Journal of Mathematical Extension Vol. 11, No. 4, (2017), 95-104 ISSN: 1735-8299 URL: http://www.ijmex.com

Some Results on Weakly Compact Positive Left Multipliers of a Certain Group Algebra

M. J. Mehdipour Shiraz University of Technology

Abstract. Let T be a weakly compact left multiplier on $L_0^{\infty}(\mathcal{G})^*$. In this paper, we prove that if T is positive, then T maps $L_0^{\infty}(\mathcal{G})^*$ into $L^1(\mathcal{G})$ and T is of the form ${}_{\phi}T$ for some positive function $\phi \in L^1(G)$. Using this result, we show that $T = T^+ - T^-$ for some positive weakly compact left multipliers T^+ , T^- on $L_0^{\infty}(\mathcal{G})^*$ if and only if T maps $L_0^{\infty}(\mathcal{G})^*$ into $L^1(\mathcal{G})$.

AMS Subject Classification: 43A15; 43A22; 47B07; 47B65 **Keywords and Phrases:** Locally compact group, multipliers, weakly compact operator, positive operator

1. Introduction

We always denote by \mathcal{G} a locally compact group with a fixed left Haar measure λ . The Banach spaces $L^1(\mathcal{G})$ and $L^{\infty}(\mathcal{G})$ are as defined in [7]. We say that a function $f \in L^{\infty}(\mathcal{G})$ vanishes at infinity if for each $\varepsilon > 0$, there is a compact subset \mathcal{C} of \mathcal{G} for which $||f|\chi_{\mathcal{G}\setminus\mathcal{C}}||_{\infty} < \varepsilon$, where $\chi_{\mathcal{G}\setminus\mathcal{C}}$ denotes characteristic function of $\mathcal{G}\setminus\mathcal{C}$ on \mathcal{G} . We denote by $L_0^{\infty}(\mathcal{G})$ the subspace of $L^{\infty}(\mathcal{G})$ consisting of all functions $f \in L^{\infty}(\mathcal{G})$ vanishing at infinity. This space is a left introverted subspace of $L^{\infty}(\mathcal{G})$; that is, for each $n \in L_0^{\infty}(\mathcal{G})^*$, $f \in L_0^{\infty}(\mathcal{G})$ and $\phi \in L^1(\mathcal{G})$, the functional nf defined by

$$\langle nf, \phi \rangle = \langle n, f\phi \rangle,$$

Received: November 2016; Accepted: January 2017

is also an element in $L_0^{\infty}(\mathcal{G})$, where

$$\langle f\phi,\psi\rangle = \langle f,\phi*\psi\rangle$$

and

$$\phi * \psi(x) = \int_{\mathcal{G}} \phi(y) \psi(y^{-1}x) \ d\lambda(y),$$

for all $\psi \in L^1(\mathcal{G})$ and $x \in \mathcal{G}$. This lets us to endow $L_0^{\infty}(\mathcal{G})^*$ with the *first Arens* product " \diamond " defined by

$$\langle m \diamond n, f \rangle = \langle m, nf \rangle,$$

for all $m, n \in L_0^{\infty}(\mathcal{G})^*$ and $f \in L_0^{\infty}(\mathcal{G})$. Then $L_0^{\infty}(\mathcal{G})^*$ with this product is a Banach algebra and the group algebra $L^1(\mathcal{G})$ can be isometrically embedded into $L_0^{\infty}(\mathcal{G})^*$ as a closed ideal via

$$\langle \phi, f \rangle = \int_{\mathcal{G}} \phi(x) f(x) \ d\lambda(x),$$

for all $\phi \in L^1(\mathcal{G})$ and $f \in L_0^{\infty}(\mathcal{G})$; see [9]. Let $\Lambda(L_0^{\infty}(\mathcal{G})^*)$ denote the set of all weak*-cluster points of an approximate identity in $L^1(\mathcal{G})$ bounded by one. It is easy to see that if $u \in \Lambda(L_0^{\infty}(\mathcal{G})^*)$, then for every $m \in L_0^{\infty}(\mathcal{G})^*$ and $\phi \in L^1(\mathcal{G})$

$$m \diamond u = m$$
 and $u \diamond \phi = \phi$.

Let $P(L_0^{\infty}(\mathcal{G})^*)$ be the set of all positive functionals on $L_0^{\infty}(\mathcal{G})$ and $P(L^1(\mathcal{G}))$ be the set of all positive functions in $L^1(\mathcal{G})$. Note that

$$P(L^{1}(\mathcal{G})) = P(L_{0}^{\infty}(\mathcal{G})^{*}) \cap L^{1}(\mathcal{G}) \text{ and } \Lambda(L_{0}^{\infty}(\mathcal{G})^{*}) \subseteq P(L_{0}^{\infty}(\mathcal{G})^{*});$$

see [3]. By $\operatorname{ran}(L_0^\infty(\mathcal{G})^*)$ will be understood the set of all $r \in L_0^\infty(\mathcal{G})^*$ such that

$$L_0^\infty(\mathcal{G})^* \diamond r = \{0\}.$$

Let us remark from [9] that if $r \in \operatorname{ran}(L_0^{\infty}(\mathcal{G})^*)$, then $\langle r, f \rangle = 0$ for all $f \in C_0(\mathcal{G})$, the space of all complex-valued continuous functions on \mathcal{G} vanishing at infinity.

A bounded operator T on a Banach algebra A is called a *left multiplier* provided that

$$T(ab) = T(a)b,$$

for all $a, b \in A$. For any $a \in A$, the left multiplier $b \mapsto ab$ on A is denoted by ${}_{a}T$; also a is said to be a *left weakly completely continuous element* of A if ${}_{a}T$

96

is a weakly compact operator. We denote the set of all left weakly completely continuous elements of A by $\mathcal{L}_{wcc}(A)$.

Weakly compact left multipliers have been studied by several authors [1, 4, 5, 6, 10, 13]. For example, Ghahramani and Lau [4, 6] have obtained some results on the question of existence of non-zero weakly compact left multipliers on $L^{\infty}(\mathcal{G})^*$. Losert [10], among other things, has shown that if \mathcal{G} is a locally compact non-compact group, then zero is the only weakly compact left multiplier on $L^{\infty}(\mathcal{G})^*$. The author and Nasr-Isfahani [12] have proved that the existence of a non-zero weakly compact left multiplier on $L_0^{\infty}(\mathcal{G})^*$ is equivalent to the compactness of \mathcal{G} ; see also [11].

Note that the space of all bounded operators on a Banach space coincides with the vector space generated by the positive operators on it; see for example [2]. Hence it is interesting that we investigate the following question. Is the Banach space weakly compact left multiplier on $L_0^{\infty}(\mathcal{G})^*$ equal to the vector space generated by the positive weakly compact left multipliers of it? For this end, we first determine the range of positive weakly compact left multipliers on $L_0^{\infty}(\mathcal{G})^*$. We prove that if T is a positive weakly compact left multiplier on $L_0^{\infty}(\mathcal{G})^*$, then T maps $L_0^{\infty}(\mathcal{G})^*$ into $L^1(\mathcal{G})$ and $T = {}_{\phi}T$ for some $\phi \in P(L^1(\mathcal{G}))$. Then, for a weakly compact left multiplier T on $L_0^{\infty}(\mathcal{G})^*$, we show that

$$T = T^+ - T^-.$$

for some positive weakly compact left multipliers T^+, T^- on $L_0^{\infty}(\mathcal{G})^*$ if and only if T maps $L_0^{\infty}(\mathcal{G})^*$ into $L^1(\mathcal{G})$.

2. The Results

The main result of the paper is the following.

Theorem 2.1. Let T be a positive weakly compact left multiplier on $L_0^{\infty}(\mathcal{G})^*$. Then T maps $L_0^{\infty}(\mathcal{G})^*$ into $L^1(\mathcal{G})$ and $T = {}_{\phi}T$ for some $\phi \in P(L^1(\mathcal{G}))$. In this case ϕ is unique.

Proof. Choose $u \in \Lambda(L_0^{\infty}(\mathcal{G})^*)$. Define the function

$$T_1: L_0^\infty(\mathcal{G})^* \to L_0^\infty(\mathcal{G})^*,$$

by

$$T_1(m) = u \diamond T(m).$$

for all $m \in L_0^{\infty}(\mathcal{G})^*$. It is easy to see that T_1 is a weakly compact left multiplier from $L_0^{\infty}(\mathcal{G})^*$ into $u \diamond L_0^{\infty}(\mathcal{G})^*$. Let $m \in L_0^{\infty}(\mathcal{G})^*$ and $r = m - u \diamond m$. For any $f \in L_0^{\infty}(\mathcal{G})$ and $\phi \in L^1(\mathcal{G})$, we have

$$\langle T_1(r) \diamond \phi, f \rangle = \langle T_1(r \diamond \phi), f \rangle = 0.$$

This together with the fact that

$$L^1(\mathcal{G})L_0^\infty(\mathcal{G}) = C_0(\mathcal{G}),$$

shows that

$$T_1(r) \in \operatorname{ran}(L_0^\infty(\mathcal{G})^*) \cap u \diamond L_0^\infty(\mathcal{G})^*.$$

Thus $T_1(r) = 0$ and so

$$T_1(m) = T_1(u \diamond m) = T_1(u) \diamond m.$$

This implies that $T_1 = {}_{T_1(u)}T$ on $L_0^{\infty}(\mathcal{G})^*$. Set $\phi = T_1(u)$. Since ${}_{\phi}T|_{L^1(\mathcal{G})}$ is a weakly compact left multiplier on $L^1(\mathcal{G})$, there exists $\xi \in L^1(\mathcal{G})$ such that ${}_{\phi}T = {}_{\xi}T$ on $L^1(\mathcal{G})$; see [1]. Hence for every $\psi \in L^1(\mathcal{G})$ and $f \in L_0^{\infty}(\mathcal{G})$, we have

$$\langle \phi - \xi, \psi f \rangle = \langle (\phi - \xi) \diamond \psi, f \rangle = 0.$$

Thus

$$\phi - \xi \in \operatorname{ran}(L_0^\infty(\mathcal{G})^*) \cap u \diamond L_0^\infty(\mathcal{G})^*$$

and hence

$$\phi = \xi \in L^1(\mathcal{G}).$$

So T_1 maps $L_0^{\infty}(\mathcal{G})^*$ into $L^1(\mathcal{G})$. Hence the proof will be complete if we show that

$$T_2(m) := (T - T_1)(m) = 0$$

for all $m \in L_0^\infty(\mathcal{G})^*$. It is suffice to prove that for every $p \in P(L_0^\infty(\mathcal{G})^*)$

 $T_2(p) = 0.$

First, note that for every $\phi \in L^1(\mathcal{G})$ and $p \in P(L_0^{\infty}(\mathcal{G})^*)$

$$\phi \diamond T_2(p) = \phi \diamond (T_1(p) - u \diamond T_1(p))$$

= $\phi \diamond T_1(p) - \phi \diamond u \diamond T_1(p)$
= 0

Hence

$$L^1(\mathcal{G}) \diamond T_2(p) = \{0\},\$$

and so

$$T_2(p)|_{C_0(\mathcal{G})} = 0.$$

Let $\varepsilon > 0$ and $p \in P(L_0^{\infty}(\mathcal{G})^*)$. There exists a complex-valued continuous function g on \mathcal{G} with compact support \mathcal{C} such that $\|g\|_{\infty} \leq 1$ and

$$||T_1(p)||_1 \le |\langle T_1(p), g\rangle| + \varepsilon.$$
(1)

Let W be a neighborhood in \mathcal{G} with compact closure such that $\mathcal{C} \subseteq W$. Choose a complex-valued continuous function h on \mathcal{G} such that

$$\chi_{\mathcal{C}} \leqslant h \leqslant \chi_V.$$

If $(\mathcal{C}_{\gamma})_{\gamma \in \Gamma}$ be the family of compact subsets of \mathcal{G} directed by upward inclusion, then for any $\gamma \in \Gamma$, there is a complex-valued continuous function j_{γ} on \mathcal{G} such that

$$\chi_{\mathcal{C}_{\gamma}} \leqslant j_{\gamma} \leqslant 1$$

Hence $\langle T_2(p), j_{\gamma} \rangle = 0$ and $\langle T_1(p), j_{\gamma} \rangle \leq ||T_1(p)||_1$. This shows that

$$\langle T(p), \chi_{\mathcal{C}_{\gamma}} \rangle \leq \langle T(p), j_{\gamma} \rangle \leq ||T_1(p)||_1.$$

Since $(\chi_{\mathcal{C}_{\gamma}})_{\gamma \in \Gamma}$ is a bounded approximate identity for $L_0^{\infty}(\mathcal{G})$, it follows that

$$\lim_{\gamma} \langle T(p), \chi_{\mathcal{C}_{\gamma}} \rangle = \|T(p)\|;$$

indeed, $T(p) \in P(L_0^{\infty}(\mathcal{G})^*)$. Thus

$$||T(p)|| \leq ||T_1(p)||_1.$$

Let f be an element in the unit ball of $L_0^{\infty}(\mathcal{G})$ such that

$$||T_2(p)|| \leq |\langle T_2(p), f \rangle| + \varepsilon.$$

Note that since $g - hg \in C_0(\mathcal{G})$, we have

$$\langle T_2(p), f - hg + g \rangle = \langle T_2(p), g - hg \rangle.$$

This implies that

$$||T_2(p)|| \leq |\langle T_2(p), f - hg + g \rangle| + \varepsilon.$$
(2)

By a proper choice of $\lambda \in \mathbb{C}$, one gets

$$\begin{aligned} |\langle T_1(p), f - hg \rangle| + |\langle T_1(p), g \rangle| &= |\langle T_1(p), \lambda(f - hg) + g \rangle| \\ &\leqslant \|T_1(p)\|_1. \end{aligned}$$

Combining this with (1) we get

$$|\langle T_1(p), f - hg \rangle| \leq \varepsilon.$$

From this and (1) we infer that

$$||T_1(p)|| \leq |\langle T_1(p), g\rangle| - |\langle T_1(p), f - hg\rangle| + 2\varepsilon.$$
(3)

Inequalities (2) and (3) together with the fact that

$$\|f - hg + g\| \leqslant 1,$$

show that

$$||T_2(p)|| + ||T_1(p)||_1 \leq |\langle T(p), f - hg + g \rangle| + 3 \varepsilon$$
$$\leq ||T(p)|| + 3 \varepsilon$$
$$\leq ||T(p)||_1 + 3 \varepsilon.$$

This shows that $||T_2(p)|| = 0$ and so $T_2(p) = 0$. Consequently,

$$T(m) = T_1(m) = {}_{\phi}T(m),$$

for all $m \in L_0^\infty(\mathcal{G})^*$. The uniqueness of ϕ follows from the fact that

$$_{\phi}T(u) = \phi,$$

for all $\phi \in L^1(\mathcal{G})$ and $u \in \Lambda(L_0^\infty(\mathcal{G})^*)$. \Box

Before we give some corollaries of Theorem 2.1, let us remark some results from [12].

Remark 2.2. (i) The following assertions are equivalent.

- (a) \mathcal{G} is compact;
- (b) there is a non zero weakly compact left multiplier on $L_0^{\infty}(\mathcal{G})^*$;
- (c) $L^1(\mathcal{G})$ is contained in $\mathcal{L}_{wcc}(L_0^{\infty}(\mathcal{G})^*)$.

(ii) every weakly compact left multiplier $_{\phi}T$ on $L_0^{\infty}(\mathcal{G})^*$ is compact for all $\phi \in L^1(\mathcal{G})$.

Corollary 2.3. The set of positive weakly compact left multipliers on $L_0^{\infty}(\mathcal{G})^*$ is trivial or isometrically isomorphic to $P(L^1(\mathcal{G}))$.

Proof. Let $\mathcal{M}_{wcl}(L_0^{\infty}(\mathcal{G})^*)$ denote the set of all positive weakly compact left multipliers on $L_0^{\infty}(\mathcal{G})^*$. If $T \in \mathcal{M}_{wcl}(L_0^{\infty}(\mathcal{G})^*)$, then $T = {}_{\phi}T$ for some $\phi \in P(L^1(\mathcal{G}))$. Define the function

$$\Psi: \mathcal{M}^p_{wcl}(L^\infty_0(\mathcal{G})^*) \to P(L^1(\mathcal{G})),$$

by $\Psi(T) = \phi$. If $u \in \Lambda(L_0^{\infty}(\mathcal{G})^*)$, then ||u|| = 1 and

$$\|\phi\| = \|_{\phi} T(u)\| \le \|_{\phi} T\| \le \|\phi\|,$$

for all $\phi \in L^1(\mathcal{G})$. Thus $\|\Psi(\phi T)\| = \|\phi T\|$. That is, Ψ is an isometry. Now if

$$\mathcal{M}_{wcl}(L_0^\infty(\mathcal{G})^*) \neq \{0\},\$$

then \mathcal{G} is compact and so Ψ is surjective by Remark 2.2(i). \Box

Corollary 2.4. Let T be a weakly compact left multiplier on $L_0^{\infty}(\mathcal{G})^*$. Then $T = T^+ - T^-$ for some positive weakly compact left multipliers T^+, T^- on $L_0^{\infty}(\mathcal{G})^*$ if and only if $T = {}_{\phi}T$ for some self-adjoint element ϕ of $L^1(\mathcal{G})$. In this case, ϕ is unique.

Proof. If there exist positive weakly compact left multipliers T^+, T^- on $L_0^{\infty}(\mathcal{G})^*$ such that

$$T = T^+ - T^-,$$

then by Theorem 2.1, there are $\phi, \psi \in P(L^1(\mathcal{G}))$ such that

$$T = {}_{\phi}T - {}_{\psi}T = {}_{\phi-\psi}T.$$

Since ϕ and ψ are positive, they are self-adjoint. Conversely, let ϕ be a self-adjoint element of $L^1(\mathcal{G})$. Then

$$\phi = \phi^+ - \phi^-.$$

for some $\phi^+, \phi^- \in P(L^1(\mathcal{G}))$. If $\phi \neq 0$ and $T = {}_{\phi}T$, then \mathcal{G} is compact and so ${}_{\phi^+}T$ and ${}_{\phi^-}T$ are positive weakly compact left multiplier on $L_0^{\infty}(\mathcal{G})^*$ by Remark 2.2(i). The proof will be complete if we note that ${}_{\phi}T = {}_{\phi^+}T - {}_{\phi^-}T$. \Box As an immediate corollary of Theorem 2.1 and Corollary 2.4, we present the

As an immediate corollary of Theorem 2.1 and Corollary 2.4, we present next result.

Corollary 2.5. Let m be a self-adjoint element of $\mathcal{L}_{wcc}(L_0^{\infty}(\mathcal{G})^*)$. Then $m = m^+ - m^-$ for some positive functionals $m^+, m^- \in \mathcal{L}_{wcc}(L_0^{\infty}(\mathcal{G})^*)$ if and only if $m \in L^1(\mathcal{G})$.

As an another consequence of Theorem 2.1 we have the following result.

Corollary 2.6. The zero map is the only positive weakly compact left multiplier from $L_0^{\infty}(\mathcal{G})^*$ into $\operatorname{ran}(L_0^{\infty}(\mathcal{G})^*)$.

Proof. Let $T : L_0^{\infty}(\mathcal{G})^* \to \operatorname{ran}(L_0^{\infty}(\mathcal{G})^*)$ be a positive weakly compact left multiplier. Then $T = {}_{\phi}T$ for some $\phi \in L^1(\mathcal{G})$. If $u \in \Lambda(L_0^{\infty}(\mathcal{G})^*)$, then

$$\phi = \phi \diamond u = {}_{\phi}T(u) = T(u) \in \operatorname{ran}(L_0^{\infty}(\mathcal{G})^*).$$

So $\phi = u \diamond \phi = 0$. From Theorem 2.1 and Remark 2.2(ii), one can obtain the following result.

Corollary 2.7. Every positive weakly compact left multiplier on $L_0^{\infty}(\mathcal{G})^*$ is compact.

Let us recall that $L_0^{\infty}(\mathcal{G})^*$ is a complete Banach lattice; that is, every nonempty and bounded above subset of $L_0^{\infty}(\mathcal{G})^*$ possesses a least upper bounded; see [2]. For bounded operator $T: L_0^{\infty}(\mathcal{G})^* \to L_0^{\infty}(\mathcal{G})^*$, the *modulus* |T| defined by

$$|T|(m) = \sup\{|T(n)| : |n| \le m\},\$$

for all $m \in P(L_0^{\infty}(\mathcal{G})^*)$. Then |T| is a bounded operator. Note that if T is a weakly compact left multiplier, then |T| is a positive weakly compact operator; see Theorem 16.7, Theorem 17.14 of [2]. It is natural to ask whether |T| is also a left multiplier?

Proposition 2.8. Let T be a weakly compact left multiplier on $L_0^{\infty}(\mathcal{G})^*$. Then |T| is a left multiplier on $L_0^{\infty}(\mathcal{G})^*$ if and only if $|T| = {}_{\phi}T$ for some $\phi \in L^1(\mathcal{G})$.

Proof. Let |T| be a left multiplier on $L_0^{\infty}(\mathcal{G})^*$. Then |T| is a positive weakly compact left multiplier on $L_0^{\infty}(\mathcal{G})^*$. It follows from Theorem 2.1 that

 $|T| = {}_{\phi}T,$

for some $\phi \in P(L^1(\mathcal{G}))$. The converse is clear. \Box

Let \mathcal{G}_1 and \mathcal{G}_2 be locally compact groups. A linear isomorphisms

 $\rho: \mathcal{L}_{wcc}(L_0^{\infty}(\mathcal{G}_1)^*) \to \mathcal{L}_{wcc}(L_0^{\infty}(\mathcal{G}_2)^*)$

is called *bipositive* if both ρ and ρ^{-1} are positive.

Proposition 2.9. Let \mathcal{G}_1 and \mathcal{G}_2 be compact groups. If there is a bipositive algebra isomorphism from $\mathcal{L}_{wcc}(L_0^{\infty}(\mathcal{G}_1)^*)$ onto $\mathcal{L}_{wcc}(L_0^{\infty}(\mathcal{G}_2)^*)$, then \mathcal{G}_1 and \mathcal{G}_2 are topological isomorphic.

Proof. Let

$$\rho: \mathcal{L}_{wcc}(L_0^\infty(\mathcal{G}_1)^*) \to \mathcal{L}_{wcc}(L_0^\infty(\mathcal{G}_2)^*),$$

be a bipositive algebra isomorphism. If $\phi, \psi \in P(L^1(\mathcal{G}_1))$, then ϕ, ψ are positive elements of $\mathcal{L}_{wcc}(L_0^{\infty}(\mathcal{G}_1)^*)$. Hence $\rho(\phi \diamond \psi)$ is a positive element in

$$\mathcal{L}_{wcc}(L_0^\infty(\mathcal{G}_2)^*).$$

It follows from Corollary 2.5 that

$$\rho(\phi \diamond \psi) \in L^1(\mathcal{G}).$$

In view of Cohen's factorization theorem, we have

$$\rho(L^1(\mathcal{G}_1)) \subseteq L^1(\mathcal{G}_2).$$

Analogously,

$$\rho^{-1}(L^1(\mathcal{G}_2)) \subseteq L^1(\mathcal{G}_1).$$

Consequently,

$$\rho(L^1(\mathcal{G}_1)) = L^1(\mathcal{G}_2).$$

To complete the proof we only need to note that \mathcal{G}_1 and \mathcal{G}_2 are topological isomorphic if there exists a bipositive algebra isomorphism from $L^1(\mathcal{G}_1)$ onto $L^1(\mathcal{G}_2)$; see [8]. \Box

Acknowledgements

The authors would like to thank this paper's referee for his/her comments.

References

- C. A. Akemann, Some mapping properties of the group algebras of a compact group, *Pacific J. Math.*, 22 (1967), 1-8.
- [2] C. D. Aliprantis and O. Burkinshaw, *Positive operator*, Academic Press, New York/ London, 1985.
- [3] F. Ghahramani, A. T. Lau, and V. Losert, Isometric isomorphisms between Banach algebras related to locally compact groups, *Trans. Amer. Math. Soc.*, 321 (1990), 273-283.
- [4] F. Ghahramani and A. T. Lau, Isomorphisms and multipliers on second dual algebras of Banach algebras, *Math. Proc. Cambridge Philos. Soc.*, 111 (1992), 161-168.
- [5] F. Ghahramani and A. T. Lau, Multipliers and ideal in second conjugate algebras related to locally compact groups, J. Func. Anal., 132 (1995), 170-191.
- [6] F. Ghahramani and A. T. Lau, Multipliers and modulus on Banach algebras related to locally compact groups, J. Funct. Anal., 150 (1997), 478-497.
- [7] E. Hewitt and K. Ross, Abstract harmonic analysis I, Springer-Verlag, New York, 1970.

M. J. MEHDIPOUR

- [8] Y. Kawada, On the group ring of a topological group, Math. Japonicae, 1 (1948), 1-5.
- [9] A. T. Lau and J. Pym, Concerning the second dual of the group algebra of a locally compact group, J. London Math. Soc., 41 (1990), 445-460.
- [10] V. Losert, Weakly compact multipliers on group algebras, J. Funct. Anal., 213 (2004), 466-472.
- [11] M. J. Mehdipour and R. Nasr-Isfahani, Compact left multipliers on Banach algebras related to locally compact groups, *Bull. Austral. Math. Soc.*, 79 (2009), 227-238.
- [12] M. J. Mehdipour and R. Nasr-Isfahani, Weakly compact multipliers on Banach algebras related to locally compact groups, *Acta Math. Hungar.*, 127 (2010), 195-206.
- [13] S. Sakai, Weakly compact operators on operator algebras, Pacific J. Math., 14 (1964), 659-664.

Mohammad Javad Mehdipour

Associate Professor of Mathematics Department of Mathematics Shiraz University of Technology Shiraz, Iran E-mail: mehdipour@sutech.ac.ir