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where f is twice continuously differentiable. Secant methods are popular
iterative methods for solving (1), with the iterates being constructed as
follows:

xk+1 = xk + αkdk,

where αk is a step size and dk is a searchdirection obtained by solving
Bkdk = −gk, with gk = f(xk) and Bk an approximation of the Hessian
matrix of f at xk satisfying the secant equation.

The standard secan equation can be established as follows (see [9]). We
have

gk+1 − gk =
 1

0
2f(xk + tsk)dtsk, (2)

where sk = xk+1−xk. SinceBk+1 is to approximateG(xk+1) = ∇2f(xk+1),
the secant equation is defined to be

Bk+1sk = yk, (3)

where yk = gk+1 − gk. The relation (3) is sometimes called the stan-
dard secant equation. (see Dennise and Moré [8] for a comprehensive
treatment of quasi-Newton methods particularly the secant methods).

A family of secant methods is Broyden family [2] in which the updates
are defined by

Bk+1 = Bk −
Bksks

T
kBk

sTkBksk
+
yky

T
k

sTk yk
+ µwk.w

T
k ,

wk = (sTkBksk)1/2[
yk
sTk yk

− Bksk
sTkBksk

], (4)

where µ is a scale parameter. The BFGS, DFP and SR1 updates are
obtained by setting µ = 0, µ = 1 and µ = 1/(1 − sTkBksk/s

T
kBk),

respectively.

Among the secant methods, the most efficient quasi-Newton method is
the BFGS method which was proposed by Broyden [2], Fletcher [10],
Goldfarb [12] and Shanno [19].

When f is convex, the global convergence of the BFGS method have been
studied by some authors (see [4, 5, 15, 19, 21]). Dai [5] have constructed
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an example to show that the standard BFGS method may fail for non-
convex functions with inexact line search. Mascarenhas [18] showed that
the nonconvergence of the standard BFGS method even with exact line
search. Li and Fukushima [16, 17] made a modification on the standard
BFGS method and developed a modified BFGS method that is globally
convergent without a convexity assumption on the objective function f .

The usual Secant equation employs only the gradients and the available
function values are ignored. In order to get a higher order accuracy
of approximating the Hessian matrix of the objective function, several
researchers have modified the usual Secant equation (3) to make full use
of both the gradient and function values (see [22]-[25]).
Zhang and Xu [25] using Taylor’s Series modified (3) as follows:

Bk+1sk = y =k , (5)

where

y =k = yk +
ϑk

sk2
sk, ϑk = 6(fk − fk+1) + 3(gk + gk+1)T sk. (6)

Using modified secant equation (5), they proposed the following BFGS
update formula:

Bk+1 = Bk −
Bksks

T
kBk

sTkBksk
+
y =k y

=T
k

sTk y
=
k k
. (7)

They showed that the modified BFGS method is localy and superlinearly
converge with the assumption f is uniformly convex function. However,
if f is a general function may this method nonconvergence.
This motivated us to modification on modified secant equation (5).

Then, we make use of the new secant equation in a BFGS update for-
mula. Under some proper assumptions, we prove the global convergence
property for general functions.

The rest of our work is organized as follows: In Section 2, we introduce
an alternative approximation of the secant equation. In Section 3, we
investigate the convergence of our proposed method. In Section 4, we
report the numerical results.
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2. Modified Secant Equation

In this section, we first describe a modified secant equation in [25] that
utilize both the available gradient and function values. Moreover, this
method has a better theoretical feature than the usual secant equation
and the secant equation introduced in [22].
Using the Taylor’s series for f(x), we have

fk = fk+1 − gTk+1sk +
1
2
sTkGk+1sk −

1
3!
sTk (Tk+1sk)sk +O( sk 4), (8)

and

sTk gk = sTk gk+1 − sTkGk+1sk +
1
2
sTk (Tk+1sk)sk +O( sk 4), (9)

where

sTk (Tk+1sk)sk =
n

i,j,l=1

∂3f(xk+1)
∂xi∂xj∂xl

∂sik∂s
j
k∂ks

l. (10)

Cancelation of the terms which include the tensor yields

sTkGk+1sk  (gk+1 − gk)T sk + 6(fk − fk+1) + 3(gk + gk+1)T sk. (11)

Then using a new approximation Bk+1, we have

sTkBk+1sk = yTk sk + ϑk, (12)

where

ϑk = 6(fk − fk+1) + 3(gk + gk+1)T sk. (13)

This suggests the following new secant equation

Bk+1sk = y =k , (14)

where y =k = yk + ϑk
sk2 sk and ϑk = 6(fk − fk+1) + 3(gk + gk+1)T sk.

One theoretical advantages of the new modified secant method can be
seen from the following theorem [24].
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Theorem 2.1. Suppose that the function f is sufficiently smooth. If
sk is small enough, then we have:

sTk (Gk+1sk − y =k ) = O( sk 4), (15)

and

sTk (Gk+1sk − yk) = O( sk 3). (16)

Notice that if the objective function f is uniformly convex, then
y =

T

k sk = yTk sk + 6(fk − fk+1) + 3(gk + gk+1)T sk
= 6(fk − fk+1) + 2(gk + 2gk+1)T sk > 0.

which guarantees the positive definite of the matrix Bk for uniformly
convex function. However, if f is a general function, may happen y =T

k sk 
0. Hence the positive definiteness of the matrix Bk can not be guarantee
for general function.

In addition, Theorem 2.1, demonstrate if sk > 1, the standard secant
equation is expected to be more accurate than the modified secant equa-
tion (14). In this case, the use of (14) does not seem to be suitable.
To overcome these problems, we introduce some modification on (14) as
follows:

Bk+1sk = y∗k, (17)

with

y∗k = yk + γgk2sk +max(− yTk sk
sk2

, 0)sk (18)

where yk = yk + ρk
ϑk
sk2 sk and γ is a positive constant and

pk =

e−||sk||, for ||sk||  1,
0, otherwise.

(19)

Clearly, if sk −→ 0 then ρk −→ 1 and if sk > 1 then ρk = 0.

It is easy to see

y∗
T

k sk  ρkγgk2sk2 > 0, (20)
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which guarantees that positive definite of the update matrix Bk, for the
general function.

We can now give a new BFGS algorithm using our new secant relation
for solving (1) as follows.

Algorithm 1: New modified BFGS method:

Step 1: given ε as a tolerance for convergence, σ1 ∈ (0, 1), σ2 ∈ (σ1, 1),
a sarting point x0 ∈ Rn, and a positive definite matrix B0. Set k = 0.

Step 2: If gk < ε then stop.

Step 3: Compute a search direction dk : Solve Bkdk = −gk.
Step 4: Compute αk by using the following Wolfe conditions:

f(xk + αkdk)  f(xk) + σ1αkg
T
k dk, (21)

and
g(xk + αkdk)Tdk  σ2gTk dk. (22)

Step 5: Set xk+1 = xk + αkdk. Compute y∗k by (18). Update Bk+1 by

Bk+1 = Bk −
Bksks

T
kBk

sTkBksk
+
y∗ky

∗T
k

sTk y
∗
k

. (23)

Step 6: Set k = k + 1 and go to Step 2.

Next, we will investigate the global and superlinear convergence of the
proposed Algorithm without convexity assumption on the objective func-
tion f .

3. Convergence analysis

Here, we establish the convergence of Algorithm 1. We need the following
usual assumptions.

Assumption A. The level set D = {x | f(x)  f(x0)} is bounded.

Assumption B. The function f is continuously differentiable on D, and
there is a constant L  0 such that, for all x, y ∈ D,  g(x) − g(y) 
L  x− y  .
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Clearly, these assumptions imply that there exists a constant m > 0
such that

g(x)  m, ∀x ∈ D. (24)

From assumption A and the Wolfe conditions we deduce that {f(xk)}
is a nonincreasing sequence, which ensures {xk} ⊂ D and the existence
of x∗ such that

lim
k→∞

f(xk) = f(x∗). (25)

In order to establish the global convergence of Algorithm 1, we present
the following useful Lem- mas.

Lemma 3.1. Suppose that Assumption B holds and y∗k define by (14).
Then, there exist

y∗k Msk, (26)

where M is positive constant.

Proof. Considering Assumption B and definition of ϑk, we have

|ϑk|  3Lsk (See the relations leading to (5.10) of [23]). (27)

Therefore, since ρk ∈ [0, 1] we can give

yk = yk + ρk
ϑk

sk2
sk  yk+

|ϑk|
sk

 Lsk+ 3Lsk = 4Lsk.

(28)
Hence, from (24) and (28) we have

y∗k  2yk+ γgk2sk  (2L+ γm2)sk. (29)

This equation imply the (26) with M = 2L+ γm2. 

Lemma 3.2. Let f satisfy assumptions A and B, and {xk} be generated
by Algorithm 1 and there exist constants a1 and a2 such that

Bksk  a1sk, sTkBksk  a2sk2, (30)

for infinitely many k. Then, we have

lim inf
k→∞

g(xk) = 0. (31)
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Proof. Since sk = αkdk, it is clear that (30) holds true if sk is replaced
by dk. From (30) and the relation gk = −Bkdk, we have

dTkBkdk  a2dk2, a2dk  gk  a1dk. (32)

Let Λ be the set of indices k for which (30) hold. By using (22) and
Assumption B, we have

Lαkdk2  (gk+1 − gk)Tdk  −(1− σ2)gTk dk. (33)

This implies that, for any k ∈ Λ,

αk 
−(1− σ2)gTk dk

Ldk2
=

(1− σ2)dTkBkdk
Ldk2

 (1− σ2)a2
L

. (34)

Moreover, by (25), we obtain

∞

k=1

(fk−fk+1) = lim
N→∞

N

k=1

(fk−fk+1) = lim
N→∞

f(x1)−f(xN )) = f(x1)−f(x∗),

which yields
∞

k=1

(fk − fk+1) <∞.

Using (21), we obtain
∞

k=1

αkg
T
k dk <∞,

which ensures
lim
k→∞

αkg
T
k dk = 0.

This together with (34) lead to

lim
k∈Λ,k→∞

dTkBkdk = lim
k∈Λ,k→∞

−gTk dk = 0.

which long with (32), yields (31). 
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The following Lemma is taken from [3], we represent it here but omit
the proof.

Lemma 3.3. (Theorem 2.1 of [3]) If there are positive constants M1

and M2 such that for all k  0,

y∗k2

sTk y
∗
k

M1 and
sTk y

∗
k

sk2
M2, (35)

then there exist constants a1 and a2 such that, for any positive integer
t, (30) holds for at least [ t2 ] values of k ∈ {1, 2, ..., t}.
Now, we prove the global convergence for Algorithm 1.

Theorem 3.4. Let f satisfy the assumptions A and B, and {xk} be
generated by Algorithm 1. Then (31) holds.

Proof. Assume, to the contrary that the conclusion is not true. Then,
there exists a positive constant δ such that, for all k,

gk > δ, (36)

Hence, (20) imply that

y∗kT sk  δ
2sk2, (37)

Therefore, using Lemma 3.1 and (37), we obtain

y∗k2
s∗k

T y∗k
M, ∀k  0.

Hence, (35) holds for all k. Using Lemma 3.3 to the subsequence {Bk}k∈K,

clearly there exist constants a1 > 0 and a2 > 0 such that (30) holds for
infinitely many k. Then Lemma 3.2 compltes the proof. 
The above theorem shows a global convergence property of MBFGS
method without convexity assumption on the objective function.

To establish the superlinear convergence of Algorithm 1, we need further
the following assumption.



112 R. DEHGHANI AND M. M. HOSSEINI

Assumption C. Suppose xk → x∗ at which g(x∗) = 0, G(x) is positive
definite, and G(x) is Holder continuous at x∗, i.e., there exist constants
v ∈ (0, 1) and L2 > 0 such that

G(x)−G(x∗)  L2x− x∗v,

for all x in the neighborhood of x∗.

Similar to the proof of Theorem 3.8 in [17], it is not difficult to prove
the superlinear convergence of Algorithm 1. Hence, we only present the
theorem without giving the proof.

Theorem 3.5. Suppose that assumptions A, B and C hold. Let the se-
quence {xk} be generated by the Algorithm 1. Then {xk} is superlinearly
convergent.

4. Numerical Results

We are to compare the performance of the following four methods on
some unconstrained optimization problems:

BFGS: the usual BFGS method.
MBFGS: proposed method (Algorithm 1).

ZXMBFGS: the modified BFGS of Zhang and Xu using (5) [25].

BFGSAk(2): using the following Modified secant equation to update

Bk which suggest by Wei et.al in [23]

Bk+1sk = yk +
θk
sk2

sk, (38)

where θk = 2(fk − fk+1) + (gk + gk+1)T sk.

We have tested all the considered algorithms on 120 test problems from
CUTEr library [14]. A summary of these problems are given in Table 1
of [7]. All codes were written in Matlab 2012 and run on PC with CPU
Intel(R) Core(TM) i5-4200 3.6 GHz, 4 GB of RAM memory and Centos
6.2 server Linux operation system.



USING A MODIFIED SECANT EQUATION... 113

In all algorithms, the initial matrix is B0 = I and the steplengths αk

satisfyies the Wolfe conditions, with σ1 = 0.001, and σ2 = 0.1.

For all the test problems, the termination condition is gk  10−5, or
fk+1 − fk  10−20max(1, fk).

We use the profiles of Dolan and Moré (see [9]) to evaluate performance
of these four algorithms with respect to number of iteration and the total
number of function and gradient evaluations being equal to Nf + nNg,
where Nf and Ng denote the number of function and gradient evalua-
tions respectively. Figs 1 and 2 demonstrate the results of the compar-
isons. From Figs. 1 and 2, it is easy to observe that the MBFGS method
is the most efficient for solving these 120 test problems among the four
methods. We see that MBFGS method solves about 75% and 74% of
the test problems with the fewest number of iterations and function
evaluations, respectively.

Figure 1. The Dolan-Moré performance profiles using number of
function evoluations.

Figure 2. The Dolan-Moré performance profiles using number of
iterations.
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5. Conclusion

We introduced a modified BFGS (MBFGS) method using a new secant
equation. An interesting feature of the proposed method is to take both
the gradient and function values into account. Under suitable assump-
tions, we established the global convergence of the proposed method for
the general functions. Numerical results on the collection of problems
in CUTER show that the proposed method is efficient as compared to
several proposed BFGS methods.
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