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1. Introduction

We consider an optimization problem of the form

min f(x) = (f1(x), . . . , fq(x))

s.t. hi(x) = 0, i = 1, 2, ..., p,

gj(x)  0, j = 1, 2, ..., r,

Gl(x)  0, Hl(x)  0,
Gl(x)Hl(x) = 0, l = 1, ...,m,

x ∈ X,

(MPEC)

with locally Lipschitz functions fk(k = 1, . . . , q), hi(i = 1, . . . , p), gj(j =
1, . . . , r), Gl,Hl(l = 1, . . . ,m) : Rn → R andX ⊂ Rn is a closed set. This
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problem is called a multiobjective problem with equilibrium (or com-
plementarity) constraints. Mathematical programming with equilibrium
constraints is the study of constrained optimization problems where the
constraints include variational inequalities or complementarities. This
problem is related to the Stackelberg game and is used in the study
of engineering design, economic equilibrium and multilevel games; see,
e.g.,[1, 7, 11]. Many researchers have contributed to the study of opti-
mality conditions and constraint qualifications for these problems; see,
e.g., [4, 5, 6, 9, 13]. Recently Kanzow and Schwartz [6] studied the
enhanced M-stationary conditions for a smooth single-objective math-
ematical problem with equilibrium constraints without an abstract set
constraint. They introduced the pseudonormality CQ and investigated
the relationship between this new CQ and some existing ones such as
the local error bound, exact penalty and Abadie CQ when all the con-
straint functions were considered continuously differentiable. Later, Ye
and Zhang [13] proved the pseudonormality CQ implies the existence of
a local error bound where equality and inequality constraints were non-
smooth and equilibrium constraints were assumed to be continuously
differentiable functions.
Now, we extend their results for MPEC in terms of Mordukhovich subd-
ifferential under weaker conditions. There are two features for this study:
first, we consider a multiobjective problems and our CQs are completely
described by the feasible region and objective functions play no role
in these definitions, unlike usual in the multiobjective literature. Also,
we do not impose continuously differentiable condition on equilibrium
constraints.
The organization of the paper is as follows. In Section 2, we provide pre-
liminaries that will be used in the rest of the paper. Section 3 is devoted
to the main results of the paper. We present three CQs including the
pseudonormality, local error bound and Abadie CQ and discuss about
their relations. Also, we derive two types of M-stationary conditions
under these CQs.
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2. Preliminaries

In this section, we recall some background materials on nonsmooth anal-
ysis and preliminary results from [3, 8] which will be used later. Our
notations are basically standard. We denote by x, the l1−norm, i.e.,
x :=

n
i=1 |xi|. Bε(x) stands for the open ball centered at x with

radius ε > 0.
For a function g : Rn → R, we denote by g+(x) := max{0, g(x)} and for
the vector-valued function the maximum is taken componentwise. Let S
be a nonempty closed subset of Rn , the distance function distS : Rn →
R+ is defined by distS(x) := infy∈S{y − x}, and int S,bd S and S̄
stand for the interior, boundary and closure of S, respectively. Next let
us present some of the basic concepts of generalized differentiation. We
start with tangent and normal cones to sets. The Bouligand tangent
cone (or contingent cone) of S at x is defined by

T (x;S) := {v ∈ Rn : ∃vn → v, tn ↓ 0 : x+ tnvn ∈ S, ∀n ∈ N},

and the Fréchet normal cone to S at x is given by

NF (x;S) :=

ξ ∈ Rn : lim sup

y
S→x

ξ, y − x
y − x  0


.

The cone

N(x;S) := {ξ ∈ Rn : ∃ xn → x, and ξn → ξ with ξn ∈ NF (xn;S)}

is called the limiting (Mordukhovich) normal cone to S at x. If S is a
convex set, then NF (x;S) = N(x;S).

Let f : Rn → R be a locally Lipschitz function near x. The Fréchet
subdifferential of f at x is defined by

∂F f(x) :=

ξ ∈ Rn : lim inf

y→x
f(y)− f(x)− ξ, y − x

y − x  0

.

The limiting (Mordukhovich) subdifferential of f at x is given by

∂f(x) := {ξ ∈ Rn : ∃ xn → x and ξn → ξ with ξn ∈ ∂F f(xn)}.
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The limiting normal cone can always be described via the cone spanned
on the generalized gradient of the distance function

N(x;S) =


λ0

λ∂distS(x).

The following proposition contains the sum and chain rules and a formula
for computing limiting subdifferential of the maximum function.

Proposition 2.1.

(i) Let f : Rn → R be Lipschitz near x and g : Rn → R ∪ {∞} be
lower semi continuous and finite at x and let c1, c2 be nonnegative
scalars. Then

∂(c1f + c2g)(x) ⊂ c1∂f(x) + c2∂g(x).

(ii) Let φ : Rm → Rn be Lipschitz near x, and let g : Rn → R be Lip-
schitz near φ(x). Then the function f(x) := g(φ(x)) is Lipschitz
near x, and we have

∂f(x) ⊂ {∂ γ, φ(.) (x) : γ ∈ ∂g(φ(x))}.

(iii) Let for each i = 1, . . . , k the function fi : Rn → R be Lipschitz near
x, and set f(x) := max1ik fi(x). If ξ ∈ ∂f(x), then there exist
γi  0 (i = 1, . . . , n) with

k
i=1 γi = 1 and γi = 0 for i /∈ M(x)

such that ξ ∈ ∂(
k
i=1 γifi)(x), where M(x) := {i : f(x) = fi(x)}.

Next we recall a necessary condition for a point to be a local minimizer.

Proposition 2.2. Let f : Rn → R be Lipschitz near x and S be closed
subset of Rn. If x is a local minimizer of f on S, then 0 ∈ ∂f(x) +
N(x;S).

We denote the set of feasible set by C and to facilitate the notation, we
define the following index sets for an arbitrary x∗ ∈ C :

B := {1, 2, ..., p},
A(x∗) := {j : gj(x∗) = 0},
I00(x∗) := {l : Gl(x∗) = 0,Hl(x∗) = 0},
I0+(x∗) := {l : Gl(x∗) = 0,Hl(x∗) > 0},
I+0(x∗) := {l : Gl(x∗ > 0,Hl(x∗) = 0}.
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A feasible point x∗ ∈ C is called a Pareto optimal solution for MPEC
if there exists no feasible solution x such that fk(x)  fk(x∗) for each
k = 1, . . . , q and fk0(x) < fk0(x

∗) for at least one index k0. A feasible
point x∗ is called a weak Pareto optimal solution for MPEC if there exists
no feasible solution x such that for each k = 1, . . . , q, fk(x) < fk(x∗). A
feasible point x∗ is a local Pareto optimal (local weak Pareto optimal)
solution for MPEC if there exists δ > 0 such that x∗ is a Pareto optimal
(weak Pareto optimal) solution in Bδ(x∗) ∩ C.

3. Main Results

In this section three constraint qualifications including the pseudonor-
mality, local error bound and Abadie are presented for MPEC. The
relations between these CQs are also investigated. Then two types of
M-stationary conditions are derived under the weakest and strongest
ones.
First, we define the pseudonormality CQ for MPEC which is an ex-
tension of what was given in [6, 13] for single-objective problems with
continuously differentiable complementarity constraints.

Definition 3.1. We say that the pseudonormality CQ is satisfied at x∗

if there is no nonzero vector (λ, µ, γ, ν) ∈ Rp+r+m+m such that

(i) 0 ∈
p
i=1 ∂(λihi)(x

∗)+
r
j=1 µj∂gj(x

∗)+
m
l=1[∂(γlGl)(x

∗)+∂(νlHl)(x∗)]+
N(x∗;X);

(ii) µj  0 ∀j = 1, . . . , r, γl = 0 ∀l ∈ I+0(x∗), νl = 0 ∀l ∈ I0+(x∗),
and either γl < 0, νl < 0 or γlνl = 0 ∀l ∈ I00(x∗);

(iii) There exists a sequence {xn} ⊂ X converging to x∗ such that for
all n,

p

i=1

λihi(xn) +
r

j=1

µjgj(xn) +
m

l=1

[γlGl(xn) + νlHl(xn)] > 0.

Next, we recall the definition of the local error bound CQ for MPEC. Fol-
lowing [9], we say that the local error bound CQ is satisfied at x∗ if there
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exist some positive scalars δ, σ such that for each x ∈ Bδ(x∗) ∩ X, one
has

distC(x)  σ

h(x)+ g+(x)+

m

l=1

distΩ(Gl(x),Hl(x))

,

where Ω := {(a, b) ∈ R2 : a  0, b  0, ab = 0}.
Inspired by [9], we define the Abadie CQ for MPEC. As we will show
later, our definition coincide with the one in [9] where q = 1.

Definition 3.2. Let all the constraint functions be directionally differen-
tiable at x∗. We say that the Abadie CQ holds at x∗ if T (x∗;S) = L(x∗),
where

L(x∗) :=

d ∈ T (x∗;X) : h


i(x

∗; d) = 0, ∀i ∈ B,
g

j(x

∗; d)  0, ∀j ∈ A(x∗),
G

l(x

∗; d) = 0, ∀l ∈ I0+(x∗),
H

l (x

∗; d) = 0, ∀l ∈ I+0(x∗),
G

l(x

∗; d)  0, ∀l ∈ I00(x∗),
H

l (x

∗; d)  0, ∀l ∈ I00(x∗),
(G


l(x

∗; d))(H

l (x

∗; d)) = 0, ∀l ∈ I00(x∗)

,

and for some σ > 0 and each d ∈ T (x∗;X) one has

distL(x∗)(d)  σ

hi(x∗; d)i∈B+ g


j

+
(x∗; d)

j∈A(x∗)

+ Gl(x∗; d)l∈I0+(x∗) + H

l (x

∗; d)l∈I+0(x∗)
+



l∈I00(x∗)
distΩ(G


l(x

∗; d),H

l (x

∗; d))

.

(1)

In [6], the authors showed that the pseudonormality CQ yields the lo-
cal error bound CQ and the Abadie CQ with continuously differen-
tiable data in the absence of an abstract set constraint for a single-
objective mathematical program with equilibrium constraints. Later, Ye
and Zhang in [13] generalized their results about the implication of the
local error bound CQ by the pseudonormality CQ with continuously dif-
ferentiable equilibrium constraints. Now, we want to establish the con-
nection between the above CQs for MPEC with nonsmooth data. For
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this purpose, we do not require continuously differentiable constraint
functions. We need some auxiliary results in order to achieve our goals.

Lemma 3.3. Assume that X is a convex polyhedral set. Then our defi-
nition of the Abadie CQ is equivalent to those given in [9].

Proof. Let I(x) be the identity function,

F (x) :=





hi(x)i=1,...,p

gj(x)j=1,...,r
Gl(x)
Hl(x)



l=1,...,m



 , and Λ :=




{0}p

(−∞, 0]r
Ωm



 .

It is sufficient to show that

T ((F, I)(x∗); Λ×X) = T (F (x∗); Λ)× T (x∗;X), (2)

in order to prove that L(x∗) in Definition 3.2 is equal to the linearized
cone defined in [9], in the presence of the constraint set. The inclusion
“ ⊆ ” follows immediately from [10, Proposition 6.41]. To prove the
inclusion “ ⊇ ”, consider an arbitrary vector d ∈ T (F (x∗); Λ)×T (x∗;X),
thus d = (d1, d2) with d1 ∈ T (F (x∗); Λ) and d2 ∈ T (x∗;X). The latter
gives us, the existence of sequences dn1 → d1, d

n
2 → d2, t

n
1 ↓ 0 and tn2 ↓ 0

such that F (x∗)+tn1d
n
1 ∈ Λ, and x∗+tn2dn2 ∈ X, for each n. Defining dn :=

(dn1 , d
n
2 )→ (d1, d2), it remains to find a sequence tn ↓ 0 such that for each

n, (F (x∗), x∗)+tn(dn1 , d
n
2 ) ∈ Λ×X. Taking tn := min{tn1 , tn2}, for each n,

the similar argument to [6, Lemma 5.3] implies that F (x∗)+tndn1 ∈ Λ, for
all n sufficiently large. On the other hand, since X is a convex polyhedral
set, it has the following representation

X = {x : aix  bi, i = 1, . . . , k}.

Now, if x∗ ∈ intX, trivially x∗ + tndn2 ∈ X, for all n sufficiently large.
If x∗ ∈ bdX, hence aix∗ = bi, and also ai(x∗ + tn2d

n
2 )  bi, for all

i = 1, . . . , k. Consequently, for all i, aitn2d
n
2  0, i.e., aidn2  0, for each

n, which, in turn, implies that ai(x∗ + tndn2 )  bi, for all i = 1, . . . , k. It
means that x∗ + tndn2 ∈ X, for each n. Therefore, we arrive at (2).
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Furthermore, obviously if the second condition in the Abadie CQ in [9]
holds, then (1) also holds. Conversely, suppose that d be an arbitrary
vector in Rn. Then, there exists d̂ ∈ T (x∗;X), such that distT (x∗;X)(d) =
d− d̂. Since the distance function is Lipschitz of rank 1, we have

distL(x∗)(d)  distL(x∗)(d̂) + d− d̂

 k

hi(x∗; d̂)i∈B+ g


j

+
(x∗; d̂)

j∈A(x∗)

+ Gl(x∗; d̂)l∈I0+(x∗) + H

l(x

∗; d̂)l∈I+0(x∗)
+



l∈I00(x∗)
distΩ(Gl(x

∗; d̂),H l(x
∗; d̂))


+ d− d̂

 k

hi(x∗; d)i∈B+ g


j

+
(x∗; d)

j∈A(x∗)

+ Gl(x∗; d)l∈I0+(x∗) + H

l(x

∗; d)l∈I+0(x∗)
+



l∈I00

distΩ(Gl(x
∗; d),H l(x

∗; d)) + ld− d̂

+ d− d̂

 k

hi(x∗; d)i∈B+ g


j

+
(x∗; d)

j∈A(x∗)

+ Gl(x∗; d)l∈I0+(x∗) + H

l(x

∗; d)l∈I+0(x∗)
+



l∈I00(x∗)
distΩ(Gl(x

∗; d),H l(x
∗; d)) + distT (x∗;X)(d)


,

where l is the sum of the Lipschitz constant of hi, i ∈ B, g

j

+
, j ∈ A(x∗),

Gl, l ∈ I0+(x∗)∪I00(x∗),H l , l ∈ I+0(x∗)∪I00(x∗) and k = max{k, kl+1},
and the proof is complete. 

Lemma 3.4. Let the pseudonormality CQ hold at x∗. Then there are
positive scalars δ, c such that for all x ∈ Bδ(x∗) ∩ X and x /∈ C the
following holds:

1
c
 ξ ∀ξ ∈ ∂


h(x)+ g+(x)+

m

l=1

distΩ(Gl(x),Hl(x))

. (3)

Proof. Combining the proofs techniques of [12, Lemma 2] and [6, Lemma
4.3], the result can be obtained. 
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Lemma 3.5. Assume that there exist δ, c > 0 such that for all x ∈
Bδ(x∗) ∩X and x /∈ C, (3) holds. Then

distC(x)  nc

h(x)+g+(x)+

m

l=1

distΩ(Gl(x),Hl(x))

, ∀x ∈ Bδ/2(x∗)∩X.

Proof. The proof follows immediately from the proof of [6, Lemma
4.4]. 

Now, we are ready to establish the relations between the aforementioned
CQs. Using Lemmas 3.4 and 3.5, we are able to find some conditions
that guarantee the existence of a local error bound.

Theorem 3.6. Assume that the pseudonormality CQ is satisfied at x∗,
then the local error bound CQ is also satisfied at this point.

As it was shown in [9], the local error bound CQ implies the Abadie
CQ. On the other hand, due to Theorem 3.6 the pseudonormality CQ
implies the local error bound CQ. Thus from Lemma 3.9, we obtain the
following result.

Theorem 3.7. Assume that all the constraint functions in MPEC are
directionally differentiable at x∗ and X is a convex polyhedral set. If the
pseudonormality CQ holds at x∗, then the Abadie CQ also holds at this
point.
Summing up the above theorems, we have the following diagram:

pseudonormalityCQ =⇒ local error bound CQ =⇒ Abadie CQ.

In the next example that we take from [9], we will show that the Abadie
CQ is strictly weaker than the pseudonormality CQ.

Example 3.8. Consider the following system

G1(x1, x2, x3) = 1− (x1, x2, x3), H1(x1, x2, x3) = (x1, x2),
G2(x1, x2, x3) = max{x2

1, x2}, H2(x1, x2, x3) = (x1, x2).

Similar to what was done in [9], one can check that the Abadie CQ is
satisfied at (0, 0, 0). But the point (0, 0, 0) does not satisfy the pseudonor-
mality CQ. Because an easy calculation shows that
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∂H1(0, 0, 0) = {(ξ, η, 0)| ξ, η ∈ [−1, 1]}, by considering γ1 = γ2 = ν2 =
0, ν1 = 1, we have the following relations

(0, 0, 0) ∈ ∂(ν1H1(0, 0, 0)) and ν1H1(x1, x2, x3) > 0, ∀(x1, x2) = 0.

In the sequel, we turn our attention to the necessary optimality con-
ditions. The following result describes a relation between the limiting
subdifferential of a function f at a point x∗ and the limiting subdiffer-
ential of the function v → f−(x∗; v) at the direction v = 0.

Proposition 3.9. Let f : Rn → R be a locally Lipschitz function near
x∗. Then

∂f

(x∗; 0) ⊆ ∂f(x∗).

Proof. For a given vector ξ ∈ ∂f (x∗, 0), there exist sequences vn → 0
and ξn → ξ such that for each n, ξn ∈ ∂F f


(x∗, vn) which implies that

lim inf
v→vn

f

(x∗, v)− f (x∗, vn)− ξn, v − vn

v − vn
 0.

For any ε > 0, the latter gives us for each n, the existence of some
positive scalar δn > 0 such that

f

(x∗, v)− f (x∗, vn) > ξn, v − vn − εv − vn, ∀v ∈ Bδn(vn). (4)

We consider a sequence {tkn}∞k=1 such that for each n, limk→∞ t
k
n = 0

and

f−(x∗; vn) = lim
k→∞

f(x∗ + tknvn)− f(x∗)
tkn

, f−(x∗; v) = lim
k→∞

f(x∗ + tknv)− f(x∗)
tkn

.

From (4) we obtain

lim
k→∞

f(x∗ + tknv)− f(x∗ + tknvn)
tkn

−ξn, v − vn+ εv− vn > 0, ∀v ∈ Bδn(vn).

(5)
Therefore, (5) implies that for each n, there exists kn < kn+1 such that

f(x∗ + tknn v)− f(x∗ + tknn vn)
tknn

−ξn, v − vn+εv−vn > 0, ∀v ∈ B̄ δn
2
(vn).
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If we set tn := tknn , hence for each n, and each v ∈ B δn
2
(vn), we get

f(x∗ + tnv)− f(x∗ + tnvn)− ξn, tn(v − vn)+ tnεv − vn > 0. (6)

Defining xn := x∗+tnvn, we have xn → x∗. Finally we show that for each
n, ξn ∈ ∂F f(xn). For each y ∈ Btn δn

2
(xn), taking v := y−x∗

tn
∈ B δn

2
(vn),

we deduce from (6) that

f(y)− f(xn)− ξn, y − xn > −εy − xn.

Since ε > 0 was chosen arbitrary, then for each n, ξn ∈ ∂F f(xn), where
xn

f→ x∗. Thus ξ ∈ ∂f(x∗) and the proof is complete.

Now we are ready to prove the necessary optimality conditions at a local
weak Pareto optimal solution of MPEC. Let us start with considering
the following scalar optimization problem which is used in the sequel:

min θ(x)

s.t. x ∈ C,
(P1)

where θ(x) := max{fk(x) − fk(x∗) : k = 1, . . . , q} and C is the feasible
set for MPEC. If x∗ is a local weak Pareto optimal solution of MPEC,
then one can easily verify that x∗ is a local minimum of problem P1.

Theorem 3.10. Suppose that x∗ is a local weak Pareto optimal solu-
tion of MPEC and all the constraint and objective functions are direc-
tionally differentiable at this point. If the Abadie CQ is satisfied at x∗,
then the M-stationary conditions hold: there are multipliers α, λ, µ, γ, ν ∈
Rq+p+r+2m such that α = 0 and

(i) 0 ∈
q
k=1 αk∂fk(x

∗) +
p
i=1 ∂(αihi)(x

∗) +
r
j=1 µj∂gj(x

∗)
+
m
l=1[∂(γlGl)(x

∗) + ∂(νlHl)(x∗)] +N(x∗;X);

(ii) αk  0, µj  0 ∀j = 1, . . . , r, µj = 0, ∀j /∈ A(x∗) γl = 0 ∀l ∈
I+0(x∗), νl = 0 ∀l ∈ I0+(x∗), and either γl < 0, νl < 0 or γlνl =
0 ∀l ∈ I00(x∗).
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Proof. Similar to the proof of [2, Proposition 2.3.2], one can prove that
the function θ is directionally differentiable at x∗. First we claim that
the following problem attains its minimum at v = 0,

min θ

(x∗; v)

s.t. v ∈ L(x∗).
(7)

Suppose by contradiction that, there exists a vector w ∈ L(x∗) such that

θ

(x∗;w) < 0. (8)

According to the Abadie CQ and the definition of the tangent cone, we
can find sequences wn → w and tn ↓ 0 such that for each n, one has
x∗+tnwn ∈ S. Now using the Lipschitzness of θ and (8) we obtain θ(x∗+
tnwn) < θ(x∗), for all n sufficiently large, which has a contradiction with
the fact x∗ is a local minimum of problem P1 hence this contradiction
shows that the assertion is true.
Next we prove that the function v → Θ(v) attains its minimum on
T (x∗;X) at v = 0, where

Θ(v) := θ

(x∗; v) + lθσ


hi(x∗; v)i∈B+ g


j

+
(x∗; v)

j∈A(x∗)

+ Gl(x∗; v)l∈I0+(x∗) + H

l (x

∗; v)l∈I+0(x∗)
+



l∈I00(x∗)
distΩ(G


l(x

∗; v),H

l (x

∗; v))

.

and lθ is the Lipschitz constant of the function θ near x∗. For a given
vector v ∈ T (x∗;X), considering v̄ := projL(x∗)v and Lipschitz property
of θ


(x∗; .) together with inequality in (1) we get

Θ(0) = θ

(x∗; 0)  θ(x∗; v̄)  θ(x∗; v) + lθv̄ − v

= θ

(x∗; v) + lθdistL(x∗)(v)  Θ(v),

which shows that v = 0 is a minimum of the function Θ. Now using
Proposition 2.2, we obtain

0 ∈ ∂Θ(0) +N(0;T (x∗;X)).
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Thus, we deduce from Propositions 2.1 and 3.9 that

0 ∈ ∂θ(x∗; 0) + lθσ
 

j∈A(x∗)

∂g

j

+
(x∗; 0) +

p

i=1

∂|hi(x∗; 0)|+


l∈I0+(x∗)

∂|Gl(x∗; 0)|



l∈I+0(x∗)
∂|H 

l (x
∗; 0)|+



l∈I00(x∗)
∂distΩ(G


l(x

∗; 0),H

l (x

∗; 0))


⊆ ∂θ(x∗, 0) +


j∈J
µj∂g


j(x

∗, 0) +
p

i=1

∂(λih

i)(x

∗, 0) +
m

l=1

[∂(γlG

l)(x

∗, 0)

+ ∂(νlH

l )(x

∗; 0)] +N(0;T (x∗;X))

⊆ ∂θ(x∗) +
r

j=1

µj∂gj(x∗) +
p

i=1

∂(λihi)(x∗) +
m

l=1

[∂(γlGl)(x∗) + ∂(νlHl)(x∗)]

+N(x∗;X),

where µj  0(j ∈ A(x∗)), µj := 0 (j /∈ A(x∗)) and γl = 0 ∀l ∈
I+0(x∗), νl = 0 ∀l ∈ I0+(x∗), and either γl < 0, νl < 0 or γlνl =
0 ∀l ∈ I00(x∗). Again by using Proposition 2.1 (iii), we can find nonneg-
ative scalars αk such that

q
k=1 αk = 1 and condition (i) is fulfilled, this

completes the proof of the theorem. 

The last theorem states the enhanced M-stationary conditions at a local
weak Pareto optimal solution.

Theorem 3.11. Let x∗ be a local weak Pareto optimal solution of MPEC
and the pseudonormality CQ be satisfied at this point. Then the en-
hanced M-stationary conditions hold: there are multipliers α, λ, µ, γ, ν ∈
Rq+p+r+2m such that α = 0 and conditions (i)-(ii) in Theorem 3.10 hold
and also if λ, µ, γ, ν are not all equal to zero, then there exists a sequence
{xn} ⊂ X converging to x∗ such that for all n,

if λi = 0, then λihi(xn) > 0, if µj > 0, then µjgj(xn) > 0,

if γl = 0, then γlGl(xn) > 0, if νl = 0, then νlHl(xn) > 0.
(9)

Proof. Applying problem P1, the proof follows from the proofs of [12,
Theorem 1], [6, Theorem 3.1] and Proposition 2.1. 
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The assertion of Theorem 3.11 is named Enhanced M-stationary con-
ditions because conditions in (9) develop the M-stationary conditions,
which provide a more precise characterization of the constraints that cor-
respond to nonzero multipliers by replacing the complementary slackness
condition with a stronger condition, which is called complementarity vi-
olation condition (9).
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