Total $[1, k]$-Sets in the Lexicographic Product of Graphs

P. Sharifani
Yazd University
M. R. Hooshmandasl*
Yazd University

Abstract

A subset $S \subseteq V$ in a graph $G=(V, E)$ is called a $[1, k]$-set, if for every vertex $v \in V \backslash S, 1 \leqslant\left|N_{G}(v) \cap S\right| \leqslant k$. The [$\left.1, k\right]$-domination number of G, denoted by $\gamma_{[1, k]}(G)$ is the size of the smallest $[1, k]$-sets of G. A set $S^{\prime} \subseteq V(G)$ is called a total $[1, k]$-set, if for every vertex $v \in V, 1 \leqslant\left|N_{G}(v) \cap S\right| \leqslant k$. If a graph G has at least one total $[1, k]$-set then the cardinality of the smallest such set is denoted by $\gamma_{t[1, k]}(G)$. In this paper, we investigate the existence of $[1, k]$-sets in lexicographic products $G \circ H$. Furthermore, we completely characterize graphs whose lexicographic product has at least one total $[1, k]$-set. Finally, we show that finding smallest total $[1, k]$-set is an $N P$-complete problem.

AMS Subject Classification: 05C85; 68R05
Keywords and Phrases: Domination, total domination, $[1, k]$-set, total $[1, k]$-set, independent $[1, k]$-set, lexicographic products

1. Introduction and Terminology

The concept of dominating set and domination number is a well studied topic in graph theory and has many extensions and applications [8, 9]. Many variants of domination numbers have been proposed and surveyed in the literature such as total domination number [10], efficient and open efficient domination numbers

Received: May 2018; Accepted: November 2018

* Corresponding author
[1], k-tuple domination number [2] and others like [8]. Most of these problems are shown to be $N P$-hard. Recently, Chellali et al. introduced the notion of a $[j, k]$-dominating set for a graph and studied some problems in this respect [4]. They have also pointed out a number of open problems on [1, 2]-dominating sets in [4]. Some of those problems are solved by X. Yang et al. [12] and AK. Goharshady et al. [5].
In [3], Chellali et al. investigated independent $[1, k]$-sets for graphs and gave a constructive characterization of the trees having an independent $[1, k]$-set. Also they proved that the corona of two graphs G and H has an independent $[1, k]-$ set if and only if each component of G is an isolated vertex or $i(H) \leqslant k$, where $i(H)=i_{[1, k]}(G)$ is the minimum cardinality of an independent $[1, k]$-set of G.
All graphs in this paper are assumed to be a simple ones, i.e., finite, undirected, loopless graphs without multiple edges. For notation and terminology that are not defined here, we refer the reader to [11]. For given simple graph G with vertex set $V(G)$ and edge set $E(G)$, the degree of vertex $v \in V(G)$ is denoted by $d_{G}(v)$, or simply $d(v)$. We denote the minimum and maximum degrees of vertices in G by $\delta(G)$ and $\Delta(G)$, respectively. The open neighborhood $N_{G}(v)$ of a vertex $v \in V(G)$ equals $\{u:\{u, v\} \in E(G)\}$ and its closed neighborhood $N_{G}[v]$ is defined $N_{G}(v) \cup\{v\}$. The open (resp. closed) neighborhood of $S \subseteq V$ is defined to be the union of open (resp. closed) neighborhoods of vertices in S and is denoted by $N(S)$ (resp. $N[S]$). A set $D \subseteq V$ is called a dominating set of G if for every $v \in V \backslash D$, there exists some vertex $u \in D$ such that $v \in N(u)$. The domination number of G is the minimum number among cardinalities of all dominating sets of G and is denoted by $\gamma(G)$. A set $D \subseteq V$ is called a total dominating set of G if for every $v \in V$, there exists some vertex $u \in D$ such that $v \in N(u)$. The total domination number is the minimum number among cardinalities of all total dominating sets of G and is denoted by $\gamma_{t}(G)$. For two given integers j and k such that $j \leqslant k$, a subset $D \subseteq V$ is called a $[j, k]$-set (resp. total $[j, k]$-set) if for every vertex $v \in V \backslash D$ (resp. $v \in V$), $j \leqslant|N(v) \cap D| \leqslant k$. Note that total $[j, k]$-sets might not exist for an arbitrary graph. The sets of all graphs like G which have at least one total $[j, k]$-set is denoted by $\mathcal{D}_{[j, k]]}^{t}$. Other types of dominating sets, that we are used in this work are summarized in the Table 1.

Table 1: Some types of domination studied in this paper where $S \subseteq V$

Name	$v \in V \backslash S$	$v \in S$
$[1, k]$-set	$\|N(v) \cap S\| \in[1, k]$	-
Independent $[1, k]$-set	$\|N(v) \cap S\| \in[1, k]$	$\|N(v) \cap S\|=0$
j-dependent $[1, k]$-set	$\|N(v) \cap S\| \in[1, k]$	$\|N(v) \cap S\| \in[0, j]$
Total $[1, k]$-set	$\|N(v) \cap S\| \in[1, k]$	$\|N(v) \cap S\| \in[1, k]$
j-dependent total $[1, k]$-set	$\|N(v) \cap S\| \in[1, k]$	$\|N(v) \cap S\| \in[1, j]$
Efficient dominating	$\|N(v) \cap S\|=1$	$\|N(v) \cap S\|=0$

The rest of the paper is organized as follows: In Section 2, we study total $[1, k]-$ sets of lexicographic product of graphs and then, we completely characterize graphs which their lexicographic product has at least one total $[1, k]$-set. Then, we determine the structure of all total $[1, k]$-sets for these graphs. In Section 3 , we prove that finding a total $[1,2]$-set with minimum cardinality for a graph is $N P$-complete.

2. Total [1, 2]-Sets of Lexicographic Products of Graphs

The lexicographic product of graphs G and H, denoted by $G \circ H$ is a graph with the vertex set $V(G \circ H)=V(G) \times V(H)$ and two vertices (g, h) and $\left(g^{\prime}, h^{\prime}\right)$ are adjacent in $G \circ H$ if and only if either $\left\{g, g^{\prime}\right\} \in E(G)$ or $g=g^{\prime}$ and $\left\{h, h^{\prime}\right\} \in E(H)$.
Note that if G is not connected, then $G \circ H$ is not connected, too. So in this section, we always assume that G is a connected graph.

In this section, we investigate properties of graphs G and H such that $G \circ H$ has a total $[1,2]$-set. Then we extend these results to total $[1, k]$-set. Note that, it is possible that $G \in \mathcal{D}_{[1,2]}^{t}$, whereas $G \circ H \notin \mathcal{D}_{[1,2]}^{t}$, or vice versa.

Definition 2.1. Let H and G be two graphs. Let $g_{0} \in V(H)$ and $h_{0} \in$ $V(H)$. The sets $G^{h_{0}}=\left\{\left(g, h_{0}\right) \in V(G \circ H): g \in V(G)\right\}$ and
$H^{g_{0}}=\left\{\left(g_{0}, h\right) \in V(G \circ H): h \in V(H)\right\}$ are called a G_{-}Layer and a H_{-}Layer respectively.

Lemma 2.2. Let v and v^{\prime} be two adjacent vertices of G and $u, u^{\prime} \in V(H)$. Then

$$
\begin{aligned}
N_{G \circ H}((v, u)) \cup N_{G \circ H}\left(\left(v^{\prime}, u\right)\right) & =N_{G \circ H}\left(\left(v, u^{\prime}\right)\right) \cup N_{G \circ H}\left(\left(v^{\prime}, u^{\prime}\right)\right) \\
& =N_{G \circ H}((v, u)) \cup N_{G \circ H}\left(\left(v^{\prime}, u^{\prime}\right)\right) .
\end{aligned}
$$

Proof. We know that

$$
N_{G \circ H}((v, u))=\bigcup_{v_{i} \in N_{G}(v)} V\left(H^{v_{i}}\right) \cup\left\{\left(v, u_{j}\right): u_{j} \in N_{H}(u)\right\},
$$

so

$$
\begin{equation*}
N_{G \circ H}((v, u)) \cup N_{G \circ H}\left(\left(v^{\prime}, u^{\prime}\right)\right)=D_{1} \cup D_{2} \tag{1}
\end{equation*}
$$

where $D_{1}=\left(\bigcup_{v_{i} \in N_{G}(v)} V\left(H^{v_{i}}\right)\right) \cup\left\{\left(v, u_{j}\right): u_{j} \in N_{H}(u)\right\}$ and $D_{2}=\left(\bigcup_{v_{i} \in N_{G}\left(v^{\prime}\right)} V\left(H^{v_{i}}\right)\right) \cup\left\{\left(v^{\prime}, u_{j}\right): u_{j} \in N_{H}\left(u^{\prime}\right)\right\}$.
It is easy to see that

$$
\begin{equation*}
\left\{\left(v, u_{j}\right): u_{j} \in N_{H}(u)\right\} \subseteq V\left(H^{v}\right) \tag{2}
\end{equation*}
$$

and

$$
\begin{equation*}
\left\{\left(v^{\prime}, u_{j}\right): u_{j} \in N_{H}\left(u^{\prime}\right)\right\} \subseteq V\left(H^{v^{\prime}}\right) \tag{3}
\end{equation*}
$$

By hypotheses $\left\{v, v^{\prime}\right\} \in E(G)$, we have

$$
\begin{align*}
& V\left(H^{v}\right) \subseteq N_{G \circ H}\left(\left(v^{\prime}, u^{\prime}\right)\right), \\
& V\left(H^{v^{\prime}}\right) \subseteq N_{G \circ H}((v, u)) \tag{4}
\end{align*}
$$

So by Relations 1, 2, 3 and 4, it is implied that

$$
N_{G \circ H}((v, u)) \cup N_{G \circ H}\left(\left(v^{\prime}, u^{\prime}\right)\right)=\bigcup_{v_{i} \in N_{G}\left(\left\{v, v^{\prime}\right\}\right)} V\left(H^{v_{i}}\right) .
$$

The equation above shows that the union of neighbors of the vertices (v, u) and $\left(v^{\prime}, u^{\prime}\right)$ is independent from u and u^{\prime}. Therefore, we have

$$
\begin{array}{r}
N_{G \circ H}((v, u)) \cup N_{G \circ H}\left(\left(v^{\prime}, u\right)\right)=N_{G \circ H}\left(\left(v, u^{\prime}\right)\right) \cup N_{G \circ H}\left(\left(v^{\prime}, u^{\prime}\right)\right) \\
=N_{G \circ H}((v, u)) \cup N_{G \circ H}\left(\left(v^{\prime}, u^{\prime}\right)\right) .
\end{array}
$$

Lemma 2.3. Let D be a total $[1,2]$-set for $G \circ H \in \mathcal{D}_{[1,2]}^{t}$ which contains more than two vertices of a H_{-}Layer H^{v}. Then $G=K_{1}$ and $H \in \mathcal{D}_{[1,2]}^{t}$.

Proof. Let D be a total $[1,2]$-set of $G \circ H$ that contains vertices $(x, v),(y, v)$ and (z, v) where $v \in V(G)$ and $x, y, z \in V(H)$. If there exists a vertex $v^{\prime} \in V(G)$ such that $\left\{v, v^{\prime}\right\} \in E(G)$, then all vertices of $H^{v^{\prime}}$ are dominated by three vertices $(x, v),(y, v)$ and (z, v). This is a contradiction. So there is not any vertex adjacent to v. Since G is a connected graph, $G=K_{1}=(\{v\}, \emptyset)$ and $S=\{u:(v, u) \in D\}$ is a total $[1,2]$-set for H and hence $H \in \mathcal{D}_{[1,2]}^{t}$.
Corollary 2.4. Let G be a nontrivial connected graph and $G \circ H \in \mathcal{D}_{[1,2]}^{t}$. Then, every total $[1,2]$-set of $G \circ H$ has at most two vertices of each $H_{-} L a y e r$. For a total $[1,2]$-set D, we define A_{1}^{D} as $\left\{(v, u):\left|V\left(H^{v}\right) \cap D\right|=1\right\}$ and A_{2}^{D} as $\left\{(v, u):\left|V\left(H^{v}\right) \cap D\right|=2\right\}$. The set D satisfies in one of the following conditions:

1) $A_{1}^{D}=\emptyset$ and $A_{2}^{D} \neq \emptyset$,
2) $A_{1}^{D} \neq \emptyset$ and $A_{2}^{D} \neq \emptyset$,
3) $A_{2}^{D}=\emptyset$ and $A_{1}^{D} \neq \emptyset$.

Lemma 2.5. Let D be a total $[1,2]$-set of $G \circ H \in \mathcal{D}_{[1,2]}^{t}$ such that $A_{2}^{D}=$ \emptyset. Then, $S=\{u:(u, v) \in D\}$ is a total $[1,2]$-set for G. In addition, if there is a vertex $u \in S$ such that $|N(u) \cap S|=2$; then H contains an isolated vertex.

Proof. The proof is by contradiction. Assume D is a total [1, 2]-set of $G \circ H$ with $A_{2}^{D}=\emptyset$ and $S=\{u:(u, v) \in D\}$ is not a total set of G. Then, we have three cases to consider.

1. There exists a vertex like $u \in S$ such that $|N(u) \cap S|=0$. It means that there is no vertex $u^{\prime} \in N_{G}(u)$ such that $u^{\prime} \in S$. The set D is a total [1,2]-set and $u \in S$, so there exists a vertex $v \in V(H)$ such that $(u, v) \in D$. Similarly there exists a vertex $v^{\prime} \in V(H)$ such that $\left(u, v^{\prime}\right) \in D$. This is a contradiction against $A_{2}^{D}=\emptyset$.
2. There exists a vertex like $w \in V(G) \backslash S$ such that $\left|N_{G}(w) \cap S\right|=0$. Then, there is no vertex like $v \in V(H)$ such that $(u, v) \in D$. Moreover, there is no vertex $w^{\prime} \in N_{G}(w)$ such that $w^{\prime} \in S$. Therefore vertices of H^{w} can not be dominated by any vertex in D, which is a contradiction.
3. There exists a vertex like $w \in V(G) \backslash S$ such that $|N(w) \cap S|>2$. Then, there are at least three distinct vertices $w^{\prime}, w^{\prime \prime}, w^{\prime \prime \prime} \in N_{G}(w) \cap S$. By the definition of S, there are vertices $v^{\prime}, v^{\prime \prime}, v^{\prime \prime \prime} \in V(H)$ such that $\left(w^{\prime}, v^{\prime}\right),\left(w^{\prime \prime}, v^{\prime \prime}\right),\left(w^{\prime \prime \prime}, v^{\prime \prime \prime}\right) \in D$. These vertices dominate all vertices of H^{w}, which is a contradiction.

Lemma 2.6. Let $G \circ H \in \mathcal{D}_{[1,2]}^{t}$ and H does not contain any isolated vertex. Then, there exists either a 1-dependent total [1,2]-set for G or for each total $[1,2]$-set D of $G, A_{1}^{D}=\left\{(v, u):\left|V\left(H^{v}\right) \cap D\right|=1\right\} \neq \emptyset$ and $A_{2}^{D}=\{(v, u)$: $\left.\left|V\left(H^{v}\right) \cap D\right|=2\right\} \neq \emptyset$.

Proof. Let D be a total $[1,2]$-set of $G \circ H$ which contains at most one vertex from each H_{-}Layer. Since H does not contain any isolated vertex then by Lemma 2.5 there is a 1 -dependent total $[1,2]$-set like S for G such that $S=$ $\{v:(v, u) \in D\}$ and $A_{2}^{D}=\emptyset$.
For a given graph $G \circ H \in \mathcal{D}_{[1,2]}^{t}$ and a total [1, 2]-set D of $G \circ H$ where $A_{2}^{D} \neq \emptyset$, we define the set B^{D} as $B^{D}=\left\{\left\{u^{\prime}, u^{\prime \prime}\right\}:\left(v, u^{\prime}\right),\left(v, u^{\prime \prime}\right) \in A_{2}^{D}\right\}$.

Lemma 2.7. Let $G \circ H \in \mathcal{D}_{[1,2]}^{t}$ where H does not contain any isolated vertex and for any total $[1,2]$-set D of $G \circ H, A_{1}^{D} \neq \emptyset$ and $A_{2}^{D} \neq \emptyset$. Then, the following conditions hold:

1) Every element of B^{D} is a total $[1,2]$-set for H.
2) The set $S^{\prime}=\{v:(v, u) \in D\}$ is a 1-dependent $[1,2]$-set for G.
3) If there is a vertex $v \in S^{\prime}$ such that $\left|N(v) \cap S^{\prime}\right|=0$ then $\operatorname{dist}_{G}\left(v, v^{\prime}\right) \geqslant 3$ for every $v^{\prime} \in S^{\prime} \backslash\{v\}$.

Proof. Let D be a total $[1,2]$-set of $G \circ H \in \mathcal{D}_{[1,2]}^{t}$; there are three cases to consider.

1) Suppose that $S=\left\{u^{\star}, u^{\bullet}\right\} \in B$ is not a total $[1,2]$-set for H. Then two cases occur and in each case, we can establish a contradiction with D is a total $[1,2]$-set.

- Let $\left\{u^{\star}, u^{\bullet}\right\} \notin E(H)$ and there is a $\left(v^{\prime}, u^{\prime}\right) \in D$ such that $\left\{\left(v, u^{\star}\right),\left(v^{\prime}, u^{\prime}\right)\right\} \in E(G \circ H)$. Since H dose not contain any isolated vertex, so any vertex $u^{\prime \prime} \in N_{H}\left(u^{\prime}\right)$ is dominated by $\left(v^{\prime}, u^{\prime}\right),\left(v, u^{\star}\right)$ and $\left(v, u^{\bullet}\right)$.
- Let $\left\{u^{\star}, u^{\bullet}\right\}$ does not dominate all vertices of $V(H)$. So, there is a vertex $\left(v^{\prime}, u^{\prime}\right) \in D$ such that $\left\{v, v^{\prime}\right\} \in E(G)$ and $\left(v^{\prime}, u^{\prime}\right)$ dominates all vertices of H^{v}. Then any vertex $u^{\prime \prime} \in N_{H}\left(u^{\prime}\right)$ is dominated by $\left(v^{\prime}, u^{\prime}\right),\left(v, u^{\star}\right)$ and $\left(v, u^{\bullet}\right)$.

2) Suppose that $S^{\prime}=\{v:(v, u) \in D\}$ is not a 1-dependent [1, 2]-set for G. Then, three cases occur and in each case, we have a contradiction with D being a total [1,2]-set.

- There is a vertex $v \in S^{\prime}$ that is dominated by at least two vertices $v^{\prime}, v^{\prime \prime} \in S^{\prime}$. So there are vertices $u, u^{\prime}, u^{\prime \prime} \in V(H)$ such that $(v, u),\left(v^{\prime}, u^{\prime}\right),\left(v^{\prime \prime}, u^{\prime \prime}\right) \in D$. Since H dose not contain any isolated vertex, there is a vertex $u^{\prime \prime \prime} \in V(H)$ such that $\left\{u, u^{\prime \prime \prime}\right\} \in$ $E(H)$. Then, $\left(v, u^{\prime \prime \prime}\right)$ is dominated by $(v, u),\left(v^{\prime}, u^{\prime}\right)$ and $\left(v^{\prime \prime}, u^{\prime \prime}\right)$.
- There is a vertex $v \in V(G) \backslash S^{\prime}$ such that $\left|N_{G}(v) \cap S^{\prime}\right|=0$. So no vertex of H^{v} is dominated by D.
- There is a vertex $v \in V(G) \backslash S^{\prime}$ such that $\left|N_{G}(x) \cap S^{\prime}\right|>2$. Then there are at least three vertices distinct $v^{\prime}, v^{\prime \prime}, v^{\prime \prime \prime} \in S^{\prime}$ to dominate v. By definition of S^{\prime}, there are vertices $u^{\prime}, u^{\prime \prime}, u^{\prime \prime \prime} \in V(H)$ such that $\left(v^{\prime}, u^{\prime}\right),\left(v^{\prime \prime}, u^{\prime \prime}\right),\left(v^{\prime \prime \prime}, u^{\prime \prime \prime}\right) \in D$. These vertices dominate all vertices of H^{v}.

3) Let $v \in S^{\prime}$ such that $\left|N(v) \cap S^{\prime}\right|=0$ and there is a vertex $v^{\prime} \in S^{\prime}$ such that $\operatorname{dist}_{G}\left(v, v^{\prime}\right)=2$.
By $\left|N(v) \cap S^{\prime}\right|=0$, there exist vertices $u^{\prime}, u^{\prime \prime} \in V(H)$ such that $\left(v, u^{\prime}\right),\left(v, u^{\prime \prime}\right) \in D$ and $\left\{u^{\prime}, u^{\prime \prime}\right\} \in E(H)$. Suppose there is a vertex $v^{\prime} \in S^{\prime}$ such that $\operatorname{dist}_{G}\left(v, v^{\prime}\right)=2$. So, there is a vertex $v^{\prime \prime} \in V(G)$ such that $\left\{v, v^{\prime \prime}\right\},\left\{v^{\prime}, v^{\prime \prime}\right\} \in E(G)$. The vertices $\left(v, u^{\prime}\right),\left(v, u^{\prime \prime}\right)$ and $\left(v^{\prime}, u^{\prime}\right)$ dominate all vertices of $H^{v^{\prime}}$. It is contradictory with D being a total [1, 2]set. So we have $\operatorname{dist}_{G}\left(v, v^{\prime}\right) \geqslant 3$.

Lemma 2.8. Let D be a total $[1,2]$-set of $G \circ H \in \mathcal{D}_{[1,2]}^{t}$ such that $A_{1}^{D}=\emptyset$. Then $S^{\prime}=\{v:(v, u) \in D\}$ is an efficient dominating set of G.

Proof. Since D be a total $[1,2]$-set of $G \circ H$, then there is a vertex $v \in S^{\prime}$ such that the set D contains $\left(v, u^{\prime}\right),\left(v, u^{\prime \prime}\right)$ for some vertex $u^{\prime}, u^{\prime \prime} \in V(H)$. By Lemma 2.7, $\left\{u^{\prime}, u^{\prime \prime}\right\}$ is a total $[1,2]$-set for H. So for any vertex $v^{\prime} \in N_{G}(v)$, none of vertices in $H^{v^{\prime}}$ cannot be contained in D. Thus $\operatorname{dist}_{G}\left(v, v^{\prime}\right) \geqslant 3$ and S is an efficient dominating set of G.
In the sequel $\mathcal{S D}_{[i, j]}^{k}(G)$ is used to denote the set of all k-dependent $[i, j]$-set S of G such that S satisfies in the following condition

$$
(\forall v \in S \quad|N(v) \cap S|=0) \rightarrow\left(\forall v^{\prime} \in S \backslash\{v\} \quad d\left(v, v^{\prime}\right) \geqslant 3\right)
$$

Corollary 2.9. Let G be a connected nontrivial graph and D be a total [1,2]-set of $G \circ H \in \mathcal{D}_{[1,2]}^{t}$, one of the following cases holds:

- If $A_{1}^{D}=\left\{(u, v):\left|V\left(H^{v}\right) \cap D\right|=1\right\}=\emptyset$, then there is a total $[1,2]$-set $S=\left\{u^{\star}, u^{\bullet}\right\}$ in H and an efficient dominating set S^{\prime} in G such that $D^{\prime}=S^{\prime} \times S$ is a total $[1,2]$-set for $G \circ H$ and $|D|=\left|D^{\prime}\right|=2\left|S^{\prime}\right|$.
- If $A_{2}^{D}=\left\{(u, v):\left|V\left(H^{v}\right) \cap D\right|=2\right\}=\emptyset$ and H contains an isolated vertex v. Then there is a total $[1,2]$-set S in G where $D^{\prime}=S \times\{v\}$ and D^{\prime} is a total $[1,2]$-set for $G \circ H$. Moreover, we have $|D|=\left|D^{\prime}\right|=|S|$.
- If $A_{2}^{D}=\left\{(u, v):\left|V\left(H^{v}\right) \cap D\right|=2\right\}=\emptyset$ and H does not contain any isolated vertex, then for every vertex $v \in V(H)$ there is a 1-dependent total $[1,2]$-set S in G such that $D^{\prime}=S \times\{v\}$ and D^{\prime} is a total $[1,2]$-set for $G \circ H$. Clearly, $|D|=\left|D^{\prime}\right|=|S|$.
- If $A_{1}^{D} \neq \emptyset$ and $A_{2}^{D} \neq \emptyset$, then there is a total $[1,2]$-set $S=\left\{u^{\star}, u^{\bullet}\right\}$ in H and a 1-dependent total $[1,2]$-set S^{\prime} in G such that for any vertex $v \in S$ and $u \in X$ where $X=\left\{x:\left|N_{G}(x) \cap S^{\prime}\right|=0\right\}$, dist $(v, u) \geqslant 3$. Moreover $D^{\prime}=\left((X \times S) \cup\left(S^{\prime} \backslash X\right) \times\left\{u^{\star}\right\}\right)$ is a total $[1,2]$-set of size $|D|$ in $G \circ H$ and $|D|=\left|D^{\prime}\right|=\left|S^{\prime}\right|+|X|$.

Proof. This corollary is a direct result of Lemma 2.2, 2.5, 2.7 and 2.8.
Theorem 2.10. Let G and H be two graphs. Then, $G \circ H \in \mathcal{D}_{[1,2]}^{t}$ if and only if one of the following conditions holds:

1. $G=K_{1}$ and $H \in \mathcal{D}_{[1,2]}^{t}$;
2. G has a total $[1,2]$-set S such that if S has a vertex v where $|N(v) \cap S|=2$ then H has an isolated vertex;
3. G is an efficient domination graph and $\gamma_{t[1,2]}(H)=2$;
4. $\mathcal{S D}_{[1,2]}^{1}(G) \neq \emptyset$ and $\gamma_{t[1,2]}(H)=2$.

Proof. Suppose that D be a total $[1,2]$-set of $G \circ H \in \mathcal{D}_{[1,2]}^{t}$. If D contains more than two vertices of a H_{-}Layer, then by Lemma $2.3, G=K_{1}$ and $H \in \mathcal{D}_{[1,2]}^{t}$. If D contains at most two vertices of each H_{-}Layer, then there is a total [1,2]set D^{\prime} for $G \circ H$ such that $\left|D^{\prime}\right|=|D|$ and vertices of D^{\prime} have been choosen from two G_{-}Layers as $G^{u^{\star}}$ and $G^{u^{\bullet}}$. Without lose of generality we consider that $S=\left\{v:(v, u) \in D^{\prime}\right\}$ and $S^{\prime}=\left\{u^{\star}, u^{\bullet}\right\}$. Then, the set D^{\prime} satisfies one of the following conditions:
a) By Lemma 2.5, $D=\left\{\left(v, u^{\star}\right): v \in S\right\}$, so S is a total $[1,2]$-set for G and if there exists a vertex $v \in D$ such that $|N(v) \cap S|=2$, then H has an isolated vertex.
b) $D^{\prime}=\left\{\left(v, u^{\star}\right): v \in S\right.$ and $\left.u \in S^{\prime}\right\}$, by Corollary $2.9, S$ is an efficient dominating set of G and S^{\prime} is a total [1,2]-set for H.
c) There is a vertex $w \in S$ such that $\left(w, u^{\star}\right) \in D^{\prime}$ but $\left(w, u^{\bullet}\right) \notin D^{\prime}$. By Lemma 2.7, we have $S \in \mathcal{S D} \mathcal{D}_{[1,2]}^{1}(G)$ and S^{\prime} is a total [1,2]-set for H.
Now, we show the other side as follows:

1. If $G=K_{1}$ and H has a total $[1,2]$-set S^{\prime}, then it is easy to see that $G \circ H=H$ and S^{\prime} is a total [1,2]-set of $G \circ H$.
2. Assume that S is a total $[1,2]$-set of G and $u^{\star} \in V(H)$. We define D as $S \times\left\{u^{\star}\right\}$. Since every vertex of $G^{u^{\star}}$ is dominated by at least one of vertices of D, then every vertex of other G_{-}Layers is dominated by D. So, for any vertex $\left(v^{\prime}, u^{\prime}\right) \in G \circ H$, we have $\left|N\left(\left(v^{\prime}, u^{\prime}\right)\right) \cap D\right| \geqslant 1$. Now, it is sufficient to show that $\left|N\left(\left(v^{\prime}, u^{\prime}\right)\right) \cap D\right| \leqslant 2$. To this end, we consider two cases:
a) For every vertex $v \in S,|N(v) \cap S|=1$: So, it is clear that for any vertex $\left(v^{\prime}, u^{\star}\right)$ of $G^{u^{\star}},\left|N\left(\left(v^{\prime}, u^{\star}\right)\right) \cap D\right| \leqslant 2$. If $u^{\prime} \neq u^{\star}$, we need to show that $\left|N\left(\left(v^{\prime}, u^{\prime}\right)\right) \cap D\right| \leqslant 2$. Then following cases can happen:
a1) $\left(v^{\prime}, u^{\star}\right) \in D$ and $\left\{u^{\prime}, u^{\star}\right\} \in E(H)$; for every $v^{\prime \prime} \in S$ adjacent to $v^{\prime},\left(v^{\prime}, u^{\prime}\right)$ is dominated by (v^{\prime}, u^{\star}) and ($\left.v^{\prime \prime}, u^{\star}\right)$. Since $\left(v^{\prime}, u^{\star}\right) \in D$ and $v^{\prime} \in S$, so $\left|N\left(v^{\prime}\right) \cap S\right|=2$ and $\mid N\left(\left(v^{\prime}, u^{\prime}\right)\right) \cap$ $D\left|=\left|N\left(v^{\prime}\right) \cap S\right|+1=2\right.$.
a2) $\left(v^{\prime}, u^{\star}\right) \in D$ and $\left\{u^{\prime}, u^{\star}\right\} \notin E(H)$; if $v^{\prime \prime} \in S$ and $\left\{v^{\prime}, v^{\prime \prime}\right\} \in$ $E(G)$ then $\left(v^{\prime}, u^{\prime}\right)$ is dominated by $\left(v^{\prime \prime}, u^{\star}\right)$. So $\mid N\left(\left(v^{\prime}, u^{\prime}\right)\right) \cap$ $D\left|=\left|N\left(v^{\prime}\right) \cap S\right|=1\right.$.
a3) $\left(v^{\prime}, u^{\star}\right) \notin D$; for every $v^{\prime \prime} \in S$ and $\left\{v^{\prime}, v^{\prime \prime}\right\} \in E(G),\left(v^{\prime}, u^{\prime}\right)$ is dominated by $\left(v^{\prime \prime}, u^{\star}\right)$. Since $\left(v^{\prime}, u^{\star}\right) \notin D, v^{\prime} \notin S$. We have $\left|N\left(\left(v^{\prime}, u^{\prime}\right)\right) \cap D\right|=\left|N\left(v^{\prime}\right) \cap S\right| \leqslant 2$.
b) There is a vertex $v \in S$ such that $|N(v) \cap S|=2$ and u^{\star} is an isolated vertex in H. For every vertex $v^{\prime \prime} \in S$ and $\left\{v^{\prime}, v^{\prime \prime}\right\} \in E(G),\left(v^{\prime}, u^{\prime}\right)$ is dominated by $\left(v^{\prime \prime}, u^{\star}\right)$. So it is the case that $\left|N\left(\left(v^{\prime}, u^{\prime}\right)\right) \cap D\right|=$ $\left|N\left(v^{\prime}\right) \cap S\right| \leqslant 2$.
3. Let S be an efficient dominating set of $G, S^{\prime}=\left\{u^{\star}, u^{\bullet}\right\}$ is a total [1, 2]set for H and $D=\left\{(v, u): v \in S\right.$ and $\left.u \in S^{\prime}\right\}$. It is easy to see that D is a total dominating set of $G \circ H$.
If $v^{\prime} \in S$, then every $\left(v^{\prime}, u^{\prime}\right) \in V\left(H^{v^{\prime}}\right)$ are dominated by either $\left(v^{\prime}, u^{\star}\right)$ or $\left(v^{\prime}, u^{\bullet}\right)$. Since S is an efficient dominating set of G, then $N_{G}\left(v^{\prime}\right) \cap S=$ \emptyset and (v^{\prime}, u^{\prime}) is not dominated by any other vertices. If $v^{\prime} \notin S$, then there is exactly, one vertex $v^{\prime \prime} \in S$ such that $\left\{v^{\prime}, v^{\prime \prime}\right\} \in E(G)$ and every $\left(v^{\prime}, u^{\prime}\right) \in V\left(H^{v^{\prime}}\right)$ are dominated by either $\left(v^{\prime \prime}, u^{\star}\right)$ and $\left(v^{\prime \prime}, u^{\bullet}\right)$. So, D is a total [1, 2]-set for $G \circ H$.
4. Suppose that $S \in \mathcal{S D}_{[1,2]}^{1}, S^{\prime}=\left\{u^{\star}, u^{\bullet}\right\}$ is a total [1, 2]-set for H and

$$
\begin{array}{r}
D=\left\{\left(v, u^{\star}\right),\left(v, u^{\bullet}\right): v \in S \text { and }|N(v) \cap S|=0\right\} \\
\cup\left\{\left(v, u^{\star}\right): v \in S \text { and }|N(v) \cap S|=1\right\} .
\end{array}
$$

By definition of D, It is easy to see that for any vertex $(v, u) \in D$, there is a vertex $\left(v^{\prime}, u^{\prime}\right) \in D$ such that $\left\{(v, u),\left(v^{\prime}, u^{\prime}\right)\right\} \in E(G \circ H)$. So, D is a total set of $G \circ H$. Now, we must show that D dominates all vertices of $G \circ H$ at least one and at most two times. It is clear $S=\left\{v:\left(v, u^{\star}\right) \in\right.$ $D\} \in \mathcal{S D}_{[1,2]}^{1}$. We consider three kind of vertices and we will show vertices of each H_{-}Layer are dominated by at least one and two vertices of D.
a) $v \in S$ and $|N(v) \cap S|=0$: Since $S^{\prime}=\left\{u^{\star}, u^{\bullet}\right\}$ is a total $[1,2]$-set for $G \circ H,\left(v, u^{\star}\right) \in D$ and $\left(v, u^{\bullet}\right) \in D$. Then, all of the vertices of H^{v} are dominated by $\left(v, u^{\star}\right)$ and $\left(v, u^{\bullet}\right)$. Since $|N(v) \cap S|=0$. So, any other vertex cannot dominate vertices of H^{v}. Therefore $1 \leqslant$ $|N(v, u) \cap D| \leqslant 2$.
b) $v \in S$ and $|N(v) \cap S|=1$: So, there is a vertex $v^{\prime} \in S$ such that $\left\{v, v^{\prime}\right\} \in E(G),\left(v^{\prime}, u^{\star}\right)$ dominates all of the vertices of H^{v} and these vertices can also be dominated by $\left(v, u^{\star}\right)$. Since S is a 1 -dependent $[1,2]$-set for G, then there is not any other vertex in neighborhood of v in S, so $1 \leqslant|N(v, u) \cap D| \leqslant 2$.
c) $v \notin S$: Since S is a 1 -dependent $[1,2]$-set for G, it is easy to see that there is a vertex $v^{\prime} \in S$ such that $\left\{v, v^{\prime}\right\} \in E(G)$. So, all of the vertices of H^{v} are dominated by $\left(v^{\prime}, u^{\star}\right)$. If $\left|N\left(v^{\prime}\right) \cap S\right|=0$, then $\left(v^{\prime}, u^{\bullet}\right)$ dominates vertices of H^{v} and any other vertices can not dominate them. If there exist a $v^{\prime \prime} \in S$ such that $\left\{v, v^{\prime \prime}\right\} \in E(G)$ and it is contradict to $\operatorname{dist}_{G}\left(v^{\prime}, v^{\prime \prime}\right) \geqslant 3$. If $\left|N\left(v^{\prime}\right) \cap S\right|=0$, there maybe exists a vertex $\left(v^{\prime \prime}, u^{\star}\right) \in D$ such that $\left|N\left(v^{\prime}\right) \cap S\right| \neq 0$ and there is no vertex in $H^{v^{\prime \prime}}$ and other H_{-}Layers dominate vertices of H^{v}.

In the sequel, we express necessary and sufficient conditions for the given graphs G and H such that $G \circ H$ has a total $[1, k]$-set. The Lemma 2.3, 2.5, 2.7 and Corollary 2.9 are generalized to total $[1, k]$-set. Since proofs in this section can be similarly obtained from the case on total $[1,2]$-sets, we omit them.

Theorem 2.11. Let D be a total $[1, k]$-set for $G \circ H$.
a) If D contains more than k vertices of a H_{-}Layer, then $G=K_{1}$ and $H \in \mathcal{D}_{[1, k]}^{t}$.
b) If D contains at most one vertex of every H_{-}Layers, then $S=\{v \in$ $V(G):(v, u) \in D\}$ is a $(k-1)$-dependent total $[1, k]$-set of G. Moreover if there is a vertex $v \in S$ such that $|N(v) \cap S|=k$, then H contains an isolated vertex.
c) If H does not contain any isolated vertex and $S=\{v \in V(G):(v, u) \in$ $D\}$ is not a total set of G, then D contains at most k vertices of each H^{v} and satisfies the following conditions:
c1) The set $S^{\prime}=\{u \in V(H):(v, u) \in D\}$ is a total $[1, k]$-set of H with cardinality to at most k and there is a vertex $x \in S$ such that $1<\left|D \cap V\left(H^{x}\right)\right| \leqslant\left|S^{\prime}\right|$;
c2) S is a $(k-1)$-dependent $[1, k]$-set for G;
c3) If there exist a vertex $v \in S$ such that $|N(v) \cap S|=0$, then $1<$ $\left|D \cap V\left(H^{v}\right)\right| \leqslant\lfloor k / 2\rfloor$ or for any vertex $v^{\prime} \in S-\{v\}$, we have $\operatorname{dist}_{G}\left(v, v^{\prime}\right) \geqslant 3$.

Theorem 2.12. Let G and H be two graphs. $G \circ H \in \mathcal{D}_{[1, k]}^{t}$ if and only if G and H satisfy one of the following conditions

1. $G=K_{1}$ and $H \in \mathcal{D}_{[1, k]}^{t}$;
2. G has a total $[1, k]$-set S and if S has a vertex v such that $|N(v) \cap S|=k$ then H has an isolated vertex;
3. G is an efficient domination graph and $\gamma_{t[1, k]}(H) \leqslant k$;
4. G has a $(k-1)$-dependent $[1, k]$-set S and if $S \in \mathcal{S D}_{[1, k]}^{k-1}(G)$ then $\gamma_{t[1, k]}(H) \leqslant$ k and otherwise $\gamma_{t[1, k]}(H) \leqslant k / 2$.

3. Complexity

In this section, we will show that the decision problem for total [1,2]-set is $N P$-complete. We will do this by reduction the $N P$-complete problem, Exact 3 -Cover, to Total [1, 2]-Set.

Exact 3-cover problem: Input of this problem is a finite set $X=\left\{x_{1}, x_{2}, \ldots, x_{3 q}\right\}$ with $|X|=3 q$ and a collection C of 3 -element subsets of X such as $C_{i}=$ $\left\{x_{i_{1}}, x_{i_{2}}, x_{i_{3}}\right\}$. our goal is to understand is there a $C^{\prime} \subseteq C$ such that every element of X appears in exactly one element of C^{\prime} ?

Total [1, 2]-set problem: Input of this problem is a graph $G=(V, E)$ and a positive integer $k \leqslant|V|$. We want to investigate is there any total [1, 2]-set of cardinality at most k for G.

Theorem 3.1. Total [1, 2]-SET is $N P$-complete for bipartite graphs.
Proof. Let $D \subseteq V$ is given, we verify D is a total [1, 2]-set. For any vertex $v \in D$, we check neighborhood of each vertex and compute span number of any vertex $v \in V$. If there is a vertex v with span number more than 2 , this set isn't a total $[1,2]$-set for G. It is obvious this algorithm is done in polynomial time and total $[1,2]$-set is a $N P$ problem. Now for a set X, and a collection C of 3 -element subsets of X, we build a graph and transform EXACT 3-COVER into a total [1,2]-set problem. Let $X=\left\{x_{1}, x_{2}, \ldots, x_{3 q}\right\}$ and $C=\left\{C_{1}, C_{2}, \ldots, C_{t}\right\}$. For each $C_{i} \in C$, we build a cycle C_{4} with a vertex u_{i} and add new vertices $\left\{v_{1_{1}}, v_{1_{2}}, v_{1_{3}}, v_{2_{1}}, v_{2_{2}}, v_{2_{3}}, \cdots, v_{t_{1}}, v_{t_{2}}, v_{t_{3}}\right\}$. We and connect all vertices $v_{i 1}, v_{i 2}, v_{i 3}$ to u_{i}. Then add some other vertices $\left\{x_{1}, x_{2}, \ldots, x_{3 q}\right\}$ and edges $x_{i} v_{j_{1}}, x_{i} v_{j_{2}}$ and $x_{i} v_{j_{3}}$, if $x_{i} \in C_{j} . G$ is a bipartite graph.
Let $k=2 t+q$. Suppose that C^{\prime} is a solution for set X and collection C of EXACT 3-COVER. We build a set D of vertices of G contain every u_{i}, $1 \leqslant i \leqslant t$, and another vertex of C_{4} adjacent to u_{i} and one of the $v_{j_{1}}, v_{j_{2}}$ or $v_{j_{3}}$ for each $C_{j} \in C^{\prime}$. If C^{\prime} exists, then it's cardinality is precisely q , and so $|D|=2 t+q=k$. We can check easily that D is a [1, 2]-total set of G.
Conversely, suppose that G has a total $[1,2]$-set D with $|D| \leqslant 2 t+q=k$. Then D must contain two vertices of every C_{4}, in the best case we select u_{i} and one of the vertices in that adjacency in C_{4}. We select $2 t$ vertices that dominate all
vertices of cycles and all vertices of form $v_{i_{1}}, v_{i_{2}}$ or $v_{i_{3}}$ for $1 \leqslant i \leqslant t$. Since each $v_{i_{j}}$ dominates only three vertices of $\left\{x_{1}, x_{2}, \ldots, x_{3 q}\right\}$ We have to select exactly q vertices of them, i.e. we select $q 3$-element subsets of form $\left\{v_{i_{1}}, v_{i_{2}}, v_{i_{3}}\right\}$ and one element of each of them. Each of this $v_{i_{j}}$ correspond to a C_{i} and union of them is a exact cover for C.

Example 3.2. Let $C=\left\{C_{1}, C_{2}, C_{3}, C_{4}\right\}$ where $C_{1}=\left\{x_{1}, x_{2}, x_{4}\right\}, C_{2}=\left\{x_{3}, x_{5}, x_{7}\right\}, C_{3}=$ $\left\{x_{4}, x_{5}, x_{6}, x_{7}\right\}$ and $C_{4}=\left\{x_{6}, x_{8}, x_{9}\right\}$, Corresponding graph was shown in Figure 1.

Figure 1. $N P$-completeness for bipartite graph

Acknowledgements

The authors are grateful to reviewers, Dr. Saeid Alikhani and Dr. Elham Abbasi for their constructive comments and suggestions on improving our paper.

References

[1] D. W. Bange, A. E. Barkauskas, and P. J. Slater, Efficient dominating sets in graphs, Applications of Discrete Mathematics, (1988), 189-199.
[2] C. Liao and G. Chang, Algorithmic aspect of k-tuple domination in graphs, Taiwanese Journal of Mathematics, 6 (2002), 415-420.
[3] M. Chellali, O. Favaron, T. Haynes, S. Hedetniemi, and A. McRae, Independent $[1, k]$-sets in graphs, Australasian Journal of Combinatorics, 59 (2014), 144-156.
[4] M. Chellali, T. Haynes, S. Hedetniemi, and A. McRae, [1, 2]-sets in graphs, Discrete Applied Mathematics, 161 (2013), 2885-2893.
[5] A. Goharshady, M. Hooshmandasl, and M. Alambardar Meybodi, [1, 2]sets and [1, 2]-total sets in trees with algorithms, Discrete Applied Mathematics, 198 (2016), 136-146.
[6] R. Hammack, W. Imrich, and S. Klavzar, Handbook of product graphs, CRC press, (2011).
[7] T. Haynes, S. Hedetniemi, and P. Slater, Domination in graphs: advanced topics, Marcel Dekker, (1998).
[8] T. Haynes, S. Hedetniemi, and P. Slater, Fundamentals of domination in graphs, CRC Press, (1998).
[9] S. Hedetniemi and R. Laskar, Topics on domination, Elsevier, (1991).
[10] M. Henning and A. Yeo, Total domination and graph products, Springer, (2013), 103-108.
[11] D. B. West, Introduction to graph theory, Prentice hall Upper Saddle River, (2001).
[12] X. Yang and B. Wu, [1, 2]-domination in graphs, Discrete Applied Mathematics, (2014).

Pouyah Sharifani

Ph.D of Computer Science
Department of Computer Science
Yazd University
Yazd, Iran
E-mail: pouyeh.sharifani@gmail.com
Mohammad Reza Hooshmandasl
Associate Professor of Mathematics
Department of Computer Science
Yazd University
Yazd, Iran
E-mail: hooshmandasl@yazd.ac.ir

