Journal of Mathematical Extension Vol. 12, No. 2, (2018), 73-86 ISSN: 1735-8299 URL: http://www.ijmex.com

The Construction of Fraction Gamma Rings and Local Gamma Rings by Using Commutative Gamma Rings

Z. Seyed Tabatabaee Kerman Branch, Islamic Azad University

T. Roodbarylor^{*} Kerman Branch, Islamic Azad University

Abstract. One of the first constructions of algebra is the quotient field of a commutative integral domain, constructed as a set of fractions, which can lead to a very useful technique in commutative ring theory. In this article the researchers considered rings of fractions for gamma rings and some new characterizations were developed in gamma rings of fractions.

AMS Subject Classification: 05C25; 13A50 Keywords and Phrases: Gamma ring, fraction of Γ -ring, commutative Γ -ring

1. Introduction

The notation of a gamma ring was first introduced by Nobusawa [10] as a generalization of a classical ring and afterward Barnes [2] improved the concepts of Nobusawa's Γ -ring and developed the more general Γ -ring in which all classical rings were contained in this Γ -ring. We know, quotient fields are applied for making valuation rings and Dedekind domains and Dedekind domains are used in numbers theory [9].

In this paper the researchers constructed fraction Γ -ring and discussed their characteristics and relations by using local Γ -rings.

Received: July 2017; Accepted: January 2018

^{*}Corresponding author

Let R and Γ be two additive abelian groups and there exists a mapping $(x, \gamma, y) \longmapsto x\gamma y$ of $R \times \Gamma \times R \longrightarrow R$, which satisfies the conditions:

(i)
$$(x+y)\gamma z = x\gamma z + y\gamma z$$
, $x(\gamma_1 + \gamma_2)y = x\gamma_1 y + x\gamma_2 y$.
 $x\gamma(y+z) = x\gamma y + x\gamma z$,
(ii) $(x\gamma_1 y)\gamma_2 z = x\gamma_1(y\gamma_2 z)$,

for all $x, y, z \in R$ and $\gamma, \gamma_1, \gamma_2 \in \Gamma$. Then R is called a gamma ring.

If there exists $1_R \in R$ and $\gamma_0 \in \Gamma$ such that for all $r \in R$,

 $1_R \gamma_0 r = r \gamma_0 1_R = r$, then $1 = 1_R$ is called identity element [13].

Let R be a Γ -ring with 1. An element $a \in R$ is called invertible if there exists $b \in R$ such that $a\gamma_0 b = b\gamma_0 a = 1$, also b is unique and called the multiplicative inverse of a and is denoted by a^{-1} .

An element $a \in R$ is said to be zero -divisor if there exists $b \neq 0$ such that $a\gamma_0 b = b\gamma_0 a = 0$.

Let R be Γ -ring. If for all $a, b \in R$ and for all $\gamma \in \Gamma$, $a\gamma b = b\gamma a$, then R is called commutative Γ -ring.

A subset I of Γ -ring R is said left(or right) gamma ideal if I is an additive subgroup of R and $R\Gamma I \subseteq I$ ($orI\Gamma R \subseteq I$) [11].

Let R be a $\Gamma\text{-ring}.$ The ideal generated by $a\in R$ is the intersection of all ideals contain a and

 $\begin{aligned} \langle a \rangle &= \{ na + x\alpha a + a\beta y + \sum_{i=1}^{k} u_i \gamma_i a \delta_i v_i \mid n, k \in \mathbb{Z}, a, x, y, u_i, v_i \in R, \\ \alpha, \beta, \gamma_i, \delta_i \in \Gamma \}. \end{aligned}$

A Γ -ring homomorphism [6] is a mapping f of $\Gamma\text{-ring}$ R to $\Gamma\text{-ring}$ $R^{'}$ such that:

(i) f(x+y) = f(x) + f(y), (ii) $f(x\gamma y) = f(x)\gamma f(y)$, for all $x, y \in R$ and $\gamma \in \Gamma$.

A multiplicatively closed subset of Γ -ring R is a subset S of R such that $1 \in S$ and $s_1 \Gamma s_2 \subseteq S$, for all $s_1, s_2 \in S$.

Let R be a Γ -ring with 1 and $* : R \times \Gamma \times R \longrightarrow R$ be a map on R such that $(R - \{0\}, *)$ be a group. Then R is called Γ -field.

We consider the following assumptions

(*) $x\alpha y\beta z = x\beta y\alpha z$, for all $x, y, z \in R$ and $\alpha, \beta \in \Gamma$, (**) $(s_1\alpha s_2)\gamma_0(s_1\alpha s_2)\gamma_0(x\beta y) + (s_1\beta s_2)\gamma_0(s_1\beta s_2)\gamma_0(x\alpha y) = 0$,

for all $x, y, z \in R, s_1, s_2 \in S, \alpha, \beta \in \Gamma$ [4].

2. Fractions of Gamma Rings

Throughout this section , the word gamma ring R means a commutative gamma ring with 1 and without zero-divisor.

Proposition 2.1. If a and b are invertible in R, so is $a\gamma_0 b$ and $(a\gamma_0 b)^{-1} = b^{-1}\gamma_0 a^{-1}$.

Proof.

$$(a\gamma_{0}b)\gamma_{0}(b^{-1}\gamma_{0}a^{-1}) = a\gamma_{0}(b\gamma_{0}b^{-1})\gamma_{0}a^{-1}$$

= $a\gamma_{0}1\gamma_{0}a^{-1}$
= $(a\gamma_{0}1)\gamma_{0}a^{-1}$
= $a\gamma_{0}a^{-1}$
= 1,

and similarly $(b^{-1}\gamma_0 a^{-1})\gamma_0(a\gamma_0 b) = 1.$

Proposition 2.2. Let R be a Γ -ring and $S = R - \{0\}$. We define relation \sim on $R \times S$ as follows : (a, s) \sim (b, t) $\iff a\gamma_0 t - b\gamma_0 s = 0$, for $a, b \in R$ and $s, t \in S$. Then \sim is an equivalence relation.

Proof. We show that the relation ~ is reflexive, symmetric and transitive. Since for all $a \in R$ and $s \in S$, $a\gamma_0 s - a\gamma_0 s = 0$, so $(a, s) \sim (a, s)$. If $(a, s) \sim (b, t)$, then $a\gamma_0 t - b\gamma_0 s = 0$, and so $b\gamma_0 s - a\gamma_0 t = 0$. Thus $(b, t) \sim (a, s)$. If $(a, s) \sim (b, t)$ and $(b, t) \sim (c, u)$, then we have

$$a\gamma_0 t - b\gamma_0 s = 0, (1)$$

$$b\gamma_0 u - c\gamma_0 t = 0. \tag{2}$$

On the other hand, a multiplication by $\gamma_0 u$ of (1) and $\gamma_0 s$ of (2) gives

$$a\gamma_0 t\gamma_0 u - b\gamma_0 s\gamma_0 u = 0, (3)$$

$$b\gamma_0 u\gamma_0 s - c\gamma_0 t\gamma_0 s = 0. (4)$$

Sum of (3) and (4), we obtain

$$a\gamma_0 t\gamma_0 u - c\gamma_0 t\gamma_0 s = 0. \tag{5}$$

By using commutativity, we have

$$(a\gamma_0 u - c\gamma_0 s)\gamma_0 t = 0. (6)$$

We have $t \neq 0$ and R is without zero-divisor, which gives $a\gamma_0 u - c\gamma_0 s = 0$ and thus $(a, s) \sim (c, u)$.

Hence, the proof is complete. \Box

Theorem 2.3. Let [a, s] denote the equivalence class of (a, s), and $S^{-1}R$ denote the set of equivalence classes. If R satisfies the conditions (*) and (**), we define addition and multiplication of these fractions as follows:

$$\begin{cases} S^{-1}R \times \Gamma \times S^{-1}R \longrightarrow S^{-1}R\\ [r,s] + [r^{'},s^{'}] = [r\gamma_{0}s^{'} + s\gamma_{0}r^{'},s\gamma_{0}s^{'}]\\ [r,s]\gamma[r^{'},s^{'}] = [r\gamma r^{'},s\gamma s^{'}], \end{cases}$$

then

(i) these definitions are well-defined.

(ii) $S^{-1}R$ is a Γ -ring with identity element [1, 1].

Proof. (i): If $[r_1, s_1] = [r_1^{'}, s_1^{'}]$ and $[r_2, s_2] = [r_2^{'}, s_2^{'}]$, then we have

$$r_1\gamma_0 s_1 - s_1\gamma_0 r_1 = 0, (7)$$

$$r_2\gamma_0 s_2' - s_2\gamma_0 r_2' = 0. (8)$$

A multiplication by $s_2\gamma_0s_2^{'}$ of (7) and $s_1\gamma_0s_1^{'}$ of (8) gives

$$r_1\gamma_0 s'_1\gamma_0 s_2\gamma_0 s'_2 - s_1\gamma_0 r'_1\gamma_0 s_2\gamma_0 s'_2 = 0, (9)$$

$$r_2\gamma_0 s'_2\gamma_0 s_1\gamma_0 s'_1 - s_2\gamma_0 r'_2\gamma_0 s_1\gamma_0 s'_1 = 0.$$
(10)

Sum of (9) and (10), we obtain

$$r_1\gamma_0 s_1'\gamma_0 s_2\gamma_0 s_2' - s_1\gamma_0 r_1'\gamma_0 s_2\gamma_0 s_2' + r_2\gamma_0 s_2'\gamma_0 s_1\gamma_0 s_1' - s_2\gamma_0 r_2'\gamma_0 s_1\gamma_0 s_1' = 0.$$

Since R is commutative Γ -ring , we have

$$r_1\gamma_0 s_2\gamma_0 s_1^{'}\gamma_0 s_2^{'} + r_2\gamma_0 s_1\gamma_0 s_1^{'}\gamma_0 s_2^{'} - r_1^{'}\gamma_0 s_2^{'}\gamma_0 s_1\gamma_0 s_2 - s_1^{'}\gamma_0 r_2^{'}\gamma_0 s_1\gamma_0 s_2 = 0,$$

therefore

$$(r_1\gamma_0s_2 + r_2\gamma_0s_1)\gamma_0s_1'\gamma_0s_2' - (r_1'\gamma_0s_2' + s_1'\gamma_0r_2')\gamma_0s_1\gamma_0s_2 = 0,$$
(11)

$$[r_1\gamma_0s_2 + r_2\gamma_0s_1, s_1\gamma_0s_2] = [r_1^{'}\gamma_0s_2^{'} + s_1^{'}\gamma_0r_2^{'}, s_1^{'}\gamma_0s_2^{'}],$$
(12)

$$[r_1, s_1] + [r_2, s_2] = [r_1, s_1] + [r_2, s_2].$$
(13)

Thus addition is well-defined. Now, let $[r_1,s_1]=[r_2,s_2], [r_1^{'},s_1^{'}]=[r_2^{'},s_2^{'}]$ and $\gamma=\gamma_1=\gamma_2$, we have

$$r_1\gamma_0 s_2 - s_1\gamma_0 r_2 = 0, (14)$$

$$r_1'\gamma_0 s_2' - s_1'\gamma_0 r_2' = 0. (15)$$

On the other hand, a multiplication by $r'_1 \gamma s'_2$ of (14) and $r_2 \gamma s_1$ of (15) gives

$$r_1 \gamma_0 s_2 \gamma r_1^{'} \gamma s_2^{'} - r_1^{'} \gamma s_2^{'} \gamma s_1 \gamma_0 r_2 = 0, \qquad (16)$$

$$r'_1 \gamma_0 s'_2 \gamma r_2 \gamma s_1 - s'_1 \gamma_0 r'_2 \gamma r_2 \gamma s_1 = 0.$$
 (17)

By using the sum of (16) and (17) and applying the condition (*), we obtain

$$r_1 \gamma r_1^{'} \gamma_0 s_2 \gamma s_2^{'} - s_1 \gamma s_1^{'} \gamma_0 r_2 \gamma r_2^{'} = 0, \qquad (18)$$

or

$$[r_1\gamma r_1^{'}, s_1\gamma s_1^{'}] = [r_2\gamma r_2^{'}, s_2\gamma s_2^{'}], \qquad (19)$$

therefore $[r_1, s_1]\gamma[r'_1, s'_1] = [r_2, s_2]\gamma[r'_2, s'_2]$. Thus the multiplication is well-defined.

Proof (ii). Since S is a multiplicatively closed subset of R and R is $\Gamma - ring$, therefore $r\gamma r^{'} \in R$ and $s\gamma s^{'} \in S$, for all $r, r^{'} \in R, s, s^{'} \in S$ and $\gamma \in \Gamma$. Thus $[r, s]\gamma[r^{'}, s^{'}] = [r\gamma r^{'}, s\gamma s^{'}] \in S^{-1}R$. For $[r_1, s_1], [r_2, s_2], [r_3, s_3] \in S^{-1}R$ and $\alpha \in \Gamma$, we have

$$([r_1, s_1] + [r_2, s_2])\alpha[r_3, s_3] = [r_1, s_1]\alpha[r_3, s_3] + [r_2, s_2]\alpha[r_3, s_3]$$

because

$$([r_1, s_1] + [r_2, s_2])\alpha[r_3, s_3] = [r_1\gamma_0s_2 + s_1\gamma_0r_2, s_1\gamma_0s_2]\alpha[r_3, s_3]$$

= $[r_1\gamma_0s_2\alpha r_3 + s_1\gamma_0r_2\alpha r_3, s_1\gamma_0s_2\alpha s_3].$

Also

$$\begin{split} [r_1, s_1] \alpha [r_3, s_3] + [r_2, s_2] \alpha [r_3, s_3] &= [r_1 \alpha r_3, s_1 \alpha s_3] + [r_2 \alpha r_3, s_2 \alpha s_3] \\ &= [r_1 \alpha r_3 \gamma_0 s_2 \alpha s_3 + s_1 \alpha s_3 \gamma_0 r_2 \alpha r_3, s_1 \alpha s_3 \gamma_0 s_2 \alpha s_3]. \end{split}$$

It is easy to see that

 $[r_1\gamma_0s_2\alpha r_3 + s_1\gamma_0r_2\alpha r_3, s_1\gamma_0s_2\alpha s_3] = [r_1\alpha r_3\gamma_0s_2\alpha s_3 + s_1\alpha s_3\gamma_0r_2\alpha r_3, s_1\alpha s_3\gamma_0s_2\alpha s_3]$

Now, we show that $[r_1,s_1](\alpha+\beta)[r_2,s_2]=[r_1,s_1]\alpha[r_2,s_2]+[r_1,s_1]\beta[r_2,s_2],$ we have

$$\begin{split} [r_1, s_1](\alpha + \beta)[r_2, s_2] &= [r_1(\alpha + \beta)r_2, s_1(\alpha + \beta)s_2] \\ &= [r_1\alpha r_2 + r_1\beta r_2, s_1\alpha s_2 + s_1\beta s_2], \\ [r_1, s_1]\alpha[r_2, s_2] + [r_1, s_1]\beta[r_2, s_2] &= [r_1\alpha r_2, s_1\alpha s_2] + [r_1\beta r_2, s_1\beta s_2] \\ &= [(r_1\alpha r_2)\gamma_0(s_1\beta s_2) + (s_1\alpha s_2)\gamma_0r_1\beta r_2, s_1\alpha s_2\gamma_0s_1\beta s_2]. \end{split}$$

We prove that

$$[r_1\alpha r_2 + r_1\beta r_2, s_1\alpha s_2 + s_1\beta s_2] = [r_1\alpha r_2\gamma_0 s_1\beta s_2 + s_1\alpha s_2\gamma_0 r_1\beta r_2, s_1\alpha s_2\gamma_0 s_1\beta s_2],$$

or

$$r_1\alpha r_2\gamma_0 s_1\alpha s_2\gamma_0 s_1\beta s_2 + r_1\beta r_2\gamma_0 s_1\alpha s_2\gamma_0 s_1\beta s_2 - r_1\alpha r_2\gamma_0 s_1\beta s_2\gamma_0 s_1\alpha s_2 - s_1\alpha s_2\gamma_0 r_1\beta r_2\gamma_0 s_1\alpha s_2 - r_1\alpha r_2\gamma_0 s_1\beta s_2\gamma_0 s_1\beta s_2 - s_1\alpha s_2\gamma_0 r_1\beta r_2\gamma_0 s_1\beta s_2 = 0.$$

But by using commutativity and the condition (**), the above relation is satisfied.

Also we have

$$\begin{split} ([r_1, s_1]\alpha[r_2, s_2])\beta[r_3, s_3] &= [r_1\alpha r_2, s_1\alpha s_2]\beta[r_3, s_3] \\ &= [(r_1\alpha r_2)\beta r_3, (s_1\alpha s_2)\beta s_3] \\ &= [r_1\alpha(r_2\beta r_3), s_1\alpha(s_2\beta s_2)] \\ &= [r_1, s_1]\alpha[r_2\beta r_3, s_2\beta s_3] \\ &= [r_1, s_1]\alpha([r_2, s_2]\beta[r_3, s_3]). \end{split}$$

For all $[r,s]\in S^{-1}R$, we have

$$[r,s]\gamma_0[1,1] = [r\gamma_0 1, s\gamma_0 1] = [r,s],$$

and similarly since $[1,1]\gamma_0[r,s] = [r,s]$, thus $[1,1] \in S^{-1}R$ is an identity element, the proof is complete. \Box

The Γ -ring $S^{-1}R$ is called the Γ -ring of fraction of R with respect to S.

Proposition 2.4. Let R, S be in Proposition 2.2. Then (i) [0,s] = [0,1], for all $s \in S$. (ii) $[r,s] = [r\gamma r, s\gamma r']$, for all $r, r' \in R$, $s \in S$ and $\gamma \in \Gamma$. (iii) $-(x\alpha y) = x(-\alpha)y$, for all $x, y \in R$, $\alpha \in \Gamma$. (iv) [r,r] = [1,1], for all $r \in R$. **Proof.** (i) Since $0\gamma_0 s - 1\gamma_0 0 = 0$, so [0,1] = [0,s]. (ii) Since R is commutative Γ -ring, then $r\gamma_0 s\gamma r' - s\gamma_0 r\gamma r' = 0$ and therefore

$$[r,s] = [r\gamma r', s\gamma r'].$$
⁽²⁰⁾

(*iii*) We have $x(-\alpha)y + x(\alpha)y = x(-\alpha + \alpha)y = 0$, thus $-(x\alpha y) = x(-\alpha)y$. (*iv*) Since $r\gamma_0 1 - 1\gamma_0 r = r - r = 0$, so [r, r] = [1, 1], for all $r \in R$. \Box

Theorem 2.5. If R is a Γ -ring and $S = R - \{0\}$, then $S^{-1}R$ is a Γ -field.

Proof. By using Theorem 2.1, $(S^{-1}R, +, \cdot)$ is a Γ -ring with identity element [1, 1], thus for every $r, s \in S$, we prove that $[r, s]^{-1} = [s, r]$. By using commutativity Γ -ring R and Proposition 2.3 (iv), we have

$$[r, s]\gamma_0[s, r] = [r\gamma_0 s, s\gamma_0 r] = [r\gamma_0 s, r\gamma_0 s] = [1, 1].$$

Similarly $[s, r]\gamma_0[r, s] = [1, 1]$.

Now, we prove that $(S^{-1}R, \cdot)$ is associative. Since R is a Γ -ring, we have

$$\begin{aligned} ([r_1, s_1]\gamma_1[r_2, s_2])\gamma_2[r_3, s_3] &= [r_1\gamma_1r_2, s_1\gamma_1s_2]\gamma_2[r_3, s_3] \\ &= [(r_1\gamma_1r_2)\gamma_2r_3, (s_1\gamma_1s_2)\gamma_2s_3] \\ &= [r_1\gamma_1(r_2\gamma_2s_3), s_1\gamma_1(s_2\gamma_2s_3)] \\ &= [r_1, s_1]\gamma_1([r_2, s_2]\gamma_2[r_3, s_3]). \end{aligned}$$

At the end, we prove that $(S^{-1}R, \cdot)$ is commutative. Since R is a commutative Γ -ring, for every $\gamma \in \Gamma, r_1, r_2 \in R, s_1, s_2 \in S$ we have

$$\begin{split} [r_1, s_1] \gamma_1 [r_2, s_2] &= [r_1 \gamma r_2, s_1 \gamma s_2] \\ &= [r_2 \gamma r_1, s_2 \gamma s_1] \\ &= [r_2, s_2] \gamma [r_1, s_1]. \end{split}$$

Hence $(S^{-1}R, +, \cdot)$ is a Γ -field. \Box

At the end of this section, we give an example of matrices that are not rings under addition and matrix multiplication ,but we will make a gamma ring of them.

Example 2.6. Let \mathbb{Z} be integers rings and $M_{m \times n}(\mathbb{Z})$ be the set of all $m \times n$ matrices with entries in \mathbb{Z} . We consider

 $R = \{ \begin{bmatrix} x & x \end{bmatrix} | x \in \mathbb{Z} \} \subseteq M_{1 \times 2} \text{ and } \Gamma = \{ \begin{bmatrix} n \\ o \end{bmatrix} | n \in \mathbb{Z} \} \subseteq M_{2 \times 1}.$ and we define

$$\begin{cases} & \ldots R \times \Gamma \times R \longrightarrow R \\ & \left[\begin{array}{cc} x & x \end{array} \right] \cdot \left[\begin{array}{cc} n \\ o \end{array} \right] \cdot \left[\begin{array}{cc} y & y \end{array} \right] = \left[\begin{array}{cc} nxy & nxy \end{array} \right] \end{cases}$$

, for all $\begin{bmatrix} x & x \end{bmatrix}$, $\begin{bmatrix} y & y \end{bmatrix}$ in R and for all $\begin{bmatrix} n \\ o \end{bmatrix}$ in Γ .

It is easy to see that R is a Γ -ring. We show that R is integral domain with $1_R = \begin{bmatrix} 1 & 1 \end{bmatrix}$ and $\gamma_0 = \begin{bmatrix} 1 \\ o \end{bmatrix}$.

Hence, if we consider $S = R - \{0\}$, then by using Theorem 2.2, $S^{-1}R$ is a Γ -field.

Proof. For $\begin{bmatrix} x & x \end{bmatrix} \neq \begin{bmatrix} 0 & 0 \end{bmatrix}$, then $x \neq 0$ and if $\begin{bmatrix} y & y \end{bmatrix} \in R$, we have

$$\begin{bmatrix} x & x \end{bmatrix} \cdot \begin{bmatrix} 1 \\ o \end{bmatrix} \cdot \begin{bmatrix} y & y \end{bmatrix} = \begin{bmatrix} 0 & 0 \end{bmatrix} \Rightarrow \begin{bmatrix} xy & xy \end{bmatrix} = \begin{bmatrix} 0 & 0 \end{bmatrix}$$
$$\Rightarrow xy = 0$$
$$\Rightarrow y = 0,$$

then $\begin{bmatrix} y & y \end{bmatrix} = \begin{bmatrix} 0 & 0 \end{bmatrix}$.

Also for all $\begin{bmatrix} x & x \end{bmatrix} \in R$ we have

$$\begin{bmatrix} 1 & 1 \end{bmatrix}$$
. $\begin{bmatrix} 1 \\ o \end{bmatrix}$. $\begin{bmatrix} x & x \end{bmatrix} = 1$. $\begin{bmatrix} x & x \end{bmatrix} = \begin{bmatrix} x & x \end{bmatrix}$ and

 $\begin{bmatrix} x & x \end{bmatrix} \cdot \begin{bmatrix} 1 \\ 0 \end{bmatrix} \cdot \begin{bmatrix} 1 & 1 \end{bmatrix} = x \cdot \begin{bmatrix} 1 & 1 \end{bmatrix} = \begin{bmatrix} x & x \end{bmatrix}$, hence *R* has identity element.

With simple calculations, we get the equivalence class of $\begin{bmatrix} x & x \end{bmatrix}, \begin{bmatrix} y & y \end{bmatrix}$ is $\{ \begin{bmatrix} z & z \end{bmatrix}, \begin{bmatrix} t & t \end{bmatrix} | xt = yz, x, z \in \mathbb{Z}, y, t \in \mathbb{Z} - \{0\} \}.$

3. Homomorphisms of Gamma Rings

In this section, the notion homomorphism of gamma rings is defined and some theorems will be proved.

Theorem 3.1. Let R be a Γ -ring and $S^{-1}R$ be a Γ -ring of fraction in Theorem 2.1. Then the mapping $f: R \longrightarrow S^{-1}R$ such that f(r) = [r, 1] is a Γ -ring homomorphism.

Proof. At first we show that f is well-defined. If $r_1 = r_2$, then $r_1 - r_2 = 0$. Since $r_1 = r_1\gamma_0 1$ and $r_2 = r_2\gamma_0 1$, then $r_1\gamma_0 1 - r_2\gamma_0 1 = 0$ and so $[r_1, 1] = [r_2, 1]$. Now we prove that $f(r_1 + r_2) = f(r_1) + f(r_2)$ and $f(r_1\gamma r_2) = f(r_1)\gamma f(r_2)$, for all $r_1, r_2 \in R$ and $\gamma \in \Gamma$. We have

$$f(r_1) + f(r_2) = [r_1, 1] + [r_2, 1] = [r_1\gamma_0 1 + r_2\gamma_0 1, 1\gamma_0 1] = [r_1 + r_2, 1] = f(r_1 + r_2)$$

We have $f(r_1)\gamma f(r_2) = [r_1, 1]\gamma [r_2, 1] = [r_1\gamma r_2, 1\gamma 1]$, but $f(r_1\gamma r_2) = [r_1\gamma r_2, 1]$, we get that

$$[r_1\gamma r_2, 1] = [r_1\gamma r_2, 1\gamma 1] \quad \Leftrightarrow \quad r_1\gamma r_2\gamma_0 1\gamma 1 - r_1\gamma r_2\gamma_0 1 = 0$$
$$\Leftrightarrow \quad r_1\gamma r_2\gamma 1 - r_1\gamma r_2 = 0.$$

If we put $\alpha=-\gamma,\,\beta=\gamma_0,\,x=r_1,y=r_2$ and $s_1=s_2=1$, in condition (**), we have

$$1(-\gamma)1\gamma_01(-\gamma)1\gamma_0r_1\gamma_0r_2 + r_1(-\gamma)r_2\gamma_01\gamma_01\gamma_01\gamma_01 = 0$$

By Proposition 2.3 (iii), we obtain

$$1\gamma 1r_1\gamma_0 r_2 - r_1\gamma r_2 = 0.$$

Also by the condition (*), we have

$$1\gamma 1\gamma_0 r_1\gamma r_2 - r_1\gamma r_2 = 0.$$

Since $1\gamma_0 r_1 = r_1$, we get that

$$1\gamma r_1\gamma r_2 - r_1\gamma r_2 = 0.$$

Hence the theorem is proved. $\hfill\square$

Proposition 3.2. Let R and R' be Γ -rings with identity elements and $f: R \longrightarrow R'$ be a Γ -ring epimorphism. Then $f(1_R) = 1_{R'}$.

Proof. We prove that $f(1_R)\gamma_0 r' = r'\gamma_0 f(1_R) = r'$, for all $r' \in R'$. Since f is surjective, there exists $r \in R$ such that f(r) = r'. We have

$$f(1_R)\gamma_0 r' = f(1_R)\gamma_0 f(r) = f(1_R\gamma_0 r) = f(r) = r',$$

$$r'\gamma_0 f(1_R) = f(r)\gamma_0 f(1_R) = f(r\gamma_0 1_R) = f(r) = r'.$$

Hence $f(1_R) = 1_{R'}$. \Box

Proposition 3.3. If R and R' are Γ -rings with identity elements without zero-divisor and $f: R \longrightarrow R'$ is a non-zero Γ -ring homomorphism. Then $f(1_R) = 1_{R'}$.

Proof. We have

$$f(1_R) = f(1_R \gamma_0 1_R) = f(1_R) \gamma_0 f(1_R)$$

$$\Rightarrow \quad f(1_R) - f(1_R) \gamma_0 f(1_R) = 0$$

$$\Rightarrow \quad f(1_R) \gamma_0 (1_{R'} - f(1_R)) = 0$$

$$\Rightarrow \quad 1_{R'} - f(1_R) = 0.$$

Hence $f(1_R) = 1_{R'}$. \Box

Proposition 3.4. Let R and R' be Γ -rings with identity elements, without zero-divisor and $f : R \longrightarrow R'$ is a non-zero Γ -ring homomorphism. Then $f(a^{-1}) = (f(a))^{-1}$.

Proof. Suppose $a \in R$ is invertible and a^{-1} is inverse of a. We have

$$f(a\gamma_0 a^{-1}) = f(1_R) = f(a^{-1}\gamma_0 a)$$

$$\Rightarrow \quad f(a)\gamma_0 f(a^{-1}) = 1_{R'} = f(a^{-1})\gamma_0 f(a)$$

$$\Rightarrow \quad f(a^{-1}) = (f(a))^{-1}. \quad \Box$$

4. Local Gamma Rings

In this section, local gamma rings is defined and will be given several conditions equivalent for local gamma rings.

Definition 4.1. A Γ -ideal P in Γ -ring R is prime [15], if $P \neq R$ and if $A\Gamma B \subseteq P$, then $A \subseteq P$ or $B \subseteq P$, for every Γ -ideals A and B in R.

Theorem 4.2. If R is a commutative Γ - ring and P is a Γ -ideal such that $P \neq R$ and $a\gamma b \in P$, for $a, b \in R$ and all $\gamma \in \Gamma$ it implies that $a \in P$ or $b \in P$, then P is prime and conversely.

Proof. \Longrightarrow) If A and B are gamma ideals in R such that $A\Gamma B \subseteq P$, but $A \notin P$ and $B \notin P$, then there are $a_0 \in A$ and $b_0 \in B$ such that a_0 and b_0 are not in P.

Since $A\Gamma B \subseteq P$, then for every $\gamma \in \Gamma$, $a_0\gamma b_0 \in A\Gamma B \subseteq P$ and by assumption $a_0 \in P$ or $b_0 \in P$, this is a contradiction. Thus $A \subseteq P$ or $B \subseteq P$.

 \Leftarrow Let *P* be a prime gamma ideal and $a\gamma b \in P$ for every $a, b \in R$ and for all $\gamma \in \Gamma$, then $\langle a \rangle \Gamma \langle b \rangle \subseteq P$ and therefore $\langle a \rangle \subseteq P$ or $\langle b \rangle \subseteq P$, but $a \in \langle a \rangle$ and $b \in \langle b \rangle$ thus $a \in P$ or $b \in P$. \Box

Theorem 4.3. In a commutative Γ -ring R with identity, an ideal P is prime if and only if S = R - P is multiplicatively closed subset.

Proof. \Longrightarrow) Let gamma ideal P be prime in R and $s_1, s_2 \in S$. Then s_1 and s_2 aren't in P (S = R - P). Since P is prime, for every $\gamma \in \Gamma$, $s_1\gamma s_2$ isn't in P, hence for all $\gamma \in \Gamma$, $s_1\gamma s_2 \in S$, therefore $s_1\Gamma s_2 \subseteq S$.

 \iff) Suppose S = R - P is a multiplicatively closed subset in R, then $1 \in S$ and so $S \neq \emptyset$, i.e $P \neq R$.

If $a\gamma b \in P$ for every $a, b \in R$ and for every $\gamma \in \Gamma$, then $a\gamma b$ isn't in S. Since S is multiplicatively closed subset, then a or b aren't in S, i.e $a \in P$ or $b \in P$. \Box

Notation

Let gamma ideal P be prime in R and S = R - P. Then we write $A_{\Gamma P} = S^{-1}R$.

Theorem 4.4. In a commutative Γ -ring R with identity, if gamma ideal P is prime and S = R - P, then the set $M = \{[a, s] | a \in P, s \in S\}$ is an ideal of $A_{\Gamma P}$.

Proof. Since $0 \in P$, then $[0,s] \in M$, for $s \in S$ and so $M \neq \emptyset$. To show that (M, +) is subgroup, for every $a, b \in P$ and $s, s' \in S$, we have $a\gamma_0 s'$ and $b\gamma_0 s \in P$ (P is an Γ -ideal) and $s\gamma_0 s' \in S$ (S is a multiplicatively closed subset). Thus $[a, s] - [b, s'] = [a, s] + [-b, s'] = [a\gamma_0 s' - b\gamma_0 s, s\gamma_0 s'] \in M$. To show that $M\Gamma A_{\Gamma P} \subseteq M$, we consider $[a, s]\gamma[b, s'] \in M\Gamma A_{\Gamma P}$.

Since P is an ideal in R and S is a multiplicatively closed subset, then $a\gamma b \in P$ and $s\gamma s' \in S$. Thus $[a, s]\gamma[b, s'] = [a\gamma b, s\gamma s'] \in M$, i.e $M\Gamma A_{\Gamma P} \subseteq M$. \Box

Theorem 4.5. Let M be the set of all non-invertible elements of Γ -ring R, then the following properties are equivalent:

(1) M is additively closed $(\forall a_1, a_2 \in M, a_1 + a_2 \in M)$,

(2) M is a two-sided gamma ideal of R,

(3r) M is the largest proper right gamma ideal,

- (3l) M is the largest proper left gamma ideal,
- (4r) In gamma ring R there exists a largest proper right ideal,
- (4l) In gamma ring R there exists a largest proper left ideal,
- (5r) For every $r \in R$ either r or 1 r is right invertible,
- (51) For every $r \in R$ either r or 1 r is left invertible,
- (6) For every $r \in R$ either r or 1 r is invertible.

Proof. (1) \Rightarrow (2): Let *M* be additively closed. At first, we show that every right (left) invertible element is invertible. If $b \in R$ is right invertible, then there exists $b' \in R$ such that $b\gamma_0 b' = 1$, to show that $b'\gamma_0 b = 1$, we have two cases.

Case 1. If $b' \gamma_0 b$ isn't in M, then there is $s \in R$ with $s\gamma_0(b' \gamma_0 b) = 1$. A right multiplication by $\gamma_0 b'$ gives

$$\begin{split} s\gamma_0 b^{'}\gamma_0 b\gamma_0 b^{'} &= 1\gamma_0 b^{'} \implies s\gamma_0 b^{'}\gamma_0 1 = b^{'} \\ \implies s\gamma_0 b^{'} = b^{'} \\ \implies b^{'}\gamma_0 b = 1. \end{split}$$

Case 2. If $b' \gamma_0 b \in M$, then $1 - b' \gamma_0 b$ isn't in M, otherwise if $1 - b' \gamma_0 b \in M$, we have $b' \gamma_0 b \in M$ and M is an additively closed set, then

$$1 = (1 - b' \gamma_0 b) + b' \gamma_0 b \in M.$$

It is a contradiction.

Thus there exists $s \in R$ such that $s\gamma_0(1 - b'\gamma_0 b) = 1$. The right multiplication by $\gamma_0 b'$ gives

$$s\gamma_0(1 - b'\gamma_0 b)\gamma_0 b' = 1\gamma_0 b' \implies s\gamma_0(1\gamma_0 b' - b'\gamma_0 b\gamma_0 b') = b'$$
$$\implies s\gamma_0(b' - b'\gamma_0 1) = b'$$
$$\implies s\gamma_0(b' - b') = b'$$
$$\implies 0 = b',$$

it is contradiction to $b\gamma_0 b' = 1$. Hence by using case 1, b is invertible.

Now, we prove that for every $m \in M$, $r \in R$ and $\gamma \in \Gamma$, $r\gamma m \in M$ and $m\gamma r \in M$.

Suppose $r\gamma m$ is not in M, then there exists $s \in R$ such that $r\gamma m\gamma_0 s = 1$. By using case 1, $s\gamma_0 r\gamma m = 1$ and by the contradiction (*), $s\gamma r\gamma_0 m = 1$. Thus $s\gamma r$ is inverse of m, in contradiction with $m \in M$. Hence $r\gamma m \in M$ and similarly $m\gamma r \in M$.

Let $\sum_{i=1}^{n} r_i \gamma_i m_i \in R\Gamma M$. Since $r_i \gamma_i m_i \in M$, for every $1 \leq i \leq n$ and M is an additively closed set, then $\sum_{i=1}^{n} r_i \gamma_i m_i \in M$, i.e $R\Gamma M \subseteq M$ and similarly $M\Gamma R \subseteq M$. Hence M is two-sided gamma ideal of R.

(2) \implies (3r): Let M be two-sided gamma ideal in R. Then M is right gamma ideal. Since 1 isn't in M, then $M \neq R$.

Let B be proper right gamma ideal in R. We show that $B \subseteq M$. If $b \in B$, then $b\Gamma R$ is right gamma ideal of B and therefore $b\Gamma R$ is a proper right gamma ideal in R. Thus b isn't invertible and hence $b \in M$, i.e $B \subseteq M$.

 $(3r) \implies (4r)$: It is clearly that M is a largest proper right gamma ideal.

 $(4r) \implies (5r)$. Let N be the largest proper right ideal. Let $r \in R$ and r and 1 - r aren't invertible. Then $r\Gamma R$ and $(1 - r)\Gamma R$ are proper gamma ideals of R, hence $r\Gamma R \subseteq N$ and $(1 - r)\Gamma R \subseteq N$.

We have $1 = (1 - r)\gamma_0 1 + r\gamma_0 1 \in (1 - r)\Gamma R + r\Gamma R \subseteq N$, i.e $1 \in N$, in contradiction with $N \subsetneq R$.

 $(5r) \implies (6)$: It suffices to show that every right invertible element is invertible. Let b has right inverse like b'. Then $b\gamma_0 b' = 1$.

Let $b' \gamma_0 b \in R$. We have two cases:

Case 1. $b' \gamma_0 b$ is right invertible, hence there is $s \in R$ such that $b' \gamma_0 b \gamma_0 s = 1$.

The left multiplication by $(b\gamma_0)$ gives

$$b\gamma_0 b' \gamma_0 b\gamma_0 s = b\gamma_0 1 \implies 1\gamma_0 b\gamma_0 s = b$$
$$\implies b\gamma_0 s = b$$
$$\implies b' \gamma_0 b = 1.$$

Case 2. $(1 - b' \gamma_0 b)$ is right invertible, hence there is $s \in R$ with $(1 - b' \gamma_0 b)\gamma_0 s = 1$. The left multiplication by $(b\gamma_0)$ gives

$$b\gamma_0(1 - b'\gamma_0 b)\gamma_0 s = b\gamma_0 1 \implies (b\gamma_0 1 - b\gamma_0 b'\gamma_0 b)\gamma_0 s = b$$
$$\implies (b - 1\gamma_0 b)\gamma_0 s = b$$
$$\implies (b - b)\gamma_0 s = b$$
$$\implies 0 = b.$$

It is in contradiction to $b\gamma_0 b' = 1$. Hence by using case 1, $b'\gamma_0 b = 1$. (6) \implies (1). Suppose $m_1, m_2 \in M$, we show that $m_1 + m_2 \in M$. If $m_1 + m_2$ isn't in M, then $m_1 + m_2$ is invertible, so there is $s \in R$ with $(m_1 + m_2)\gamma_0 s = 1$ thus $m_1\gamma_0 s = 1 - m_2\gamma_0 s$.

But $m_1\gamma_0 s \in M$ must be held, otherwise $m_1\gamma_0 s$ is invertible, i.e there is $b \in R$ such that $m_1\gamma_0 s\gamma_0 b = 1$ and then $s\gamma_0 b$ is right inverse of m_1 . Since (6) \implies (5r) holds, we can use the fact that every right invertible element is invertible. Hence m_1 isn't in M, there is contradiction.

Similarly it is proved that $m_2\gamma_0 s \in M$ and by using (6), $(1-m_2\gamma_0 s)$ is invertible and therefore $m_1\gamma_0 s$ is invertible, in contradiction with $m_1\gamma_0 s \in M$.

Definition 4.6. A gamma ring R which satisfies the equivalent properties of Theorem 4.4 is called local gamma ring.

Corollary 4.7. $A_{\Gamma P}$ is a local Γ -ring.

Proof. It follows from Theorem 4.3 and Theorem 4.4. \Box

References

- M. F. Atiyah and I. G. Macdonald, Introduction to Commutative Algebra. New York, Addison-Wesley Publishing company, 1969.
- [2] W. E. Barnes, On the Γ- ring of Nobusawa. Pacific J. Math., 18 (1966), 411-442.

- [3] K. K. Dey and A. C. Paul, Commutativity of prime gamma rings with left centralizers. J. of scientific research, (2014), 69-77.
- [4] K. K. Dey and A. C. Paul, Free action on prime and semiprime gamma rings. Gen. Math. Notes., 5 (2011), 7-14.
- [5] K. K. Dey, A. C. Paul, and S. Rakhimov, Dependent elements in prime and semiprime gamma rings. Asian. J. of algebra, 5 (2012), 11-20.
- [6] M. Dumitru, Gamma rings; Some interpretation used in the study of their radicals. U.P.B. Sci. Bull, Series A, 71 (2009), 9-22.
- [7] M. D. Fazlul and A. C. Paul, On centralizers of semiprime gamma rings. Int. Math. Forum, 6 (2011), 627-638.
- [8] N. S. Gopalakrishnan, Commutative Algebra. New York, 1984.
- [9] S. Kyuno, On the prime gamma rings. *Pacific J. Math.*, 75 (1978), 185-190.
- [10] N. Nobusawa, On the generalization of the ring theorey. Osaka J. Math., 1 (1964), 81-89.
- [11] A. C. Paul and S. Uddin, Lie structure in simple gamma ring. Int. J. of pure and appl. sci. and tech., (2010), 63-70.
- [12] C. Selvarage, Petchimuthu, On strongly prime gamma ring and Morita equvalence of rings. Southeast Asian Bulletin of Math., 19 (2008), 1137-1147.
- [13] Z. Ullah and M. A. Chaudhry, On K-centralizers of semiprime gamma rings. Int. J. Algebra, 6 (2012), 1001-1010.

Zohre Seyed Tabatabaee

Ph.D Student of Mathematics Department of Mathematics Kerman Branch, Islamic Azad University Kerman, Iran E-mail: parivash.tabatabaee@yahoo.com

Tahereh Roodbarylor

Assistant Professor of Mathematics Department of Mathematics Kerman Branch, Islamic Azad University Kerman, Iran E-mail: taherehroodbarylor1352@gmail.com