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1. Introduction and Preliminaries

The following convention for equalities and inequalities will be used.

Ordering relations The relations =, <,<=, defined below are called
ordering relations (in Rn). If x, y ∈ Rn, then
x = y ⇔ xi = yi, i = 1, ..., n
x < y ⇔ xi < yi, i = 1, ..., n
x <= y ⇔ xi <= yi, i = 1, ..., n
x  y ⇔ x <= y, and x = y.

Consider the minimization problem as the following.

Received: September 2017; Accepted: August 2018
∗Corresponding author

123

Journal of Mathematical Extension
Vol. 13, No. 2, (2019), 123-136
ISSN: 1735-8299

URL: http://www.ijmex.com

On Kuhn-Tucker Problem Related
to η-Convex Functions

M. Rostamian Delavar∗

University of Bojnord

M. De La Sen
University of Basque Country

Abstract. Using the concept of η-convex functions as generalization
of convex functions, we inquiry about the relation between minimiza-
tion problem and Kuhn-Tucker problem with new settings and give
sufficient and necessary optimality condition. Also the relation between
minimization problem and it’s Mond-Weir dual problem in η-convex
case is investigated.

AMS Subject Classification: 90C25; 26A51; 26D15; 52A01

Keywords and Phrases: η-Convex function, minimization problem,
Kuhn-Tucker problem, Mond-Weir duality problem

1. Introduction and Preliminaries

The following convention for equalities and inequalities will be used.

Ordering relations The relations =, <,<=, defined below are called
ordering relations (in Rn). If x, y ∈ Rn, then
x = y ⇔ xi = yi, i = 1, ..., n
x < y ⇔ xi < yi, i = 1, ..., n
x <= y ⇔ xi <= yi, i = 1, ..., n
x  y ⇔ x <= y, and x = y.

Consider the minimization problem as the following.

Received: September 2017; Accepted: August 2018
∗Corresponding author

123

Journal of Mathematical Extension
Vol. 13, No. 2, (2019), 123-136
ISSN: 1735-8299

URL: http://www.ijmex.com

On Kuhn-Tucker Problem Related
to η-Convex Functions

M. Rostamian Delavar∗

University of Bojnord

M. De La Sen
University of Basque Country

Abstract. Using the concept of η-convex functions as generalization
of convex functions, we inquiry about the relation between minimiza-
tion problem and Kuhn-Tucker problem with new settings and give
sufficient and necessary optimality condition. Also the relation between
minimization problem and it’s Mond-Weir dual problem in η-convex
case is investigated.

AMS Subject Classification: 90C25; 26A51; 26D15; 52A01

Keywords and Phrases: η-Convex function, minimization problem,
Kuhn-Tucker problem, Mond-Weir duality problem

1. Introduction and Preliminaries

The following convention for equalities and inequalities will be used.

Ordering relations The relations =, <,<=, defined below are called
ordering relations (in Rn). If x, y ∈ Rn, then
x = y ⇔ xi = yi, i = 1, ..., n
x < y ⇔ xi < yi, i = 1, ..., n
x <= y ⇔ xi <= yi, i = 1, ..., n
x  y ⇔ x <= y, and x = y.

Consider the minimization problem as the following.

Received: September 2017; Accepted: August 2018
∗Corresponding author

123

Journal of Mathematical Extension
Vol. 13, No. 2, (2019), 123-136
ISSN: 1735-8299

URL: http://www.ijmex.com

On Kuhn-Tucker Problem Related
to η-Convex Functions

M. Rostamian Delavar∗

University of Bojnord

M. De La Sen
University of Basque Country

Abstract. Using the concept of η-convex functions as generalization
of convex functions, we inquiry about the relation between minimiza-
tion problem and Kuhn-Tucker problem with new settings and give
sufficient and necessary optimality condition. Also the relation between
minimization problem and it’s Mond-Weir dual problem in η-convex
case is investigated.

AMS Subject Classification: 90C25; 26A51; 26D15; 52A01

Keywords and Phrases: η-Convex function, minimization problem,
Kuhn-Tucker problem, Mond-Weir duality problem

1. Introduction and Preliminaries

The following convention for equalities and inequalities will be used.

Ordering relations The relations =, <,<=, defined below are called
ordering relations (in Rn). If x, y ∈ Rn, then
x = y ⇔ xi = yi, i = 1, ..., n
x < y ⇔ xi < yi, i = 1, ..., n
x <= y ⇔ xi <= yi, i = 1, ..., n
x  y ⇔ x <= y, and x = y.

Consider the minimization problem as the following.

Received: September 2017; Accepted: August 2018
∗Corresponding author

123



124 M. ROSTAMIAN DELAVAR AND M. D. LA SEN

The Minimization Problem (MP)
Find x̄, if it exists, such that


f(x̄) = min

x∈X
f(x)

x̄ ∈ X =

x ∈ X0, g(x) <= 0


,

where X0 ⊆ Rn and two functions f : X0 → R and g : X0 → Rm are
differentiable. The set X is called the feasible region, x̄ the solution,
and f(x̄) the minimum. All points x in the feasible region X are called
feasible points.

It is known that the convexity of f and g is equivalent with inequalities

f(x)− f(x̄) >= ∇f(x̄)(x− x̄),

g(x)− g(x̄) >= ∇g(x̄)(x− x̄),

for any x, x̄ ∈ X.

In 1981, Hanson [4] considered (MP) where there exists a function η :
X ×X → Rn such that for any x, x̄ ∈ X

f(x)− f(x̄) >= ∇f(x̄)η(x, x̄),

g(x)− g(x̄) >= ∇g(x̄)η(x, x̄),

and proved that (MP) with this conditions also satisfies the following
properties.

(i) Every feasible Kuhn-Tucker point is a minimum point (Theorem
2.1 in [4]),

(ii) Duality holds between (MP) and its related dual problem, where
the dual problem is






max
(x,u)

f(x) + ug(x)

f(x)+ug(x) = 0
u >= 0,

for x ∈ X0 and u ∈ Rm.
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In fact Hanson observed that we can consider the function η(x, x̄) instead
of x− x̄ and then establish properties (i) and (ii) again in scalar convex
programming. For more generalizations and results see [5, 6, 10].

Motivated by [4], in this paper we consider the function η(f(x), f(x̄))
instead of f(x)−f(x̄) in the definition of a convex function. This kind of
function is called η-convex. We investigate relation between minimiza-
tion problem, Kuhn-Tucker problem, sufficient and necessary optimality
conditions. In fact it is shown that under some special conditions we can
establish properties (i) and (ii) in above for η-convex functions. Also we
show that duality holds between minimization problem and it’s Mond-
Weir dual problem. We generally use [7] to achieve our expected results.

Definition 1.1. Suppose that X0 is an arbitrary subset of Rn and η :
Rm × Rm → Rm is a bifunction. A function f : X0 → Rm is called
convex with respect to η (briefly η-convex) on x̄, if

y ∈ X0,
λ ∈ [0, 1],
λy + (1− λ)x̄ ∈ X0,


−→ f

�
λy+(1−λ)x̄


<= f(x̄)+λη

�
f(y), f(x̄)


.

Geometrically above definition is equivalent with the fact that if a func-
tion is η-convex on a convex set X0, then it’s graph between any x, y ∈
X0 is under or on the path starting from

�
y, f(y)


and ending at


x, f(y)+

η
�
f(x), f(y)


. If the end point of the path should be f(x), for every

x, y ∈ X0, then we should have η(x, y) = x− y and the function reduces
to a convex one. If in (MP), X0 is a convex set and f is an η-convex
function on X0 then it is called η-convex programming.
Note that the scalar version of an η-convex functions introduced in [2]
(firstly named by ϕ-convex function) and the authors achieved some
results and inequalities for real η-convex functions as well. For more
results see [3, 11, 12]. There exist some examples about η-convexity of
a function.

Example 1.2. [12] (1) Define f : R→ R as

f(x) =


−x, x  0;
x, x < 0.
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and consider a bifunction η as η(x, y) = −x − y, for all x, y ∈ R− =
(−∞, 0]. It is easy to check that f is an η-convex function but not a
convex one.

(2) Consider the function f : R+ → R+ as

f(x) =

x, 0  x  1;
1, x > 1.

and define the bifunction η : R+ × R+ → R+ as

η(x, y) =

x+ y, x  y;
2(x+ y), x > y.

Then f is η-convex whereas it is not convex.
From now we consider the functions f, g defined from X0 to Rm and the
bifunction η defind from Rm × Rm to Rm, unless otherwise be stated.

2. Basic Results

In this section as a lemma we give an inequality related to the gradient
of an η-convex function. Also we investigate about the relation between
minimization problem and local minimization problem.

Lemma 2.1. Let X0 be open and f be differentiable at x̄ ∈ X0. If f is
η-convex at x̄ then

η
�
f(x), f(x̄)


>= f(x̄)(x− x̄),

for each x ∈ X0.

Proof. For any x ∈ X0 and 0 < λ  1

f
�
λx+ (1− λ)x̄


<= f(x̄) + λη

�
f(x), f(x̄)


,

or
f
�
x̄+ λ(x− x̄)


− f(x̄)

λ
<= η

�
f(x), f(x̄)


.

It follows that

(x− x̄)
f
�
x̄+ λ(x− x̄)


− f(x̄)

λ(x− x̄)
<= η

�
f(x), f(x̄)


.
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Letting λ→ 0+, we get

(x− x̄)f(x̄) <= η
�
f(x), f(x̄)


,

for any x ∈ X0. 

Example 2.2. Consider the functions f defined in Example 1.2, part
(2), and x̄ ∈ (0, 1)∪ (1,∞). If 0 < x̄ < 1, then in the case that x  x̄ we
have

η
�
f(x), f(x̄)


= η(x, x̄) = x+ x̄  0  (x− x̄) = f(x̄)(x− x̄).

In the case that x > x̄ we have

η
�
f(x), f(x̄)


= η(x, x̄) = 2x+ 2x̄  0  (x− x̄) = f(x̄)(x− x̄).

If x̄ > 1, then in any case

η
�
f(x), f(x̄)


 0 = 0 · (x− x̄).

Definition 2.3. (condition A)
The bifunction η satisfies condition A, if η(x, y) >= 0

�
η(x, y) > 0



implies x >= y
�
x > y


or if η(x, y) <= 0

�
η(x, y) < 0


implies x <= y�

x < y

.

Corollary 2.4. Let X0 be open and f be a differentiable η-convex func-
tion at x̄ ∈ X0. If f satisfies condition A and f(x̄) = 0, then x̄ is a
minimum point of f .

Proposition 2.5. Let X0 be convex and let f be an η-convex function
such that for each x ∈ X0, η(x, x)  0. The set of solutions of (MP) is
convex.

Proof. Let x1 and x2 be solutions of (MP). So

f(x1) = f(x2) = min
x∈X

f(x).

For 0 <= λ <= 1, we have λx1 + (1− λ)x2 ∈ X0 and

f
�
λx1 + (1− λ)x2


<= f(x2) + λη

�
f(x1), f(x2)


=

f(x2) + λη
�
f(x2), f(x2)


<= f(x2) = min

x∈X
f(x).
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Hence λx1 + (1− λ)x2 is also a solution of (MP). 
Under special condition there exists relation between minimization prob-
lem and local minimization problem.

The local minimization problem (LMP)
Find x̄ in X, if it exists, such that for some open neighborhood Nδ(x̄)
around x̄ with radius δ > 0,

x ∈ Nδ(x̄) ∩X ⇒ f(x) >= f(x̄).

Lemma 2.6. If x̄ is a solution of (MP), then it is also a solution of
(LMP). The converse is true if X is convex and f is η-convex at x̄
where η satisfies condition A.

Proof. If x̄ solves (MP), then x̄ solves (LMP) for any δ > 0. To prove
the converse suppose that x̄ solves (LMP) for some δ > 0, and let X be
convex and f be η-convex at x̄. Let ȳ be any point in X distinct from
x̄. Since X is convex, (1 − λ)x̄ + λȳ ∈ X for 0 < λ  1. By choosing λ
small enough, that is, 0 < λ < δ/  ȳ − x̄  and λ  1, we have that

x̄+ λ(ȳ − x̄) = (1− λ)x̄+ λȳ ∈ Nδ(x̄) ∩X.

Hence since x̄ solves (LMP) and f is η-convex,

f(x̄) <= f
�
x̄+ λ(ȳ − x̄)


<= f(x̄) + λη

�
f(ȳ), f(x̄)


.

So
η(f(ȳ), f(x̄)) >= 0,

for any ȳ ∈ X. Condition A implies that

f(ȳ) >= f(x̄),

for any ȳ ∈ X. Then x̄ solves (MP). 

3. Main Results

In this section we investigate relation between minimization problem
and Kuhn-Tucker problem with new settings and give sufficient and
necessary optimality condition.
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The Kuhn-Tucker problem (KTP)
Find x̄ ∈ X0, ū ∈ Rm if they exist, such that






f(x̄) + ū g(x̄) = 0
g(x̄) <= 0
ūg(x̄) = 0
ū >= 0.

It is implicit in the above statement that f and g are differentiable at x̄.

Theorem 3.1. (Sufficient optimality condition for (MP))
Let X0 be open and f, g be differentiable and η-convex at x̄. Suppose
that η satisfies condition A and (x̄, ū) is a solution of (KTP ) such that
f + ūg is an η-convex function. Then x̄ is a solution of (MP ).

Proof. Suppose that x is a feasible point of (MP) and (x̄, ū) is a solution
of (KTP). Since f + ūg is η-convex then

f
�
λx+ (1− λ)x̄


+ ūg

�
λx+ (1− λ)x̄


= (f + ūg)

�
λx+ (1− λ)x̄


<=

�
f(x̄) + ūg(x̄)


+ λη

�
(f + ūg)(x), (f + ūg)(x̄)


,

for λ > 0. So

f
�
λx+ (1− λ)x̄


+ ūg

�
λx+ (1− λ)x̄


− f(x̄)− ūg(x̄)

λ
<=

η
�
(f + ūg)(x), (f + ūg)(x̄)


.

Letting λ→ 0+ we get

f(x̄) + ūg(x̄) <= η
�
(f + ūg)(x), (f + ūg)(x̄)


.

From the facts that η satisfies condition A and ūg(x̄) = 0 we have

f(x) + ūg(x) >= f(x̄).

It is clear that ū >= 0 and g(x) <= 0 which imply that ūg(x) <=
0. Hence

f(x) >= f(x) + ūg(x) >= f(x̄). 

For necessary optimality condition we need some background.
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Definition 3.2. [7] A matrix A is said to be nonvacuous if it contains
at least one element Aij. An m× n matrix A with m >= 1 and n >= 1
is nonvacuous even if all its elements Aij = 0.

Denote the transpose of the matrix A by AT .

Theorem 3.3. [7](Motzkin’s theorem of alternative) Let A,B,C
be given matrices, with A being nonvacuous. Then
either
Ax > 0 Bx >= 0 Cx = 0 has a solution x,
or the system


AT y1 +BT y2 + CT y3 = 0
y1  0, y2 >= 0,

has a solution y1, y2, y3,
but never both.

The following lemma is a consequence of Linearization Lemma in [1].

Lemma 3.4. Let x̄ is a solution of (LMP), let f and g be differentiable
at x̄ and let I = {i | gi(x̄) = 0}. Then the system


f(x̄)z < 0
gI(x̄)z <= 0,

has no solution.

Definition 3.5. Let X0 be a convex set. The η-convex function g on X0

which defines the feasible region

X = {x|x ∈ X0, g(x) <= 0},

is said to satisfies generalized Slater’s condition (briefly g-Slater’s con-
dition) if there exists an x ∈ X0 such that g(x) < 0.

Theorem 3.6. (necessary optimality condition for (MP))
Let X0 be open and x̄ solves (MP). Suppose that f, g are differentiable
and η-convex at x̄ such that η satisfies the reverse of condition A and
g satisfies g-Slater’s condition on X0. Then there exists a ū ∈ Rm such
that (x̄, ū) solves (KTP).
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Proof. Let x̄ solves (MP). Let I = {i|gi(x̄) = 0} and J = {i|gi(x̄) <
0}. From Lemma 2.6 and Lemma 3.4 we have that the system


f(x̄)z < 0
gI(x̄)z <= 0,

has no solution z ∈ Rn. By Motzkin’s theorem, there exist r̄0, r̄I such
that

r̄0 f(x̄) + r̄I gI(x̄) = 0, (r̄0, r̄I)  0, r̄I >= 0.

If we define r̄J = 0 and r̄ = (r̄I , r̄J), then since gI(x̄) = 0 we have






r̄g(x̄) = r̄IgI(x̄) + r̄JgJ(x̄) = 0
r̄0 f(x̄) + r̄g(x̄) = 0
(r̄0, r̄I)  0, r̄I >= 0.

Also since x̄ is in X, then g(x̄)  0.

Now if we show that r̄0 > 0, then r̄
r̄0

is required vector ū for (KTP)
condition and the proof is completed.

If I is empty (r̄I = 0), Since (r̄0, r̄I)  0 then we have r̄0 > 0. If I is
nonempty, by contrary suppose that r̄0 = 0. Then since r̄J = 0 we have
that

r̄I gI(x̄) = 0, r̄I >= 0.

On the other hand since g satisfies g-slater’s condition on X0, then there
exists x ∈ X0 such that g(x) < 0. Particularly for I, gI(x) < 0 and so
from Lemma 2.1 and the reverse of condition A we have

(x − x̄)I gI(x̄)  η
�
gI(x), gI(x̄)


= η

�
gI(x), 0


< 0.

So for z̄ = x̄ − x we have gI(x̄)z > 0. Multiplying this inequality by
r̄I gives

r̄I gI(x̄)z̄ > 0, r̄I >= 0,

which contradicts the fact that r̄I gI(x̄) = 0. Hence r̄0 > 0. 

There exists a simple example satisfying conditions of Theorems (3.1)
and (3.6).
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Example 3.7. Consider a ∈ R+ ∪ {0} and k ∈ [1,+∞]. Define the
function f : [a− k,+∞) → [−k, k] as

f(x) =

x− a, a− k  x  a+ k;
k, x > a+ k,

and the bifunction η1 : R× R→ R as

η1(x, y) =






x+ y, x  y, x > a;
2x+ 2y, x > y, x > a.
−x− y, a− k  x  a.

Also consider the function g : (−∞, a+ k] → [−k2, k2] as

g(x) =

k(−x+ a), a− k  x  k + a;
k2, x < a− k.

with

η2(x, y) =

x+ y, x < y, a  x  a+ k or x  y, x < a;
x− y, x  y, a  x  a+ k or x < y, x < a.

The functions f and g are respectively η1-convex and η2-convex. Also
both of them are differentiable in x̄ = a. If we consider X =


x ∈

(−∞, a+ k]
 g(x)  0


, then x̄ = a ∈ X. Now if we set (x̄, ū) = (a, 1k ),

then we have 




f(a) + 1
k  g(a) = 0,

g(a) <= 0,
1
kg(a) = 0,
1
k >= 0.

which implies that (x̄, ū) = (a, 1k ) satisfy the (KTP). Furthermore we
can see that the point x̄ = a is a solution for (MP).

4. Mond-Weir Duality

In 1961, Wolf [13] extended the duality theory to convex nonlinear pro-
gramming problems with convex constraints. He considered the problem
of weak duality as the following.
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Find x̄ ∈ X0 and ū ∈ Rm if they exist, such that





f(x̄) + ūg(x̄) = min
(x,u)

f(x) + ug(x)

f(x̄) + ūg(x̄) = 0 (WD)
ū >= 0,

assuming that f and g are convex. He also showed that if x0 is solution
for (MP) and a constraint qualification is satisfied, then there exists y0
such that (x0, y0) is solution for (WD).

Mangasarian in [7] points out that if in (MP), f is only pseudo-convex
and g is quasiconvex, Wolfe duality does not hold necessarily for such
functions. So in order to weaken the convexity requirements, Mond and
Weir [8], proposed a different dual to (MP) as the following:
Find x̄ ∈ X0 and ū ∈ Rm if they exist, such that





f(x̄) = min
x∈X0

f(x)

f(x̄) + ūg(x̄) = 0 (MWD)
ūg(x̄) >= 0
ū >= 0.

It is implicit in the above

statement that f and g are differentiable at x̄.

In two following theorems the relation between minimization problem
and its Mond-Weir dual problem in η-convex case is investigated.

Theorem 4.1. Let X0 be open and x, (x̄, ū) be feasible point of (MP )
and (MWD) respectively. Suppose that f, g are differentiable at x̄ . If
f + ūg is η-convex at x̄ such that η satisfies condition A, then

f(x̄) <= f(x).

Proof. For any λ ∈ (0, 1] and from η-convexity of f + ūg we have

f
�
λx+ (1− λ)x̄


+ ūg

�
λx+ (1− λ)x̄


<=

f(x̄) + ūg(x̄) + λη
�
f(x̄) + ūg(x̄), f(x) + ūg(x)


.

So
f
�
λx+ (1− λ)x̄


+ ūg

�
λx+ (1− λ)x̄


− f(x̄)− ūg(x̄)

λ
<=

η
�
f(x̄) + ūg(x̄), f(x) + ūg(x)


.
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Now Letting λ→ 0+ we have

f(x̄) + ūg(x̄)(x− x̄) <= η
�
f(x̄) + ūg(x̄), f(x) + ūg(x)


.

Since x̄ satisfies conditions of (MWD),

η
�
f(x̄) + ūg(x̄), f(x) + ūg(x)


>= 0.

Condition A implies that

f(x) + ūg(x) >= f(x̄) + ūg(x̄).

From the fact that x and (x̄, ū) satisfy conditions of (MP ) and (MWD)
respectively, 





g(x) <= 0
ūg(x̄) >= 0
ū >= 0.

Therefore 
ūg(x̄) >= 0
ūg(x) <= 0.

Then

f(x̄) <= f(x̄) + ūg(x̄) <= f(x) + ūg(x) <= f(x). 

Theorem 4.2. Suppose that x̄ is a solution of (MP ) and all conditions
of Theorem 3.6 hold. Then there exists ū >= 0 such that (x̄, ū) is a
feasible point of (MWD). Furthermore if the conditions of Theorem 4.1
hold, then (x̄, ū) solves (WMD).

Proof. It is straight forward. 
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