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Abstract. Identifying the efficient extreme units in a production pos-
sibility set is a very important matter in data envelopment analysis, as
these observed, real units have the best performances. In this paper, we
proposed a multiple objective programming model, in which the feasible
region is the production possibility set under the assumption of variable
returns to scale and the objective function consists of input and output
variables. As we know, by increasing the dimensions of the problem, the
set of efficient points would increase as well; thus, using the multiple
objective linear programming problem-solving methods in a decision set
would lead to computational problems and it would be much easier to
work in the outcome set instead of the decision set. In this research, we
show that the efficient points in the outcome set of the suggested multi-
ple objective linear programming problems correspond with the efficient
extreme points in data envelopment analysis. An outer approximation
algorithm is presented for production of all efficient extreme points in
the outcome set. This algorithm provides us with the equations for all
efficient surfaces. In the outcome set, this algorithm would use few cal-
culations to produce all the extreme points. Finally, we demonstrate the
presented approach through numerical examples.
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1. Introduction

Data envelopment analysis (DEA) developed by Charnes et al. [12] has become
one of the most widely used methods in operations research/management sci-
ence. A reason for this success is that DEA is a task-oriented approach and
focuses on an important task: to evaluate the relative (technical) efficiency
of comparable Decision Making Units (DMUs) essentially performing the same
task. Based on information about existing data on the performance of the units
and some preliminary assumptions, the purpose of DEA is to empirically char-
acterize the so-called efficient frontier (surface) based on the set of available
DMUs and to project all DMUs onto this frontier. If a DMU lies on the frontier,
it is referred to as an efficient unit, otherwise inefficient. Efficiency evaluation
is based on the data available without taking into account the decision-makers
(DM) preferences. All efficient DMUs are considered equally good. However, if
the efficient units are not equally preferred by the decision-makers it is neces-
sary to somehow incorporate the decision-maker’s judgments or a priori knowl-
edge into the analysis. A straightforward and widely used method has been to
restrict possible values of the multipliers of so-called dual DEA models. Ap-
proach is to explicitly or implicitly gather direct preference information about
the desirable input and output-values of DMUs, and insert that information in
a form or another into the analysis. DEA is a technique based on mathematical
programming for evaluating the relative efficiency of a set of decision-making
units (DMUS). The efficiency of each DMU is determined by the efficiency fron-
tier. The units on the efficiency frontier are assumed efficient; otherwise, they
are considered as inefficient. In fact, DEA sets up a production possibility set
and considers its frontier as the efficient frontier made according to the non-
domination condition, see, for instance DE Witte and Marques [19].

For this approach, some ideas can be adopted from research carried out in the
field of Multiple Criteria Decision Making (MCDM), especially in Multiple Ob-
jective Linear Programming (MOLP). In MCDM /MOLP, one of the key issues
is to provide a decision-makers with a tool, which makes it possible to evaluate
points lying on the efficient frontier. It has been shown that the MOLP and
DEA models have a similar structure, see, for instance Hosseinzadeh Lotfi et
al. [29]. Thus, theory and approaches developed in MOLP for evaluating solu-
tions on the efficient frontier can also be applied in DEA.

This is important that because the dimension of the outcome set is smaller
than m+s and the dimension of the decision set is n+m+s-1, generating all
or portion of outcome set is expected, in general, to be less the demanding
computationally than generating all or portions of the decision set. The identi-
fication of DEA efficient units under various DEA models is equivalent to the
identification of the lowest input and the highest output solutions within the
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production possibility set for the corresponding multi-objective programming
problem. The DEA-efficient DMU corresponds to the pareto efficient solution
(or non-dominated solution). From this point of view, just as in the discus-
sion of multi-objective programming, the set of all extreme points of variable
returns to scale (VRS) models in DEA have significant values in the field of
DEA, See, for instance Benson [7], Rockafellar [40]. In this article, we the use
outer approximation algorithm for generating the set of all efficient extreme
points of models DEA with VRS as proposed by Benson [8] and to do so, we
use all efficient extreme points of the outcome set of the MOLP problem. The
organization of this paper is as follows, in Section 2, we present literature re-
view. In Section 3, we present MOLP problem and its relation to models DEA
with VRS, and we provide the theoretical foundation of the outer approx-
imation procedure. We summarize some relevant results concerning efficient
extreme points of the MOLP problem. Section 4, provides a detailed statement
of the algorithm; additionally, a small example problem is solved for illustra-
tion purpose. Section 6, provides a computational experiment and statistical
analysis. Some concluding remarks are given in the last section.

2. Literature Review

In recent years, there have been a number of studies discussing the relation-
ship between DEA and MOLP models. In their article, Doyle and Green [20]
showed that DEA is an MCDM method. Alene et al. [1] used MOLP problem
solving methods to apply the decision makers a priori knowledge in DEA prob-
lems. Golany [26] presented a data envelopment analysis model with a MOLP
structure and used interactive MOLP methods to solve the model. Their model
helped the decision maker (DM) to allocate a set of inputs, such as resources,
on the efficiency frontier based on the level of outputs. Joro et al. [34] revealed
that DEA problems have a similar structure to MOLP models; therefore, to
solve the DEA models, we can use the corresponding reference point models in
MOLP.

Wong et al. [46] proposed an equivalent model between DEA and MOLP and
demonstrated how to solve a DEA problem interactively, without any prior
judgment, by transforming a MOLP formula. Using interactive MOLP meth-
ods, they searched for the most preferred solutions (MPS) points on the effi-
ciency frontier along with resource allocation and target setting according to
the DMs a priori knowledge; then, they used interactive approaches such as
G-D-F, Steam and Stom to solve the model and finally, engaged in a compari-
son of results. Yang et al. [47] attempted to demonstrate the use of interactive
MOLP methods for target setting in DEA and illustrated the relationship be-
tween output-oriented DEA dual models and formulation of maxmin preferred
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points in MOLP models; they used the interactive projected gradient approach
to identify the efficient units. Malekmohammadi et al. [39] focused on the topic
of target setting in DEA using MOLP problems; they extended the models pre-
sented by Yong et al [47] to simultaneously reduce the final inputs and increase
the final outputs and showed that instead of solving n models, we can set our
targets according to the DMs preferences by solving only one model.
Hosseinzadeh et al. [28] evaluated the relationship between output-oriented
dual models in DEA and MOLP models. In their study, they showed how a
DEA model can be solved interactively by transforming a MOLP formula; in
this regard, they used the Z-W approach to apply the DMs a priori knowledge
in the performance process. Ebrahimnejad et al. [21] proposed an interactive
MOLP method to identify the target units in DEA models in the presence of
undesirable outputs; they extended the relationship between BCC models and
the reference point model in MOLP toward a simultaneous and interactive in-
crease in desirable outputs and decrease in undesirable final outputs based on
MOLP models.

The main purpose of MOLP problems is to find the set of efficient solu-
tions. These solutions are Pareto optimal solutions that can simultaneously
optimize all objective functions. Among these units, the efficient extreme units
are the most important ones; these would be observed, real units and their
performance would determine the performance of other units in the system.
We may search for solutions also on the efficient frontier in DEA. Since the
outcome set has a much simpler structure and smaller size than the decision
set, a handful of researchers in recent years have begun to turn their attention
to the mathematics and tools for generating all or portions of the efficient out-
come set, rather than the efficient decision set, for the MOLP problem. See, for
instance, Banker et al. [2], Banker et al. [3], Benson [4], Benson and Sayin [10],
Dauer and Liu [17], Dauer and Saleh [18], Dauer and Gallagher [16], Dauer [14,
15]. Various methods have been presented for identification of these units, out
of which we can mention the approaches proposed by Chon [13], Evans [22],
Goicoechea et al. [25], Luc [38], Sawaragi et al. [41], Steuer [43], Yu [48] and
Zeleny [51]. One of these approaches is the vector maximization method, see
Kuhn and Tucker [37]. We can use this method to determine all efficient points
in a decision set, see Benson [5], Isermann [31], Bitran [11], Villarreal and Kar-
wan [45], Kostreva and Wiecek [36]. The problem with all those methods of
determining efficient points in the feasible region and the decision set was too
many calculations and the presented approaches were not convergent in most
cases; in this relation, when the problems dimensions, variables and constraints
increase, the set of efficient points would expand in MOLP problems and we
would face a difficult process for finding the efficient set. Since the outcome set
has a simpler form and a smaller region compared to the decision set, it would



USING THE OUTER APPROXIMATION ... 37

be easier to find the efficient points in the outcome, see Steuer [44], Dauer and
Liu [17], Dauer and Saleh [18], Benson [4, 6], Dauer [14, 15], Gallagher and
Saleh [24], Dauer and Gallagher [16], Horst et al. [30].

Therefore, instead of directly solving the DEA models, we present a DEA model
with a MOLP structure and use the MOLP models outcome set to specify the
efficient extreme units. To find the set of efficient units in the outcome set, we
can employ methods such as the outer approximation algorithm [8] and the
weight set decomposition algorithm [9]. In this research, we make use of the
outer approximation algorithm, which is a convergent algorithm using little
calculations based on linear searching and linear programming techniques. The
following methods have been proposed to find DEA efficient points using effi-
cient surfaces in MOLP.

Jahanshahloo et al. [33] presented a method for finding the piecewise linear
frontier of the production function in data envelopment analysis. Korhonen [35]
introduced another method to search for the efficiency frontier in DEA. In an-
other study, Jahanshahloo et al. [32] proposed an approach for finding strongly
efficient hyperplanes of the production possibility set (PPS) in data envelop-
ment analysis. Sayin [42] presented an algorithm for determining efficient faces
in DEA. Hosseinzadeh et al. [27] proposed a new method for finding the set
of efficient surfaces in DEA based on MOLP models; in this relation, they
introduced a linear programming model that could find the efficient defining
hyperplanes of the production possibility set. The approach proposed in the
present paper is a new and distinguished method comparing to previous ap-
proaches. The advantage to our approach is that this method can determine
all efficient extreme points of the production possibility set in the outcome set
through little calculations.

3. Structural Similarities Between MOLP and
DEA

Assume that we have n observed decision-making units as DMU;,j =1,...,n,
where each DMU consumes an m-vector input to produce an s-vector out-
put. Suppose that X7/ = (27,23,...,27 )t and Y7 = (y],y3,...,yl)" are the
vectors of inputs and outputs, respectively, for DMUj,j = 1,...,n, in which
it has been assumed that X7 >0, X7 20 and Y7 > 0, Y7 #£ 0. A; is the ref-
erence weight for DMU;,j5 =1,...,n. X = (x1,%2,...,Zy,) € E™ represents
the input variable vector. Y = (y1,y2,...,ys) € E° shows the output variable
vactor. We define the production possibility set of data envelopment analysis
with VRS as follows:
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d
Ajxy <
1

n
Tv:{(X7Y):(xla"'axmayla"wys)|Z)‘jyz >y7‘7r:17"'7s7
Jj=1 J

n

roi=1,...,m > N =1,%>0j=1,..,n}
j=1

We must note that the 7T}, set includes all input and output vectors (X,Y") that
apply to the sets constraints.

Definition 3.1. DMU, = (X°,Y°) € T, is called an efficient point if and
only if there is not an (X,Y) € T, such that (X,-Y)" < (X°,-Y°)" and
(X,-Y) # (—=X°,Y°)

Definition 3.2. DMU, = (X°,Y?) € T, is called a weak efficient point if and
only if there is not an (X,Y) € T, such that (X,-Y)! < (X°,=Y°)".
Consider the following MOLP problem

min C!'Z (1)
st. ZeR={Z|AZ<b,Z > 0}.
where C' = (CIT,CQT,...,CPT) is a p x n matrix, ¢/ = (¢, ¢z, .., ¢ip) € E™,

i=1,...,p, represent the multiples of the i-th objective function in the MOLP
problem. E™ shows the Euclidean space. A is the technology matrix includ-
ing all variable multiples in problem (1). A is an m x n matrix, n > m and
rank(A)=m,

b= (b1,ba,...,by) € E™. Z = (21,2F,...,2T) € E", Z € R™ represents the
decision-making variable vector in the MOLP problem and R shows the feasible
region of the MOLP problem. The Pareto solution and weak Pareto solution

of (1) are defined as follows:

Definition 3.3. Z € R is called a Pareto solution of (1) if there does not exist
Z € R such that CT'Z <CTZ, CTZ +CT7Z.

Definition 3.4. Z € R is called a weak Pareto solution of (1) if there does not
exist Z € R so that C'Z < C'Z.

Put Z = (X,Y,0) = (T1,- s Ty Y1y e - 5 Usy Ay o5 An), X € E™ Y € E¥,
A€ E™, CJT = —e?,j =1,...,m, C’]T = e;f, j=m+1,....,m+s, ef €
E™Fstn s a vector whose jth element is one and other elements are zero,
c=(t,ct,. .. cr. ), and

y ~m-—+s

n n
R:{(xla"'axmayla"'ay&)‘la"'a)‘n) | Z)‘jyi >y7’77ﬁ:15"'a8az)\jxg <
j=1 j=1

roi=1,...,m > X =1,X2>0,j=1,..n}
j=1
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Then problem (1) is converted to

max {75513 vy TTmy Y1y - ays}
s.t. Z)\jyr Yr, r=1,...,s,
j=1
n
Z )\sz < Ty, 1_]-7 H11L,
2 @
n
Aj =1,
j=1
)\] > 07 J = ]-a y 1,
.'I,'l207 2217 1, y'r‘>07 T:17 ) S
In model (2), vector(z1,...,Tm,¥y1,-..,Ys) is the variable vector for inputs

and outputs; we can obtain the values of this vector by solving model (2).
Note (X,Y,)) is a feasible solution of problem (2) while (—X,Y) is a vector
belong to objective function space of problem (2). By considering Definition 3.3
(X*, Y™, \¥) is called a pareto solution of (2) if there does not exist (X,Y,\)
such that (—X*,Y*) < (—=X,Y) and (—X*,Y™*) # (-X,Y).

Theorem 3.5. Let (X*,Y*) € T, then

(i) (X*, Y™, X*) is a Pareto solution of (2) if and only if (X*,Y™) is an efficient
unit in T,,.

(it) (X*,Y*, X\*) is a weak Pareto solution of (2) if and only if (X*,Y*) is a
weak efficient unit in T,.

Proof. (i) Let (X*,Y™*, \*) be a Pareto solution of (2). We show that (X*,Y™)
is an efficient point in 77,. By contradiction, suppose (X*,Y™) is not an efficient
point in T, then there is an (X,Y) € T, such that (=X,Y) > (—X*,Y*)
and (—X, ) (—=X*,Y*). Since (X,Y) € T,, there is a A € E™ such
that (X,Y ,A) is a feasible solution of (2). Since (—X,Y) > (—X*,Y*) and
(=X,Y) # (—X*,Y*), then we have a contradiction; therefore, (X*,Y*) is an
efﬁClent point in T,

Now suppose (X*,Y™) is an efficient point in T;,. Since (X*,Y™*) € T,,, there is
a A* € R" such that (X*, Y™, \*) is a feasible solution of (2). AS (X*,Y™) is an
efficient point in T, there is no (X,Y) € T, such that (-=X,Y) > (-X*, V™)
and (=X,Y) # (—=X*,Y™*). Since, there is a vector A for (X Y) € T,, such
that (X, Y, ) is a feasible solution of (2). Regarding the above relations there
isno (X, Y, ) that is a feasible solution of (2) such that (—X,Y) > (- X*, V™)
and (—X,Y) # (=X*,Y*). Therefore (X*,Y* \*) is a Pareto solution of (2),
and the proof iscompleted.

(ii) Proof is similar to (i). O
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Theorem 3.6. Let V= = {(—z1,..., —Tm, Y1, -, Ys) |
(T1y ey Tmy Y1y -5 Ys) € Tu}, (V= is called the outcome set for MOLP) then
dim (V=) =m+s.

Proof. Since C = (CT,C3,...,CL, ) and CT = —e], j =1,...,m, C] =
—e]T,j:m—l—l,...,m—Fs.Rank{ €lyevy—CmyCmily---,Estm} = M~+ s and

T, # 0, then dim (V=) <m+s. O

Theorem 3.7. The optimal values of problem (2) are finite.

n n
Proof. Since Z)\jyz >y, r=1,...,s and Z)\j =1, X20,j=1,...,n,

Jj=1

then y,.,r = 1,...,s are finite. Similary fZij{ > —x;,, 1 =1,...,m, and

j=1
n

Z)\j =1,);>20,j=1,...,n, then (—x;),i =1,...,m are finite, Therefore,
j=1

the optimal values of problem (2) are finite. O

By using the observed DMUs, For each i = 1,...,mand r = 1,...,s, we put
vAL = —max{z] | (@15 Ty Y1y ys)) €T, 5 =1,...,n}

AL _ ;
vl =min{yl | (x1,. .., Tm, Y1, -, Ys)’ GTv,j—l ,n}.
Vector vl = (v{\F vl Lol VAL oAl m+s) € R™*¢ is called the

anti-ideal point of outcome set for problem (2). Let © € R™** satisfy © < vAF,
we define V' as follows:

V={v=(v1,v2, -, Vm;Vmt1,--,Umts) | D <0<

(*xla ey TTmy Y1, - 7ys)7 for some (xla sy Tmy Y1y - 7ys) S Tv}

Theorem 3.8. Set V is a nonempty, bounded polyhedron in R™* of dimension
m + S.

Proof. Since ¢ < v4 < (=X,Y),(X,Y) € Ty, T, # 0, by Theorem(3.3), the
definition of V implies that V is a nonempty, bounded set in R™"*. We may
write V = Vi N {V= 4 V4}, where

={v e R"* | v >d}and Vo = {Z € R™"* | Z < 0}, Since V4, Vs,
V= are polyhedral sets as proposed by Dauer and Gallagher [10], therefore V/
is a polyhedral set. Since v < (—X,Y),(—X,Y) € T, IntV # O(IntV show
interior points set of V), by Theorem (3.2) the dimension of V' is m + s, and
the proof is complete. [

A point v° € V is called an efficient (or admissible) point of V' when no v € V
exist such that v > v and v # v°. When no v € V exist such that v > v°, then
v° is called a weakly efficient (or weakly admissible) point of V. Let Vg and
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Vw e denote the set all efficient and weakly efficient points, respectively of V.
Theorem 3.9. Let V7 be the set of efficient point of V= then Vg = VEg.

Proof. Suppose that (—X,Y) € V5 but (—X,Y) does not belong to Vg, then
by the definition of Vi there exists a point v € V such that v > (—X,Y).
Since v € V , there exists a point (X/,Y/) € T, such that v < (—X/,Y/),
therefore (—X,Y) < (=X',Y"). This contradicts (—X,Y) € V5 , therefore
v=(-X,Y) € Vg.

Now suppose v € Vg, to show that v € Vj, we show that v = (—X,Y") for some
(X,Y) €T, and (—X,Y) € EF (efficient points of outcome set for MOLP).
Since v € V, therefore v < (—=X,Y) for some (X,Y) € T,, since v € Vg
and (—X,Y) € V then v = (=X,Y). Let (X,Y') € T, satisfy (—X,Y) <
(-X",Y"), (-X,Y) # (—X',Y"), then by the definition of V | since vAL <
(=X, Y"), we have (=X, Y') € V , then v = (—X,Y) does not belong to Vs,
but this is a contradiction, therefore v € V; and the proof is completed. O

Let

s m
TS ST o 5
r=1 =1
s.t. <x17$25"'7x+’may17y27"'7ys)ETv-

By Theorem(3.3) 3 is a finite number. If (X, —Y) is an optimal solution of
(3), then (X, —Y) is an optimal solution of (2), (we solve problem (2) by the
wighthed-sum problem method (by choosing w; =1,

j=1,...,m+s), see, Zeleny [48, 49]).

Fori =1,....m+s,j=1...,m+s, weput ¢° =0 = (01,...,0m4s) =
(=X,Y), o < vAL and ¢/ = (¢, 4, q, -, 4qs) such that ¢/ = 0; for

m-+s

S m
i#jand ¢ =B+0;— 0 =B+0;— (O Gr— > &) fori=j.
r=1 j=1 i=1

Theorem 3.10. The Convex hull of {¢°, q1,...,¢™ %} is an m+s—dimensional
stmplex and contains V.

Proof. First we show that {¢°,ql,...,¢™"*} is a affinely independent, since
S m

(@ —q°); = 0fori# jand (¢ —¢°) = B —) v+ Y & fori=j
r=1 i=1

S m
t=1,....m+s,j=1,...,m+s, we put v :ﬁ—zg,.—i—z:j:i, therefore,

r=1 i=1

m-+s

~v > 0 (by the definition of /3, this is evident), Let Z cj(qj —¢°) = 0 then
j=1
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m—+s

Z cj(@ —q°) = (c17,¢27, ., Cmesy) = 0; since v # 0, therefore, ¢; = 0,
j=1

j=1,...,m+sand {¢° ql,...,¢™"*} is a affinely independent.

To show that the convex hull contains V', suppose © € V. Since

{g1 — ¢° ..., q™"* — ¢°} is a lineary independent set, hence it is a basis for
m-—+s

R™*5; therefore, there is a” = (ay,...,Qmys) such that Z a; =1, a; >0,

j=1
m-+s m-—+s m-—+s

j:I,...,ersandT)qu:Zan ) IonzJ>1 wehavez
=1
m—+s m—+s m-+s m+s

],Za]’y VZaj>fy,butwehaveZv q maXZ’U q

m+s m-+s

max( Z v — Z 0;) = [ — Z Ur + Z Z; = =, which contradicts the previous
: = = ;
m-+s m-+s m-+s

paragraph. Hence Z aj<land o= (1— Z a;) @+ Z ajq , therefore,
Jj=1 j=1

v € S (S is the convex hull of {¢°, ¢1,...,¢™"*}). Then we showed that V C S

and the proof is completed. [J

Theorem 3.11. S may also be written as followmg

S={(-X,Y) e E™** | (-X,Y) < (-X,Y) Eyr ExZ\
Proof. Suppose that v € S, then
m+s m—+s m+s m+s

v=) a5 =1 Zang+Zaq—q+Z (@ — %) = (X, V) +
j=0 j=1

(017, 027, s Omgs) > (=X, Y) =
Therefore v > (—X,Y). On other hand, we havae

m+s m—+s

Z vj = Z a;y = v < f3, therefore
r=1

i=1

Pe{(-X,Y) € BM | (<X, V) > (-X,7) Zyr sz <

Now suppose that (—X,Y) € {(-X,Y) € Rm“‘s | (—X, Y) (—Xﬂ?),

Yoy =D i < B Letay = (FEE) = 1om, amyy = (B5H), j =
r= i=1

m—+s _ ~ s _ ~

1,...,8 0 < a; <1, then o=y (—L ) 4 277y We have
T NE LN U

=7 =1
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—.f‘j-i-ii'j > 0, ﬂj—:l}j > 0, but ZQT—ij—(ZﬂT—ZQj) < B -

=1
s m-+s -fj“rl'j
(Z U — ij = +, therefore Z a; = Z )+ Z
j=1 j=1
) m+s
By the definition of ¢/, j = 1,...,m + s, we have ¢° —|—2an —¢°) =
Jj=1
¢+ (y, 007 amyy) = (X, V) +
(—1‘1 +SC1,.”’ —1'm+1'm’y1 _yl,.”’ys_ys) __ (_X’Y/) + (—X,Y)—l—
Y Y Y Y
o o m-+s m-+s m-+s
(-X,Y) = (=X.,Y), then (— Z ajq; = (1 — a;)q° + Z a;q;,

therefore v = (- X,Y) € S. O

Theorem 3.12. Let (—X,,,Y,) € Int(V) and suppose (—X,Y) > (—-X,Y),
(—X,Y) does not belong to V and (—X",Y") = (—(X + M*(X, — X)), Y +
A (Y, —Y)) , where A* is the solution of problem (4) then (—X",Y") € Viyg.

max A

st (—(X +A(X, — X)), Y + A(Y, —Y)) € V. )

Proof. Suppose (—X*,Y™) does not belong to Viyg. Then we may choose a
point (—Xo,Yp) € V such that (—Xo,Yp) > (X", Y™). Since (— Xp,Yp)
IntV, then (—X,,Y,) > (— X,Y), on other hand, we have (—X,Y) > (-=X,Y),
then (—X™, V™) > (—=X,Y).

Put di = min{(yro — y2), (—xio + ) |r=1,...,8,,i=1,...,m},

dy =min{(y¥ — §r), (—z + &) |r=1,...,8,i=1,...,m}.

Choose € > 0 such that € < dy and € < d2. Let N (—X",Y") = {(-X,Y) €
R™ ||| (ZX,Y) — (—X,Y") ||< e}. Suppose

Z € N (—X",Y") then —e < z,—y¥ < eand y¥ —e < 2z, < y¥+e. Since e < d;
then y.o —yy > €,y —yr < ethen, §, < 2r < yYpo, 7=1,...,51=1,...,m
Therefore Z € V. Similarly we show that —#; < 2, < —2%, i =1,...,m. We
conclude that N(—X™,Y™) C V. Since € > 0, this contradicts the fact that
(=X, Y™) belong to the boundary of V(consider problem(4)) so the proof is
complete. [

From Rockafellar [40] and Yu [48] and the weighted-sum problem, F' is a face
of V if and only if F' is equal to the set of the optimal solution set of following
problem.
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S m
max Zuryr - Z Ui4sTq (5)
r=1 =1
st. (T1,%2, o, Ty Y1, Y2, -+ 5 Ys) € Ty,

for some(tuy, U, . .., Us, Us i1, Ust2y - - -, Usim) € RET™.

The variable vector (u1,usg, ..., Us, Ust1, Ust2, .- -, Ustm) €XPresses the corre-
sponding multiples of the output and input vector

(Y1,Y2, -+ s Ys, T1, T2, « - - , Ty ). We know that (=X, Y?) is weak efficient if and
only if the optimal value of the following problem is zero. (It is the clear)

max ¢
st. (=X,Y)—e
(X,Y) eT,,

Xv, YY), (6)

t> (-
t>0.

The dual of the linear program (6) is as follows:

s m
: § w § w
min — UrY, + Uj+sT; + Um+s+1

r=1 =1
st. —up+wv. 20, r=1,...,s,
us+i_vs+i>0a t=1,...,m,

Z Uy + Z ulJrs = (7)

- Z ’Uryr + Z Uersx + Um+s+1 2 O
Uy >O, () O7 j=1...,m+s.
By the duality Theorem of linear programing, since the optimal value of (6) is

zero, problem (7) also has an optimal value equal to zero, therefore Z uryy —
r=1

m
* w * _
E Uiy Ty — Upaerq = 0 and

(uf,us, ..., ut us_H, Uiy ooy Woym) =0,

(ul,us, ..., ul, ulyy,uiig,. .. uty,,) # 0, From Falk and Hoffman [23], w

know that the optimal values of problem (5) correspond to weakly eﬁiment

faces of V for (uy,ug, ..., Us, Ust1, Ust2y -y Uspm) =

S m

(ul,ub, ol ul g, Ul g, ., Ui, ,,). Inequality Z u:yr—z Uj g Ti— U g1 <
r=1 i=1

0, construct inequality cuts needed in the outer approximation algorithm for

generating all efficient extreme points of V.
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4. Generating All Efficient Extreme Points of
the production possibility set

We apply the outer approximation algorithm for generating all efficient extreme
points of the outcome set of problem (2). In what follows, all efficient extreme
points of the production possibility set of the DEA with VRS are essentially
immediately available upon termination of the algorithm, by converting points
(—X,Y) in the outcome set of problem (2) to equivalent points (X,Y) in T, .

The Outer Approximation Algorithm applied as follows:

The Initialization step. Compute a point (—X,,Y,) € Int(V).

(=Xp,Yp) € E™** may be set equal to any strict convex combination of v4L
and (—X*,Y™*), where (—X*,Y*) is any optimal solution to the linear pro-
gram (6) with (—X",Y%) = (-=X4L YAL) = vAL and construct the m + s-
dimensional simplex S = S containing described in Theorems (3.6) and (3.7).
Set S is a m+s-dimensional simplex consisting of the vertices of V', as described
in Theorems (3.6). Store both the vertex set S given in Theorem (3.6) inequal-
ity representation of S° = S given in the Theorem (3.7). Set k = 0 and go to
iteration k. Iteration k, k > 0, See Steps 1 through 4 below.

Step 1). If, all vertices of S* belong to V, then stop S* = V. Otherwise, choose
any vertex of S* such that, it does not belong to V, for example (—X*, Y*)
and continue (To test a given (—X¥ Y*) is membership in V, one may ap-
ply the phase-1 procedure of the simplex method to problem (6) by putting
(_)(w7 Yw) — (—Xk, Yk))

Step 2). Compute (—X",Y™") description in the Theorem (3.8) by putting
(_va) = (_Xkayk)'

Step 3). Set S**' =S¥ N{(-X,Y) € R™** | ZU:yr—Zufﬂ% S Upngsia}
r=1 i=1

where (ul,u3, ..., ul, ui 1, us o, ., U} ,,) is any dual optimal solution to the
linear programing (7) with (—X",Y™) that have been calculated in the step

(2).

Step 4). Using vertex of S* and method that it supposed by Falk and Hoffman
[23] and definition of S**1 given in Step (3), determine all vertex of S¥*!, set
k =k + 1 and go to iteration k.

By definition of S¥*1 in step (3) since (—X*,Y*) don’t belong to S¥*! and
V C S¥+1 we conclude that algorithm generates distinct polyhedral S7, j =
0,1,...%k so that V.c ¥ ¢ §%=1 ... .c S' ¢ SY. This implies that the
algorithm must be finite and it must terminate in some iteration k& > 0. S* is
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a m + s-dimensional simplex including the vertices of V| formed in each stage
k.

Theorem 4.1. Let k > 0 denotetheiteration number in which S*¥ = V and the
outerapproximation algorithm terminate. Let F = {(—X,Y) | (—X,Y") belong
to vertex set of S¥ and (—=X,Y) > (—X,Y)} then E is identical to the set of
all efficient extreme points of V=.

Proof. From before we have S¥ = V = {(-X,Y) € R™** | (-X,Y) >

fX,Y),ZyT sz g8rn (N fL%)Hn)andforn:O,l,...,kfl,Hn:

{(-X,Y) € R+ | Zu;’yr - Zu’sﬂmi — Va1 <O, (X,Y) €T, ).

(uf, .. ug,uly g, ... ,_ ?+m) is aI;y dual optimal solution to the linear program-
ing (6) W1th (—Xv Yw) in step 3 Notice also that
{(=X € R | ZU Yr — Zus—i-ixi - m+s+1 <0,(X,Y)eT,} C Vg

Suppose that (—X Y) €k, then ( X,Y) are belong to vertex set of S¥ =V
and (—X,Y) > (=X,Y), therefore at last, m + s of the inequalities below,
must hold as equatlons at (—X, Y) =(-X,Y).

Zyr Zml ﬁZu Yr — Zusﬂxl Umntst1,m=0,...,k—1.

That 1mphes that (— X V) e VWE We show (—X,Y) € Vg, by contradiction,
suppose (—X,Y) dose not belong to Vg, therefore, there is (—X,Y’) such that
(_Xv)_/) < (_X7Y)> <_X’Y) 7é (_X’ Y)

Let Iu = {j [y =4} he = {j |y # 4 Ia = {j | z; =3},
122 = {] | X 7é Q_Zj}. For _] S 112 let n; = yY; — gj and fOI'j € 122 let
m; = —xj +T; > 0.

We choose M > 0 such that gj a7 > Ui T + = 3t < Z; and define y7° = y;
for j € Iy and Y =9y — 31 for j € T2 and 7 = I, for j € I, and
x?ew =1T; + 7 fOI‘] € Is.

Then y; =n; +y; >0for jeln,yj=yjforje i and zj = —m; +z; >0

for j € Io1, x; = x; for j € Is.
M

new

Then g; = 37747 + ﬁyj, ;= M]Vfrl 7 + M+1 x; therefore (— )E' Y) =
wrrn (XL Y) + g (X7, Yer). We have 0 < gy < 1 then (—X,Y) is

a strict convex combination of (—=X,Y) € V and (—X"%,Y"¥) € V, that
is contradiction (because v = (—X Y) is belong to vertex set of V = S* ).
Therefore (—X,Y) € Vg, from Theorem (3.5), we have(—X,Y) € V5. Since
V= CV then (—X,Y) is an efficient extreme point of V=.

Now suppose that (—X,Y) is a efficient extreme point of V= and (—X,Y)
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don’t belong to all efficient extreme points of S*, therefore, we choose

(—XL YY), (-X2Y?)eVand a € R,0 < a < 1 so that

(—=X,Y) = a(-X1, Y1) +(1-a)(—X2,Y?). By solving problem (2) by wighthed-
sum problem method (see, Zeleny [49]), and from Theorem (3) that it proposed
by Benson [7], we conclude that (—X,Y") is an efficient extreme point of the
polyhedron V=.

We may select a point (uy, Us, ..., Us, Usi1, Usi2, .- Usim) € RS

(Up, Uy ooy Usy Us 1y Ust2y -« Usym) > 0, such that (—X,Y) is the unique op-
timal solution to the problem

s m
max Z UrYr — Zui+sxi (8)
s.t. (71:1’71‘23'"77xm7y17y27"'7y5) ev.

From the definition of V, this implies that (—X,Y") is also the unique optimal
bOluthIl to the problem (8) since (— X1, Y1), (—=X2,Y?) € V therefore
m

Z uryr Z ul+§a: Z Up Y — Z Ui+s2; and
—
S Zm
Z Uryr Z UH-G'T X Z UrYr — Z Uit sT5-

Smce 0< a < 1 these 1nequaht1es 1mply that
Zuryr Zuz+sx 1 -« Zuryr ZUH-‘;I \

Zuryr - Zuiﬂwi. Since (—X,Y) = a(—X1, Y1) + (1 — a)(—=X2,Y?) the
i=1

S
left-hand-side of the previous inequality equals Zuryr — Z UjtsT;, yielding
r=1 i=1
a contradiction. Therefore, (—X,Y") belong to all efficient extreme points of
S* must be true, so that the proof is complete. [

5. Application and Discussion

In this section, we illustrate the problem by two numerical example.

Example 5.1. Consider the case where there are seven units with an input
and an output whose details have been given in the following Table.
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Table 1: The data of the seven DMUs.

DMU; DMU, DMUs DMUs DMUs DMUs DMU;
Inputs 1 1 2 4 5 6 3
Outputs 1 3 5 6 7 8 2
0scc 1 1 1 0.83 0.93 1 0.33
Efficiency status | non-extreme extreme extreme - - extreme -
bt
(6,8
8
7 /
&
(2,5)

5
4

13
. (1.3)
2

1.3
§ (1.1)
EI 5 T T T T 1
0 5 10 15 20 25

Figure 1. The efficiency frontier of production possibility set.

The corresponding MOLP is

max{*xlayl}
st AL+ Ao+ 2A3 + 44X +5A5 + 6 + 37 < a1
AL+ 33X + 53+ 64+ TA5 +8X¢ +2M7 = 1
AMFl+A+MM+ A5+ X+ A =1
A1 20,22 20,23 20,0 20,05 20,
Ao =2 0,A7 20,21 20,y1 > 0.

Where the efficiency frontier of production possibility set of above example is
shown in Figure 1.
In the initialization step of the algorithm have

Usz—max{x{ li=1,,...,7} = —6,
val = min{y] | j=1,,...,7} = 1 then vAl=(vy,v3) = (—6,1).

We select (—X, Y) = (—6.5,0.5). By definishition of V', we have
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V ={(v1,v2) | 0.5 < vy < y1,—6.5 < v; < —xy, for some (z1,y;) belonging to
the feasible region of problem (9)}.

Put k = 1. If we solve problem (3), we would obtain § = 3.

Therefore S° = {(—z1,y1) | 0.5 < 91, 6.5 < —x1, y1 — 21 < 3}. As shown in
Figure 2.

(25
ch

[-6.5,9.5 18

N
N
o
B,
N

]

oo

=t

()]

(¥}

[#5]

Faa

Hs

(-6.5,0.5 ) Ny 25.05)

e

The verte:
(65,00 B 6 -4 -2 0 2 4

PR N 1 ~ = ~ - 1 - 0 ~ - 0 ~ ~ = -

Figure 2: The S set in (z1,y1) space.

The vertexs set of S° given in Theorem (3.6) are

{(-6.5,0.5), (—6.5,9.5),(2.5,0.5)} which are computed as follows:

¢° = (-6.5,0.5),q1 =3—-6.5+6=2.5,¢1 =0.5,¢3 = —6.5,¢3 =3+0.5+6 =
9.5, therefore ¢ = (2.5,0.5) and ¢ = (—6.5,9.5).

In step (1) of the algorithm, since (-6.5,9.5) does not belong to V, we put
(X1, Y1) = (—6.5,9.5).

We go to step (2). If we solved problem (6) by (=X, Y")=vAL=(v;,v5) =
(—6,1) we would obtain (X*,Y™* t*) = (2,5,4).

We put (—X,,Y,)=0.5 (=X*,Y*)+ 0.5(v{l, v4)=0.5(-2,5)+0.5(-6,1), then
(7Xp, Yp) = (747 3)

Now we solved problem (4), we put (—X,Y) = (=X1,Y1) = (—6.5,9.5) and
(—X,,Y,) = (—4,3), we would obtain A* = 0.76 and (—X™,Y") = (-5.9,7.92).
As shown in Figure 3.

We solved problem (7) by (-X%,Y%) = (—5.9,7.92). , we would obtain u} =
0.57,u5 = 0.43,v3 = 2, then the inequality cut is as follows.

0.57y; — 0.43z; < 2.

We go to step (3) and we organize
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Figure 3. The (—X,,Y,), (=X™,Y"), and vl in (z1,y;) space.

Sl = {(—xl,yl) | 0.5 < Y1, —6.5 g —T1,Y1 — T1 S 3,057:(/1 — 0431‘1 < 2}

As shown in Figures 5.4 and 5.5. The vertex set of S given in the Theorem
(3.6) are {(—6.5,0.5),(—2,5),(2.5,0.5),(—6.5,8.375)}. We put £k = 2. Since
(-6.5,8.35) does not belong to V, we put (—X2,Y?) = (—6.5,8.375).
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.Q-;aa]
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i}
T T T T o T 1
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Figure 4. The S* in (z1,%1) space.



In the next step, we solved problem (4), we put (—X,Y) = (-X2,Y?)
(—6.5,8.375) and (—X,,,Y,) = (—4,3), we obtain \* = 0.924 and (—X™,Y™")
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Figure 5. The S? in (x1,%;) space.
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Figure 6. The S% in (x1,%;) space.
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(—6.326, 8). We solved problem (7) by (—X™,Y™") = (—6.326,8), we would ob-
tain uj = 1,u3 = 0,v; = 8, then the inequality cut is as follows.

Y1 < 8.

We go to step (3) and we organize

52 = {(—z1,91) | 0.5 < y1,—6.5 < —z1,y1 — 21 < 3,0.57y; — 0.4321 < 2,41

8}.

<

X
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The vertexs set of S? given in Theorem (3.6) are

{(-6.5,0.5), (—2,5), (2.5,0.5), (—6.5,8), (—6,8)}.As shown in Figure 5.5. We
put k = 3. Since (2.5, 0.5) dose not belong to V, we put
(—X3,Y3)=(2.5,0.5). In the next step, we solved problem (4), we put (—X,Y) =
(—X3,Y3) = (2.5,0.5) and (—X,,Y,) = (—4,3), we would obtain \* = 0.462
and (- X", Y") = (—1,1.8462). We solved problem (7) by (—X“,Y%) =
(—1,1.8462), we would obtain uj = 0,ul = 1,v5 = —1, then the inequality cut
is as follows.

T1 < —1.

wn

Figure 7. The S* in (x1,%;) space.

We go to step (3) and we organize S® = {(—x1,y1) | 0.5 < y1,—6.5 < —x1,91 —
x1 < 3,0.57y; — 04321 < 2,91 < 8,21 < —1}.

As shown in Fig 6. The vertexes set of S® given in Theorem (3.6) are

{(76'57 05)’ (*13 4)’ (*]-a 05)7 (*2, 5)7 (*67 8)7 (*6'57 8)}

We put k = 4. Since (-1,4) does not belong to V, we put (—X*,Y?) = (—1,4).

In the next step, we solved problem (4), we put (—X* Y*) = (~1,4) and
(—X,,Y,) = (—4,3), we would obtain A* = 0.857 and (—X",Y™) = (—1.429, 3.857).
We solved problem (7) by (—X™,Y") = (—1.429,3.857), we would obtain
uj = 0.3333,u5 = 0.6666, v; = 0.3333, then the inequality cut is as follows.

y1 — 221 < L.

We go to step (3) and we organize S* =
—xl,yl—x1<3 057y1 043$1 <2 Y1 X 8
As shown in Figure 7, the vertexes set of
{(-6.5,0.5),(-1,3),(-1,0.5), (-2,5), (—6,8),

{(=z1,51) | 0.5 < y1,-6.5 <
I \—1 y1—2(E1 <1}

S* given in Theorem (3.6) are
(—6.5,8)}.

4
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Since (-6.5,0.5), (-1,0.5) and (-6.5,8) have the same components to V = (—X,Y) =
(—6.5,0.5), then they do not belong to V=. Therefore, the vertexes set of Vi
are as follows.

{(-1,3),(—2,5),(—6,8)}. We obtain the vertexes set of T, by converting (—z1, y1)
to (x1,y1) as follows:

(1,3),(2,5), (6,8).

The algorithm is terminated.

Example 5.2. Consider the case where there are five units with an input and
two outputs whose details have been given in the following Table.

Table 2: The input and outputs of the DMUs.

DMU, DMU, DMUs DMU, DMUs
Inputs 1 1 1 1 1
Outputl 6 5 2 3 2
Output2 2 3.5 5 3.5 2
0scc 1 1 1 0.833 0.5
Efficiency status | extreme extreme extreme - -

The corresponding MOLP is

max {—Z1,y1,Y2}
st A+ A+ A3+ M+ A5 <,
61 + Do 4+ 23 + 3Ny 4+ 2X5 > y1,
2A1 + 3.5X3 + 53 + 3.5y + 25 = Yo, (10)
MAX+ A3+ M+ A5 =1,
)\1 >Oa>\2 2 O;A3 207>\4 > Oa)\5 P 07
z1 2 0,y1 = 0,y2 = 0.

In the initialization step of the algorithm have

ot = —maz{z) | j=1,,...,5} = —1, v3" = min{y] | j =1,,...,5} = 2,
vl = min{y} | j=1,,...,5} = 2 then v L=(vy, va,v3) = (—1,2,2).

We select (—X, )A/) = (—1.5,1.5,1.5). By definishition of V', we have

V ={(vi,v9,v3) | —1.5 < v1 < —21,1.5 < v2 < y1,1.5 < vz < yo,

for some (21,41, y2) belonging to the feasible region of problem (10)}.

Put k = 1. If we solve problem (3), we would obtain 5 = 7.5.

Therefore S = {(—z1,y1,%2) | 1.5 < y1,1.5 < 92, —1.5 < —z1, y1 +y2 — 71 <
7.5}.

The vertexs set of S° given in Theorem (3.6) are

{(=1.5,1.5,1.5), (=4.5,1.5,1.5), (—1.5,7.5,1.5), (—1.5, 1.5, 7.5)} which are com-
puted as follows:

@ = (-1.5,15,1.5),¢1 = 7.5 —1.5—-15 = 45,¢4 = 1.5,¢3 = 1.5,¢} =
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~15,¢2 = 75+1.5— (1.5) = 7.5,¢2 = 1.5,¢3 = —1.5,¢3 = 1.5,¢3 = 7.5+
1.5 — (1.5) = 7.5, therefore ¢! = (—4.5,1.5,1.5), ¢*> = (-1.5.7.5,1.5) and
¢ = (-1.5.1.5,7.5).

In step (1) of the algorithm, since (—1.5.7.5,1.5) does not belong to V', we put
(=X4 Y1) = (-1.5.75,1.5).

We go to step (2). If we solved problem (6) by (—X™,Y%)=v4
(v1,v2,v3)=(-1,2,2) we would obtain (X™*,Y™*,t*)=(-1 6,2,0)
We put (— Xp,Yp) 0.5 (—=X*, Y*)4+0.5 (vitf, vgtl v F)=0.5(-1,
then (—XP YP) = (—1,4,2). Now we solved problem (4),

we put (—X,Y) = (=X Y')=(-15,75,15) and (—X,,Y,) = (—1,4,2), we
would obtain A* = 0.571 and (—X™,Y") = (—1.286, 6, 1.715).

We solved problem (7) by (—X™,Y") = (—1.286,6,1.715), we would obtain
uj = 1,u5 = 0,u§ = 0,v] = 6, then the inequality cut is as follows.

y1 < 6.

6,2)+0.5(-1,2,2),

We go to step (3) and we organize

St ={(—=z1,y1,92) | 1.5 < y1,1.5 <y, —1.5 < —z1, 91 +y2— 21 < 75,91 < 6}
The vertex set of S! given in the Theorem (3.6) are
{(~1.5,1.5,1.5),(0,6,1.5), (—1.5,1.5,7.5)}. We put k = 2. Since (-1.5,1.5,
7.5) does not belong to V, we put (—X?,Y?) = (-1.5,1.5,7.5). In the next
step, we solved problem (4), we put (-X,Y) = (-=X2,Y?) = (-1.5,1.5,7.5)
and (—X,,Y,) = (—1,4,2). We would obtain A* = 0.471 and (-X",Y"V) =
(—1.236,2.823,4.591).

We solved problem (7) by (—X%,Y") = (—1.236,2.823,4.591). We would ob-
tain uj = %, u} = 2,uj = 0,v] = 4, then the inequality cut is as follows.

Y1+ 2y2 < 12

We go to step (3) and we organize S? = {(—x1,y1,%2) | 1.5 < y1,1.5 <

Y2, —1.5 < —x1, 91 + y2 — 21 < 7.5,51 < 6,41 + 2y2 < 12}

The vertexs set of S? given in Theorem (3.6) are

{(~1.5,1.5,1.5), (~1.5,6,3), (0, 1.5, 5.25), (0,3.5,4.5)}. We put k = 3. Since (-
1.5,6, 3) dose not belong to V', we put

(— X3 ,Y3)=(-1.5,6,3). In the next step, we solved problem (4), we put (—X,Y) =
(— X3,Y3) = (- 1.5,6,3) and (—X,,Y,) = (—1,4,2), we would obtain \* =
0.75 and (—X®,Y™) = (—1.375,5.5, 2.75).

We solved problem (7) by (—X ,Yw) (—1.375,5.5,2.75), we would obtain
ui =0.6,u5 =0.4,u} = O ,v; = 4.4, then the inequality cut is as follows.
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0.6y1 + 0.4y < 4.4.

We go to step (3) and we organize

S% = {(=z1,y1,92) | 1.5 < 91,15 < yo,—1.5 < —z1, 41 + y2 — 21 < 7.5,51 <
6,91 + 2y2 < 12,0.6y; + 0.4y, < 4.4}. The vertexes set of S3 given in Theorem
(3.6) are

{(~1,5,3.5), (—0.5,6,2), (0, 1.5, 5.25), (0,3, 4.5), (—1,5,1.5,1.5)}.

We put k = 4. Since (0,1.5, 5.25) does not belong to V, we put (—X?*,Y*) =
(0,1.5,5.25). In the next step, we solved problem (4), we put (—X* Y*4) =
(0,1.5,5.25) and (—X,,Y,) = (—1,4,2),

we would obtain \* = 0 and (—X™,Y") = (—1,4,2). We solved problem (7)
by (=X, Y") = (—1,4,2), we would obtain v} = 0,u} = 0,uj = 1,v; = —1,
then the inequality cut is as follows.

—I1 < —1.

We go to step (4) and we organize S* = {(—x1,y1,v2) | 1.5 < y1,1.5 <
Y2, —1.5 < —z1,y1 +y2 — 21 < 75,41 < 6,41 + 2y2 < 12,0.6y; + 0.4y <
4.4,—x1 < —1}. The vertexes set of S* given in Theorem (3.6) are
{(~1,5,3.5),(~1,6,2), (~1,1.5,5.25), (—1,5,1.5, 1.5)}.

We put k = 5. Since (-1,1.5, 5.25) does not belong to V, we put (—X°,Y?) =
(—1,1.5,5.25). In the next step, we solved problem (4), we put (—X°,Y?) =
(—1,1.5,5.25) and (—X,,Y,) = (—1,4,2), we would obtain \* = 0.923 and
(—X®,Y") = (~1,1.693,5).

We solved problem (7) by (—X™,Y") = (—1,1.693,5), we would obtain u} =
0,u5 =1,u5 = 0,v; = 2, then the inequality cut is as follows.
Y2 < 2.

We go to step (5) and we organize

S% = {(—z1,y1,92) | 1.5 < y1,1.5 < o, —1.5 < —z1,41 + y2 — 21 < 7.5,y1 <
6,91 +2y2 < 12,0.6y; +0.4yo < 4.4, —11 < —1,y2 < 2}. The vertexes set of S°
given in Theorem (3.6) are

{(-1,5,3.5),(~1,6,2), (—1,2,5), (—1,5,1.5,1.5)}.

Since (—1.5,1.5,1.5) hase the same components toto

V = (=X,Y) = (~1.5,1.5,1.5), then they do not belong to V=. Therefore,
the vertexes set of V; are as follows:

{(-1,5,3.5),(—1,6,2),(—1,2,5)}. We obtain the vertexes set of T, by convert-
ing (—z1,y1,y2) to (x1,y1,y2) as follows:

{(1,5,35),(1,6,2), (1,2,5)}.

The algorithm is terminated.
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6. Computational Experiment and Statisical
Analysis

To conduct a preliminary computational experiment for our proposed approach,
we can use the preliminary VS-Fortran code to execute the outer linear ap-
proximation algorithm, see Benson [8]. The Horst-ThoaiDe Vries method [29]
is used to execute the fourth step of the algorithm; the linear bisection method
is used for our univariate search in the second step, and to solve the linear
programming problem, we use the simplex algorithm; as implemented by the
subroutines of IMSL. [51]. Benson [8] has provided the number of iterations
and efficient extreme points and the CPU introduction times for thirty multi-
ple objective linear programming problems with different dimensions. In the
present research, we use the Gams software to solve our DEA models and the
Lindo software is used for solving the linear programming problems. Note that
in order to determine the efficient extreme points using traditional DEA mod-
els, we need to solve at least n models, which is difficult to do; it would also be
quite difficult to obtain information related to the efficient surfaces. However,
in this article, we arrive at all the efficient extreme points by solving only one
MOLP model, and the model is not dependent on the unit under evaluation.
The m+s+n model is variable in the decision set and the number of m+s is
variable in the outcome set. Now, the outcome set is smaller and we can con-
vert the efficient extreme points in this set to efficient extreme points in the
decision set through a simple calculation; thus, using the presented algorithm,
we can determine the efficient extreme points of the production possibility set
and its efficient surfaces by solving one model and a few iterations of the algo-
rithm. In the numerical example provided, we use the model to evaluate seven
decision-making units (DMUs) under VRS technology, each having one input
and one output. In the one example, there are 9 variables in the decision set
and 2 variables in the outcome set; we obtained all efficient extreme points
after four iterations of the algorithm. In the third step of the algorithm, we
solve a linear programming problem to find the optimal values of A*, and to
form the cutting-plane equations, a linear programming problem is solved in
each stage. As can be observed, this method involves fewer calculations for
finding the extreme points compared to traditional DEA models, which require
solving n models for the same purpose. For the example 2, we have similar
interparation. The statisical analysis of examples discriped in Table 6.1.
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Table 6.1: The statisical analysis of examples.

Example The number of Inputs and outputs
Example 1 | 2
Example 2 | 3

Example The number of DMUs
Example 1 | 7

Example 2 | 5

Example The number of variables in feasible region

Example 1 | 9

Example 2 | 8

Example The number of efficient extreme points in feasible region

Example 1 | 84
Example 2 | 70

Example The number of efficient extreme points in outcome space
Example 1 | 3

Example 2 | 3

Example The number of algorithm iterations

Example 1 | 4

Example 2 | 5

Example The number of Solved LPs

Example 1 | 9

Example 2 | 12

The presented algorithm has many useful computational advantages to previ-
ous approaches for determining the efficient extreme points of the production
possibility set:

1. Since the algorithm produces all efficient extreme points of the outcome set
based on the decision set and the outcome set is smaller than the decision set,
fewer calculations are needed for finding these points.

2. The proposed algorithm is precise and finite; thus, through solving one
MOLP model and a number of iterations, we can arrive at all efficient extreme
points and efficient surfaces.

3. This algorithm does not face the issues of previous algorithms in producing
the efficient extreme points, such as infeasibility and degeneracy.

4. The presented approach makes a new connection between DEA and MOLP
problems; in this regard, we can identify all efficient surfaces by solving one
MOLP problem and multiple iterations of the algorithm.

5. The presented approach can be a new method for obtaining all efficient
extreme points.

7. Conclusion

The purpose of this paper was to develop a new method for generating efficient
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extreme points of the production possibility set with VRS. We proposed an
MOLP problem whose feasible region same of is production possibility set. We
applied the outer approximation algorithm for generating the efficient extreme
points of MOLP problem. Since the average number of efficient extreme points
in the outcome set is less than the average number of efficient extreme points
in the decision set, the method proposed is pretty fit. We obtain the efficient
frontier by solving an MOLP problem, the outer approximation algorithm can
be implemented relatively easily by using search methods, linear programming
techniques, and any one of several special methods from the global optimization
literature for generating new vertexes set as linear inequality cuts are added to
the containing polyhedral generated by the algorithm. This algorithm used few
calculations to produce all the extreme points. The results of this paper can
be used on various DEA-related application problems. The results proposed
a way for extending the analysis of production efficiency to further path. In
this method, we obtain the efficient frontier by solving an MOLP problem. For
future research, we suggest extending our presented approach to determine
the units return to scale class; furthermore, we can solve the proposed MOLP
problem using other methods for obtaining extreme points, such as vector max-
imization and make a comparison of results.
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