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Abstract. In this paper, we introduce new generalizations for the well
konwn (k,s,h)-Riemann-Liouville, (k,s)-Hadamard and (k,s,h)-Hadamard
fractional integral operators. We prove some of their properties. Then,
using our proposed approaches, we establish some applications on in-
equalities.
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1. Introduction

In 1993 [17] Samko, Kilbas and Marichev have introduced the fractional
integration with respect to another function g it given by:

Jαa,gf (x) =
1

Γ (α)

 x

a
(g (x)− g (t))α−1 g (t) f (t) dt.
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Then, in 2011, [11] Katugampola has presented the following general-
ization:

 x

a
ts1dt1

 t1

a
ts2dt2...

 tn−1

a
tsndtn

=
(s+ 1)1−n

Γ (n)

 x

a

�
xs+1 − ts+1

n−1
tsf (t) dt, n ∈ N∗.

For α > 0, s ∈ −{−1} , the fractional integral was given by

sJαa f (x) =
(s+ 1)1−α

Γ (α)

 x

a

�
xs+1 − ts+1

α−1
tsf (t) dt.

In [14], Mubeen and Habibullah have introduced the following k−Riemann-
Liouville fractional integral:

kJ
α
a f (x) =

1
kΓk (α)

 x

a
(x− t)

α
k
−1 tsf (t) dt, α > 0, x > a,

where k > 0 and Γk (α) =
∞
0 e−

uk

k uα−1du, α > 0.

Very recently, Sarikaya et al. [19] have elaborated another approach for
the (k, s)−Riemann-Liouville fractional integration. The related defini-
tion is given by:

s
kJ

α
a f (x) =

(s+ 1)1−
α
k

kΓk (α)

 x

a

�
xs+1 − ts+1

α
k
−1
tsf (t) dt.

Many researchers have been concerned with the fractional integral theory
with its applications. For more details, we refer to [4, 5, 6, 7, 8, 11, 18,
19, 21, 23].

Our purpose in this paper is to present new generalizations for the above
cited approaches by introducing new integral operators related to the
fractional integration theory. Then, we prove some of their properties
of semi group and commutativity properties. Some applications for the
introduced operators are also discussed.
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2. (k, s, h) Riemann-Liouville, (k, s)-Hadamard
and (k, s, h)-Hadamard Integral Operators

In this section, we begin by recalling the fractional integration definitions
in the sense of Riemann-Liouville and those of Hadamard. Then, we
introduce new concepts that generalize the previous definitions. Some
properties of the introduced approaches are also discussed. From the
papers [14,17,19], we present:

Definition 2.1. The Hadamard fractional integral of order α ∈+ of a
function f(t), for all 0 < a < t <∞, is defined as

Iαa (f (t)) =
1

Γ(α)

 t
a

�
log t

τ

α−1 f(τ)
τ dτ ; α  0, 0 < a  τ  t , (1)

provided the integral exists, where Γ (α) =
∞
0 e−uuα−1du.

Definition 2.2. The k−Riemann–Liouville fractional integral of order
α > 0, for a continuous function f on [a, b] is defined as

kJ
α
a (f (t)) =

1
kΓk (α)

 t

a
(t− τ)

α
k
−1 f (τ) dτ, (2)

where k > 0, Γk (α) =
∞
0 e−

uk

k uα−1du, α > 0.

Definition 2.3. The (k, h)−Riemann–Liouville fractional integral of
order α > 0, for a continuous function f on [a, b], with respect to another
measurable, increasing, positive and monotone function h on (a, b] and
h (t) having a continuous derivative h (t) on (a, b) , is defined by

kJ
α
a,h (f (t)) =

1
kΓk (α)

 t

a
(h (t)− h (τ))

α
k
−1 h (τ) f (τ) dτ. (3)

Definition 2.4. The (k, s)−Riemann–Liouville fractional integral of or-
der α > 0, for a continuous function f on [a, b] is defined as

s
kJ

α
a (f (t)) =

(s+ 1)1−
α
k

kΓk (α)

 t

a

�
ts+1 − τ s+1

α
k
−1
τ sf (τ) dτ, (4)
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where k > 0, s ∈ R\ {−1} .
Now, we introduce the (k, s, h)−Riemann-Liouville fractional integration
as follows:

Definition 2.5. Let f ∈ L1[a, b] and h be a measurable, increasing,
positive, monotone function with h ∈ C1([a, b]). The (k, s, h)−Riemann–
Liouville fractional integral with respect to h, is defined by

s
kJ

α
a,h (f (t)) =

(s+ 1)1−
α
k

kΓk (α)

 t

a

�
hs+1 (t)− hs+1 (τ)

α
k
−1
hs (τ)h (τ) f (τ) dτ,

(5)
where α > 0, k > 0, s ∈ R\ {−1} .
We introduce also the following definition related to the (k, h)−Hadamard
integration:

Definition 2.6. Let f ∈ L1[a, b] and h be a measurable, increasing,
positive, monotone function with h ∈ C1([a, b]). The (k, h)−Hadamard
fractional integral with respect to h is defined by:

kI
α
a,h (f (t)) =

1
kΓk(α)

 t
a


log h(t)

h(τ)

α
k
−1

h(τ)
h(τ) f (τ) dτ, α > 0, (6)

where 0 < a < t  b, k > 0.

In a more general case, we introduce also the (k, s, h)−Hadamard frac-
tional integration as follows:

Definition 2.7. Let f ∈ L1[a, b] and h be a measurable, increasing,
positive, monotone function with h ∈ C1([a, b]). The (k, s, h)−Hadamard
fractional integral with respect to h is defined by:

s
kI

α
a,h (f (t)) =

(s+ 1)1−
α
k

kΓk (α)

 t

a

�
logs+1 h (t)− logs+1 h (τ)

α
k
−1 (7)

× logs h (τ) h
 (τ)
h (τ)

f (τ) dτ,

where 0 < a < t  b, α > 0, k > 0, s ∈ R\ {−1} .
Now, we are able to prove the following properties.
Thanks to Definition 5, we prove:
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Theorem 2.8. The (k, s, h)-Riemann-Liouville integral operator s
kJ

α
a,h

f(t) exists for any t ∈ [a, b] and s
kJ

α
a,h f(t) ∈ L1[a, b], α > 0.

Proof. Let T1 : [a, b]× [a, b]→ R, where

T1 (t, τ) =
�
hs+1 (t)− hs+1 (τ)

α
k
−1
hs (τ)h (τ)



+

=






�
hs+1 (t)− hs+1 (τ)

α
k
−1
hs (τ)h (τ) , a  τ < t  b

0 , a  t < τ  b.

(8)

Since T1 is measurable on [a, b]× [a, b], then we have

 b

a

 b

a

�
hs+1 (t)− hs+1 (τ)

α
k
−1
hs (τ)h (τ) f (τ) dτ


dt




 b

a
|f (t)|


 t

a

�
hs+1 (t)− hs+1 (τ)

α
k
−1
hs (τ)h (τ) dτ




dt

 k

α |s+ 1|

 b

a

�
hs+1 (t)− hs+1 (a)

α
k |f (t)| dt

 k

α |s+ 1|
�
hs+1 (b)− hs+1 (a)

α
k

 b

a
|f (t)| dt

 k

α |s+ 1|
�
hs+1 (b)− hs+1 (a)

α
k fL1[a,b] <∞.

Thus, the function T1 is integrable over [a, b] × [a, b] by Tonelli Theo-
rem. Hence, by Fubini theorem, we deduce that

 b

a
T1 (t, τ) f (t) dt

is in the space L1([a, b]). Therefore, skJ
α
a,h f(t) exists for any t ∈ [a, b]. 

Using Definitions 5 and 6, we prove the following result:

Proposition 2.9. We have:

lim
s−→−1+

s
kJ

α
a,hf = kI

α
a,hf. (9)
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Proof. For any t ∈ [a, b], we can write:

lim
s−→−1+

s
kJ

α
a,h (f (t))

= lim
s−→−1+

(s+ 1)1−
α
k

kΓk (α)

 t

a

�
hs+1 (t)− hs+1 (τ)

α
k
−1
hs (τ)h (τ) f (τ) dτ

= lim
s−→−1+

1
kΓk (α)

 t

a


hs+1 (t)− hs+1 (τ)

s+ 1

α
k
−1
hs (τ)h (τ) f (τ) dτ

=
1

kΓk (α)

 t

a
lim

s−→−1+


hs+1 (t)− hs+1 (τ)

s+ 1

α
k
−1
hs (τ)h (τ) f (τ) dτ

=
1

kΓk (α)

 t

a


log

h (t)
h (τ)

α
k
−1 h (τ)

h (τ)
f (τ) dτ.

Hence, the proposition is proved. 
With the same arguments as before, we can confirm that

Theorem 2.10 The kI
α
a,h f(t) exists for any t ∈ [a, b].
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k
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Bk (α, β) .

Therefore, by (11), (13) and k−beta function, we have
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s
kJ

α
a,h


s
kJ

β
a,h (f (t))


(14)

=
(s+ 1)1−

α+β
k

kΓk (α+ β)

 t

a

�
hs+1 (t)− hs+1 (r)

α+β
k
−1
hs (r)h (r) f (r) dr

= s
kJ

α+β
a,h (f (t)) .

The proof of Theorem 2.11 is completed. 
In the following result, we shall prove that the (k, s, h)−Hadamard in-
tegral operator is well defined. We have:

Theorem 2.12. The s
kI

α
a,h f(t) exists for any t ∈ [a, b].

Proof. Let us consider the application T3 : [a, b]× [a, b]→ R, such that

T3 (t, τ) =
�
logs+1 h (t)− logs+1 h (τ)

α
k
−1 logs h (τ)

h (τ)
h (τ)



+

(15)

=






�
logs+1 h (t)− logs+1 h (τ)

α
k
−1 logs h (τ) h

(τ)
h(τ) , a  τ < t  b

0, ..a  t < τ  b.

We have T3 is measurable on [a, b]× [a, b]. Hence, we can write

 b

a

 b

a

�
logs+1 h (t)− logs+1 h (τ)

α
k
−1 logs h (τ)

h (τ)
h (τ)

f (τ) dτ

dt




 b

a
|f (t)|


 t

a

�
logs+1 h (t)− logs+1 h (τ)

α
k
−1 logs h (τ)

h (τ)
h (τ)

 dτ

dt

 k

α |s+ 1|

 b

a

�
logs+1 h (t)− logs+1 h (a)

α
k |f (t)| dt (16)


k
�
logs+1 h (b)− logs+1 h (a)

α
k

α |s+ 1|

 b

a
|f (t)| dt


k
�
logs+1 h (b)− logs+1 h (a)

α
k

α |s+ 1| fL1[a,b] <∞.

94 M. BEZZIOU, Z. DAHMANI AND M. Z. SARIKAYA

s
kJ

α
a,h


s
kJ

β
a,h (f (t))


(14)

=
(s+ 1)1−

α+β
k

kΓk (α+ β)

 t

a

�
hs+1 (t)− hs+1 (r)

α+β
k
−1
hs (r)h (r) f (r) dr

= s
kJ

α+β
a,h (f (t)) .

The proof of Theorem 2.11 is completed. 
In the following result, we shall prove that the (k, s, h)−Hadamard in-
tegral operator is well defined. We have:

Theorem 2.12. The s
kI

α
a,h f(t) exists for any t ∈ [a, b].

Proof. Let us consider the application T3 : [a, b]× [a, b]→ R, such that

T3 (t, τ) =
�
logs+1 h (t)− logs+1 h (τ)

α
k
−1 logs h (τ)

h (τ)
h (τ)



+

(15)

=






�
logs+1 h (t)− logs+1 h (τ)

α
k
−1 logs h (τ) h

(τ)
h(τ) , a  τ < t  b

0, ..a  t < τ  b.

We have T3 is measurable on [a, b]× [a, b]. Hence, we can write

 b

a

 b

a

�
logs+1 h (t)− logs+1 h (τ)

α
k
−1 logs h (τ)

h (τ)
h (τ)

f (τ) dτ

dt




 b

a
|f (t)|


 t

a

�
logs+1 h (t)− logs+1 h (τ)

α
k
−1 logs h (τ)

h (τ)
h (τ)

 dτ

dt

 k

α |s+ 1|

 b

a

�
logs+1 h (t)− logs+1 h (a)

α
k |f (t)| dt (16)


k
�
logs+1 h (b)− logs+1 h (a)

α
k

α |s+ 1|

 b

a
|f (t)| dt


k
�
logs+1 h (b)− logs+1 h (a)

α
k

α |s+ 1| fL1[a,b] <∞.

94 M. BEZZIOU, Z. DAHMANI AND M. Z. SARIKAYA

s
kJ

α
a,h


s
kJ

β
a,h (f (t))


(14)

=
(s+ 1)1−

α+β
k

kΓk (α+ β)

 t

a

�
hs+1 (t)− hs+1 (r)

α+β
k
−1
hs (r)h (r) f (r) dr

= s
kJ

α+β
a,h (f (t)) .

The proof of Theorem 2.11 is completed. 
In the following result, we shall prove that the (k, s, h)−Hadamard in-
tegral operator is well defined. We have:

Theorem 2.12. The s
kI

α
a,h f(t) exists for any t ∈ [a, b].

Proof. Let us consider the application T3 : [a, b]× [a, b]→ R, such that

T3 (t, τ) =
�
logs+1 h (t)− logs+1 h (τ)

α
k
−1 logs h (τ)

h (τ)
h (τ)



+

(15)

=






�
logs+1 h (t)− logs+1 h (τ)

α
k
−1 logs h (τ) h

(τ)
h(τ) , a  τ < t  b

0, ..a  t < τ  b.

We have T3 is measurable on [a, b]× [a, b]. Hence, we can write

 b

a

 b

a

�
logs+1 h (t)− logs+1 h (τ)

α
k
−1 logs h (τ)

h (τ)
h (τ)

f (τ) dτ

dt




 b

a
|f (t)|


 t

a

�
logs+1 h (t)− logs+1 h (τ)

α
k
−1 logs h (τ)

h (τ)
h (τ)

 dτ

dt

 k

α |s+ 1|

 b

a

�
logs+1 h (t)− logs+1 h (a)

α
k |f (t)| dt (16)


k
�
logs+1 h (b)− logs+1 h (a)

α
k

α |s+ 1|

 b

a
|f (t)| dt


k
�
logs+1 h (b)− logs+1 h (a)

α
k

α |s+ 1| fL1[a,b] <∞.

94 M. BEZZIOU, Z. DAHMANI AND M. Z. SARIKAYA

s
kJ

α
a,h


s
kJ

β
a,h (f (t))


(14)

=
(s+ 1)1−

α+β
k

kΓk (α+ β)

 t

a

�
hs+1 (t)− hs+1 (r)

α+β
k
−1
hs (r)h (r) f (r) dr

= s
kJ

α+β
a,h (f (t)) .

The proof of Theorem 2.11 is completed. 
In the following result, we shall prove that the (k, s, h)−Hadamard in-
tegral operator is well defined. We have:

Theorem 2.12. The s
kI

α
a,h f(t) exists for any t ∈ [a, b].

Proof. Let us consider the application T3 : [a, b]× [a, b]→ R, such that

T3 (t, τ) =
�
logs+1 h (t)− logs+1 h (τ)

α
k
−1 logs h (τ)

h (τ)
h (τ)



+

(15)

=






�
logs+1 h (t)− logs+1 h (τ)

α
k
−1 logs h (τ) h

(τ)
h(τ) , a  τ < t  b

0, ..a  t < τ  b.

We have T3 is measurable on [a, b]× [a, b]. Hence, we can write

 b

a

 b

a

�
logs+1 h (t)− logs+1 h (τ)

α
k
−1 logs h (τ)

h (τ)
h (τ)

f (τ) dτ

dt




 b

a
|f (t)|


 t

a

�
logs+1 h (t)− logs+1 h (τ)

α
k
−1 logs h (τ)

h (τ)
h (τ)

 dτ

dt

 k

α |s+ 1|

 b

a

�
logs+1 h (t)− logs+1 h (a)

α
k |f (t)| dt (16)


k
�
logs+1 h (b)− logs+1 h (a)

α
k

α |s+ 1|

 b

a
|f (t)| dt


k
�
logs+1 h (b)− logs+1 h (a)

α
k

α |s+ 1| fL1[a,b] <∞.

94 M. BEZZIOU, Z. DAHMANI AND M. Z. SARIKAYA

s
kJ

α
a,h


s
kJ

β
a,h (f (t))


(14)

=
(s+ 1)1−

α+β
k

kΓk (α+ β)

 t

a

�
hs+1 (t)− hs+1 (r)

α+β
k
−1
hs (r)h (r) f (r) dr

= s
kJ

α+β
a,h (f (t)) .

The proof of Theorem 2.11 is completed. 
In the following result, we shall prove that the (k, s, h)−Hadamard in-
tegral operator is well defined. We have:

Theorem 2.12. The s
kI

α
a,h f(t) exists for any t ∈ [a, b].

Proof. Let us consider the application T3 : [a, b]× [a, b]→ R, such that

T3 (t, τ) =
�
logs+1 h (t)− logs+1 h (τ)

α
k
−1 logs h (τ)

h (τ)
h (τ)



+

(15)

=






�
logs+1 h (t)− logs+1 h (τ)

α
k
−1 logs h (τ) h

(τ)
h(τ) , a  τ < t  b

0, ..a  t < τ  b.

We have T3 is measurable on [a, b]× [a, b]. Hence, we can write

 b

a

 b

a

�
logs+1 h (t)− logs+1 h (τ)

α
k
−1 logs h (τ)

h (τ)
h (τ)

f (τ) dτ

dt




 b

a
|f (t)|


 t

a

�
logs+1 h (t)− logs+1 h (τ)

α
k
−1 logs h (τ)

h (τ)
h (τ)

 dτ

dt

 k

α |s+ 1|

 b

a

�
logs+1 h (t)− logs+1 h (a)

α
k |f (t)| dt (16)


k
�
logs+1 h (b)− logs+1 h (a)

α
k

α |s+ 1|

 b

a
|f (t)| dt


k
�
logs+1 h (b)− logs+1 h (a)

α
k

α |s+ 1| fL1[a,b] <∞.

94 M. BEZZIOU, Z. DAHMANI AND M. Z. SARIKAYA

s
kJ

α
a,h


s
kJ

β
a,h (f (t))


(14)

=
(s+ 1)1−

α+β
k

kΓk (α+ β)

 t

a

�
hs+1 (t)− hs+1 (r)

α+β
k
−1
hs (r)h (r) f (r) dr

= s
kJ

α+β
a,h (f (t)) .

The proof of Theorem 2.11 is completed. 
In the following result, we shall prove that the (k, s, h)−Hadamard in-
tegral operator is well defined. We have:

Theorem 2.12. The s
kI

α
a,h f(t) exists for any t ∈ [a, b].

Proof. Let us consider the application T3 : [a, b]× [a, b]→ R, such that

T3 (t, τ) =
�
logs+1 h (t)− logs+1 h (τ)

α
k
−1 logs h (τ)

h (τ)
h (τ)



+

(15)

=






�
logs+1 h (t)− logs+1 h (τ)

α
k
−1 logs h (τ) h

(τ)
h(τ) , a  τ < t  b

0, ..a  t < τ  b.

We have T3 is measurable on [a, b]× [a, b]. Hence, we can write

 b

a

 b

a

�
logs+1 h (t)− logs+1 h (τ)

α
k
−1 logs h (τ)

h (τ)
h (τ)

f (τ) dτ

dt




 b

a
|f (t)|


 t

a

�
logs+1 h (t)− logs+1 h (τ)

α
k
−1 logs h (τ)

h (τ)
h (τ)

 dτ

dt

 k

α |s+ 1|

 b

a

�
logs+1 h (t)− logs+1 h (a)

α
k |f (t)| dt (16)


k
�
logs+1 h (b)− logs+1 h (a)

α
k

α |s+ 1|

 b

a
|f (t)| dt


k
�
logs+1 h (b)− logs+1 h (a)

α
k

α |s+ 1| fL1[a,b] <∞.

94 M. BEZZIOU, Z. DAHMANI AND M. Z. SARIKAYA

s
kJ

α
a,h


s
kJ

β
a,h (f (t))


(14)

=
(s+ 1)1−

α+β
k

kΓk (α+ β)

 t

a

�
hs+1 (t)− hs+1 (r)

α+β
k
−1
hs (r)h (r) f (r) dr

= s
kJ

α+β
a,h (f (t)) .

The proof of Theorem 2.11 is completed. 
In the following result, we shall prove that the (k, s, h)−Hadamard in-
tegral operator is well defined. We have:

Theorem 2.12. The s
kI

α
a,h f(t) exists for any t ∈ [a, b].

Proof. Let us consider the application T3 : [a, b]× [a, b]→ R, such that

T3 (t, τ) =
�
logs+1 h (t)− logs+1 h (τ)

α
k
−1 logs h (τ)

h (τ)
h (τ)



+

(15)

=






�
logs+1 h (t)− logs+1 h (τ)

α
k
−1 logs h (τ) h

(τ)
h(τ) , a  τ < t  b

0, ..a  t < τ  b.

We have T3 is measurable on [a, b]× [a, b]. Hence, we can write

 b

a

 b

a

�
logs+1 h (t)− logs+1 h (τ)

α
k
−1 logs h (τ)

h (τ)
h (τ)

f (τ) dτ

dt




 b

a
|f (t)|


 t

a

�
logs+1 h (t)− logs+1 h (τ)

α
k
−1 logs h (τ)

h (τ)
h (τ)

 dτ

dt

 k

α |s+ 1|

 b

a

�
logs+1 h (t)− logs+1 h (a)

α
k |f (t)| dt (16)


k
�
logs+1 h (b)− logs+1 h (a)

α
k

α |s+ 1|

 b

a
|f (t)| dt


k
�
logs+1 h (b)− logs+1 h (a)

α
k

α |s+ 1| fL1[a,b] <∞.

94 M. BEZZIOU, Z. DAHMANI AND M. Z. SARIKAYA

s
kJ

α
a,h


s
kJ

β
a,h (f (t))


(14)

=
(s+ 1)1−

α+β
k

kΓk (α+ β)

 t

a

�
hs+1 (t)− hs+1 (r)

α+β
k
−1
hs (r)h (r) f (r) dr

= s
kJ

α+β
a,h (f (t)) .

The proof of Theorem 2.11 is completed. 
In the following result, we shall prove that the (k, s, h)−Hadamard in-
tegral operator is well defined. We have:

Theorem 2.12. The s
kI

α
a,h f(t) exists for any t ∈ [a, b].

Proof. Let us consider the application T3 : [a, b]× [a, b]→ R, such that

T3 (t, τ) =
�
logs+1 h (t)− logs+1 h (τ)

α
k
−1 logs h (τ)

h (τ)
h (τ)



+

(15)

=






�
logs+1 h (t)− logs+1 h (τ)

α
k
−1 logs h (τ) h

(τ)
h(τ) , a  τ < t  b

0, ..a  t < τ  b.

We have T3 is measurable on [a, b]× [a, b]. Hence, we can write

 b

a

 b

a

�
logs+1 h (t)− logs+1 h (τ)

α
k
−1 logs h (τ)

h (τ)
h (τ)

f (τ) dτ

dt




 b

a
|f (t)|


 t

a

�
logs+1 h (t)− logs+1 h (τ)

α
k
−1 logs h (τ)

h (τ)
h (τ)

 dτ

dt

 k

α |s+ 1|

 b

a

�
logs+1 h (t)− logs+1 h (a)

α
k |f (t)| dt (16)


k
�
logs+1 h (b)− logs+1 h (a)

α
k

α |s+ 1|

 b

a
|f (t)| dt


k
�
logs+1 h (b)− logs+1 h (a)

α
k

α |s+ 1| fL1[a,b] <∞.



NEW OPERATORS FOR FRACTIONAL INTEGRATION... 95

Consequently, T3 is integrable over [a, b]× [a, b] and
 b

a
T3 (t, τ) f (t) dt

is an integrable on [a, b]. That is skI
α
a,h f(t) exists for any t ∈ [a, b]. 

Theorem 2.13. Let g be an increasing, positive, monotone function
with g ∈ C1([a, b]). If h (t) = ln g (t) over [a, b], then

kJ
α
a,hf = kI

α
a,gf, and

s
kJ

α
a,hf =

s
kI

α
a,gf.

Proof. By Definition 3, we have
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−1 h (τ) f (τ) dτ
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−1 g
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g (τ)

f (τ) dτ

= kI
α
a,gf(t).

On the other hand, we observe that

s
kJ

α
a,hf (t) =
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g (τ)
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= s
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a,gf(t).

The proof is completed. 

Corollary 2.14. Let k > 0, α > 0 and s ∈ R\ {−1} . Then, we have
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α
a,g (1) =

(s+ 1)1−
α
k

kΓk (α)

 t

a

�
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logs+1 g (t)− logs+1 g (a)
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k , α > 0. (17)
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Now we present to the reader the semi group and the commutativity
properties for the (k, s, h)− Hadamard integral operator:

Theorem 2.15. Let f be continuous on [a, b], k > 0, s ∈ R\ {−1},and
let g (x) be an increasing and positive monotone function on [a, b] , having
a contunuous derivative g (x) on (a, b). Then, we have

s
kI

α
a,g


s
kI

β
a,g (f (t))


= s

kI
α+β
a,g (f (t)) = s

kI
β
a,g

�
s
kI

α
a,g (f (t))


, (18)

where α, β > 0, 0 < a < t  b.

Proof. We have

s
kI

α
a,g


s
kI

β
a,g (f (t))



=
(s+ 1)1−

α
k

kΓk (α)

 t

a

�
logs+1 g (t)− logs+1 g (τ)

α
k
−1 logs g (τ)

g (τ)
g (τ)

s
kI

β
a,g [f (τ)] dτ

=
(s+ 1)1−

α
k

kΓk (α)

 t

a

�
logs+1 g (t)− logs+1 g (τ)

α
k
−1 logs g (τ)

g (τ)
g (τ)

(19)

×

(s+ 1)1−

β
k

kΓk (β)

 τ

a

�
logs+1 g (τ)− logs+1 g (r)

α
k
−1 logs g (r)

g (r)
g (r)

f (r) dr


dτ

=
(s+ 1)2−

α+β
k

k2Γk (α) Γk (β)

 t

a
logs g (r)

g (r)
g (r)

f (r)

×
 t

r

�
logs+1 g (t)− logs+1 g (τ)

α
k
−1 logs g (τ)

g (τ)
g (τ)

×
�
logs+1 g (τ)− logs+1 g (r)

β
k
−1
dτ


dr.

Thanks to the change of variable

x =
logs+1 g (τ)− logs+1 g (r)
logs+1 g (t)− logs+1 g (r)

, (20)

it yields that
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s
kI

α
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kI

β
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= s

kI
α+β
a,g (f (t)) = s

kI
β
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�
s
kI

α
a,g (f (t))


, (18)

where α, β > 0, 0 < a < t  b.

Proof. We have

s
kI

α
a,g


s
kI

β
a,g (f (t))



=
(s+ 1)1−

α
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, (20)
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Theorem 2.15 is thus proved. 

3. Applications
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The functions f and g are synchronous on [0,+∞), so for all u, v  0,
we have

(f (u)− f (v)) (g (u)− g (v))  0,

imply that

f (u) g (u) + f (v) g (v)  f (u) g (v) + f (v) g (u) . (24)

Multipling both sides of (24) by s
kF

α
h (t, u)×s

kF
α
h (t, v) , u, v ∈ (a, t) , and

double integrating the resulting identity with respect to u and v from a

to t, we obtain

s
kI

α
a,h [(fg) (t)]

s
k I

α
a,h (1)  s

kI
α
a,h [f (t)]

s
kI

α
a,h [g (t)] .

Theorem 3.1 is thus proved. 

References

[1] G. A. Anastassiou, Advances on Fractional Inequalities, Springer Briefs
in Mathematics, Springer, New York, NY, USA, (2011).

[2] S. Anber, Z. Dahmani, and B. Bendoukha,Some new results using inte-
gration of arbitrary order, Int. J. Nonlinear Anal. Appl., 4 (2) (2013),
45-52.

[3] S. Belarbi and Z. Dahmani, On some new fractional integral inequalities,
J. Inequal. Pure Appl. Math., 10 (3) (2009), 1-12.

[4] V. L. Chinchane and D. B. Pachpatte, New fractional inequalities in-
volving Saigo fractional integral operator,Math. Sci. Lett., 3 (3) (2014),
133-139.

[5] Z. Dahmani and N. Bedjaoui, New generalized integral inequalities, J.
Advan. Res. Appl. Math., 3 (4) (2011), 58-66.

[6] Z. Dahmani, L. Tabharit, and S. Taf, New generalisations of Grüss in-
equality using Riemann-Liouville fractional integrals, Bulletin of Mathe-
matical Analysis and Applications, 2 (3) (2010), 93-99.

[7] Z. Dahmani and H. Metakkel El Ard, Generalizations of some inte-
gral inequalities using Riemann-Liouville operator, Int. J. Open Problems
Compt. Math., 4 (4) (2011), 40-46.



NEW OPERATORS FOR FRACTIONAL INTEGRATION... 99

[8] S. S. Dragomir, Some integral inequalities of Grüss type, Indian Journal
of Pure and Applied Mathematics, 31 (4) (2000), 397-415.

[9] S. S. Dragomir and N. T. Diamond, Integral inequalities of Grüss type
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