle, \mathbb{Z}_{2}, \mathbb{Z}_{3}$ or \mathbb{Z}_{4}.

If $\left|C_{G}(x)\right|=2$, then clearly $x \in C_{G}(x)$ and hence $|x|=2$. Therefore for the involution x such that $\left|C_{G}(x)\right|=2$, we say that x is self centralizing involution.

Theorem 2.6. Let G be a finite centreless group with no self centralizing involutions, then

$$
\mu_{a}(G)<\frac{1}{\kappa_{a}(G)}\left(1+\left(\kappa_{a}(G)-1\right) \frac{|\operatorname{Aut}(G)|}{3}\right)
$$

Proof. It is clear that for every non-trivial element g in G, we have $\left|C_{\text {Aut }(G)}(g)\right| \geqslant 3$. Now, the equation (1) implies that

$$
\begin{aligned}
\mu_{a}(G) & =\frac{1}{\kappa_{a}(G)} \sum_{i=1}^{\kappa_{a}(G)}\left|g_{i}^{\operatorname{Aut}(G)}\right| \\
& =\frac{1}{\kappa_{a}(G)}\left(1+\sum_{i=1}^{\kappa_{a}(G)-1}\left|g_{i}^{\operatorname{Aut}(G)}\right|\right) \\
& =\frac{1}{\kappa_{a}(G)}\left(1+\sum_{i=1}^{\kappa_{a}(G)-1} \frac{|\operatorname{Aut}(G)|}{\mid C_{\operatorname{Aut}(G)}\left(g_{i}\right)}\right) \\
& <\frac{1}{\kappa_{a}(G)}\left(1+\left(\kappa_{a}(G)-1\right) \frac{|\operatorname{Aut}(G)|}{3}\right) .
\end{aligned}
$$

Note that the inequality is strict, since for every non trivial element g in G,

$$
\left|g^{\operatorname{Aut}(G)}\right|=\frac{|\operatorname{Aut}(G)|}{3} \Rightarrow\left|C_{\operatorname{Aut}(G)}(g)\right|=3
$$

This implies that G is a 3 -group, which is a contradiction.
Chaboksavar et. al [1] in 2014, classified all finite groups G whose absolute central factors are isomorphic to a cyclic group, $\mathbb{Z}_{p} \times \mathbb{Z}_{p}, D_{8}, Q_{8}$, or a nonabelian group of order $p q$, for some distinct primes p and q.
Now, using Theorem 3.1 of [1], we classify all finite groups G with $\mu_{a}(G)<\frac{16}{9}$.
Theorem 2.7. Let G be a finite group with $\mu_{a}(G)<\frac{16}{9}$. Then G is one of the following groups: $\mathbb{Z}_{4}, \mathbb{Z}_{5}, \mathbb{Z}_{6}, \mathbb{Z}_{7}, \mathbb{Z}_{8}, \mathbb{Z}_{10}, \mathbb{Z}_{12}, \mathbb{Z}_{14}, \mathbb{Z}_{2} \times \mathbb{Z}_{2}, \mathbb{Z}_{4} \times \mathbb{Z}_{2}, S_{3}, D_{8}, Q_{8}$.

Proof. Let $2 \leqslant\left|\frac{G}{L(G)}\right| \leqslant 7$, Then Theorem 3.1 [1] implies that G is one of the following groups:

$$
\mathbb{Z}_{4}, \mathbb{Z}_{5}, \mathbb{Z}_{6}, \mathbb{Z}_{7}, \mathbb{Z}_{8}, \mathbb{Z}_{10}, \mathbb{Z}_{12}, \mathbb{Z}_{14}, \mathbb{Z}_{2} \times \mathbb{Z}_{2}, \mathbb{Z}_{4} \times \mathbb{Z}_{2}, S_{3}, D_{8}, Q_{8}
$$

Now, assume that $|G / L(G)|=8$. By Proposition 2.5, one can calculate that

$$
\begin{aligned}
\mu_{a}(G) \geqslant 2-\frac{|L(G)|}{\kappa_{a}(G)} & =2-\left(\frac{|L(G)|}{|G|} \times \frac{|G|}{\kappa_{a}(G)}\right) \\
& =2-\frac{1}{8} \mu_{a}(G)
\end{aligned}
$$

and hence $\mu_{a}(G) \geqslant \frac{16}{9}$ gives the result.
Theorem 2.8. Let $G \cong \mathbb{Z}_{p^{n_{1}}} \times \mathbb{Z}_{p^{n_{2}}} \times \ldots \times \mathbb{Z}_{p^{n_{k}}}$ be a finite abelian p-group with $n_{1} \geqslant n_{2} \geqslant \ldots \geqslant n_{k}$. Then

$$
\mu_{a}(G) \geqslant \frac{2\left(p^{n_{1}} \times p^{n_{2}} \times \ldots \times p^{n_{k}}\right)}{1+\left(p^{n_{1}} \times p^{n_{2}} \times \ldots \times p^{n_{k}}\right)}
$$

Proof. Assume that $G \cong \mathbb{Z}_{p^{n_{1}}} \times \mathbb{Z}_{p^{n_{2}}} \times \ldots \times \mathbb{Z}_{p^{n_{k}}}$ is a finite abelian p-group with $n_{1} \geqslant n_{2} \geqslant \ldots \geqslant n_{k}$. Then Corollary 3.4 [2] implies that $L(G)=1$, when p is odd or $p=2$ and $n_{1}=n_{2}$. Hence Proposition 2.5 implies that

$$
\mu_{a}(G) \geqslant \frac{2\left(p^{n_{1}} \times p^{n_{2}} \times \ldots \times p^{n_{k}}\right)}{1+\left(p^{n_{1}} \times p^{n_{2}} \times \ldots \times p^{n_{k}}\right)}
$$

Also $L(G)=\mathbb{Z}_{2}$, when $p=2$ and $k=1$ or $n_{1}>n_{2}$. Now Proposition 2.5 gives

$$
\mu_{a}(G) \geqslant \frac{2\left(p^{n_{1}} \times p^{n_{2}} \times \ldots \times p^{n_{k}}\right)}{2+\left(p^{n_{1}} \times p^{n_{2}} \times \ldots \times p^{n_{k}}\right)}
$$

Acknowledgement

The authors would like to thank the referee(s) for their careful reading and the valuable suggestions.

References

[1] M. Chaboksavar, M. Farrokhi Derakhshandeh Ghouchan, and F. Saeedi, Finite groups with a given absolute central factor group, Arch. Math., (2014), DOI 10.1007/s00013-014-0640-6.
[2] H. Dietrich and P. Moravec, On the autocommutator subgroup and absolute center of a group, J. Algebra, 341 (2011), 150-157.
[3] X. L. Du, About quotient of the order of a group and the conjugacy classes number, J. South China Normal Univ. Natur. Sci. Ed., 29 (2) (2004), 159162.
[4] P. V. Hegarty, The absolute centre of a group, J. Algebra, 169 (1994), 929-935.
[5] P. V. Hegarty, Autocommutator subgroups of finite groups, J. Algebra, 190 (1997), 556-562.
[6] F. Parvaneh and M. R. R. Moghaddam, Some properties of autosoluble groups, J. Math. Ext., 5 (1) (2010), 13-19.
[7] W. J. Shi and Y. R. Xiao, Quotient of group order and the number of conjugacy classes, Southeast Asian Bull. Math., 22 (1998), 301-305.

Esmat Motaghi

Department of Mathematics
Ph. D. Condidate
International Campus,
Faculty of Mathematical Sciences, Ferdowsi University
Mashhad, Iran
E-mail: motaghi.neda@yahoo.com
Mohammad Reza R. Moghaddam
Department of Mathematics
Professor of Mathematics
Khayyam University
Mashhad, Iran
E-mail: m.r.moghaddam@khayyam.ac.ir
Mohammad Amin Rostamyari
Department of Mathematics
Assistant Professor of Mathematics
Khayyam University
Mashhad, Iran
E-mail: m.a.rostamyari@khayyam.ac.ir

