Journal of Mathematical Extension Vol. 13, No. 3, (2019), 57-69 ISSN: 1735-8299 URL: http://www.ijmex.com

Total [1, k]-Sets in the Lexicographic Product of Graphs

P. Sharifani Yazd University

M. R. Hooshmandasl* Yazd University

Abstract. A subset $S \subseteq V$ in a graph G = (V, E) is called a [1, k]-set, if for every vertex $v \in V \setminus S$, $1 \leq |N_G(v) \cap S| \leq k$. The [1, k]-domination number of G, denoted by $\gamma_{[1,k]}(G)$ is the size of the smallest [1, k]-sets of G. A set $S' \subseteq V(G)$ is called a total [1, k]-set, if for every vertex $v \in V$, $1 \leq |N_G(v) \cap S| \leq k$. If a graph G has at least one total [1, k]-set then the cardinality of the smallest such set is denoted by $\gamma_{t[1,k]}(G)$. In this paper, we investigate the existence of [1, k]-sets in lexicographic products $G \circ H$. Furthermore, we completely characterize graphs whose lexicographic product has at least one total [1, k]-set. Finally, we show that finding smallest total [1, k]-set is an NP-complete problem.

AMS Subject Classification: 05C85; 68R05Keywords and Phrases: Domination, total domination, [1, k]-set, total [1, k]-set, independent [1, k]-set, lexicographic products

1. Introduction and Terminology

The concept of dominating set and domination number is a well studied topic in graph theory and has many extensions and applications [8, 9]. Many variants of domination numbers have been proposed and surveyed in the literature such as total domination number [10], efficient and open efficient domination numbers

Received: May 2018; Accepted: November 2018

^{*}Corresponding author

[1], k-tuple domination number [2] and others like [8]. Most of these problems are shown to be NP-hard. Recently, Chellali et al. introduced the notion of a [j, k]-dominating set for a graph and studied some problems in this respect [4]. They have also pointed out a number of open problems on [1, 2]-dominating sets in [4]. Some of those problems are solved by X. Yang et al. [12] and AK. Goharshady et al. [5].

In [3], Chellali et al. investigated independent [1, k]-sets for graphs and gave a constructive characterization of the trees having an independent [1, k]-set. Also they proved that the corona of two graphs G and H has an independent [1, k]-set if and only if each component of G is an isolated vertex or $i(H) \leq k$, where $i(H) = i_{[1,k]}(G)$ is the minimum cardinality of an independent [1, k]-set of G.

All graphs in this paper are assumed to be a simple ones, i.e., finite, undirected, loopless graphs without multiple edges. For notation and terminology that are not defined here, we refer the reader to [11]. For given simple graph G with vertex set V(G) and edge set E(G), the degree of vertex $v \in V(G)$ is denoted by $d_G(v)$, or simply d(v). We denote the minimum and maximum degrees of vertices in G by $\delta(G)$ and $\Delta(G)$, respectively. The open neighborhood $N_G(v)$ of a vertex $v \in V(G)$ equals $\{u : \{u, v\} \in E(G)\}$ and its closed neighborhood $N_G[v]$ is defined $N_G(v) \cup \{v\}$. The open (resp. closed) neighborhood of $S \subseteq V$ is defined to be the union of open (resp. closed) neighborhoods of vertices in S and is denoted by N(S) (resp. N[S]). A set $D \subseteq V$ is called a dominating set of G if for every $v \in V \setminus D$, there exists some vertex $u \in D$ such that $v \in N(u)$. The domination number of G is the minimum number among cardinalities of all dominating sets of G and is denoted by $\gamma(G)$. A set $D \subseteq V$ is called a total dominating set of G if for every $v \in V$, there exists some vertex $u \in D$ such that $v \in N(u)$. The total domination number is the minimum number among cardinalities of all total dominating sets of G and is denoted by $\gamma_t(G)$. For two given integers j and k such that $j \leq k$, a subset $D \subseteq V$ is called a [j,k]-set (resp. total [j,k]-set) if for every vertex $v \in V \setminus D$ (resp. $v \in V$), $j \leq |N(v) \cap D| \leq k$. Note that total [j, k]-sets might not exist for an arbitrary graph. The sets of all graphs like G which have at least one total [j, k]-set is denoted by $\mathcal{D}_{[i,k]}^t$. Other types of dominating sets, that we are used in this work are summarized in the Table 1.

Table 1: Some types of domination studied in this paper where $S \subseteq V$

Name	$v \in V \setminus S$	$v \in S$
[1,k]-set	$ N(v) \cap S \in [1,k]$	-
Independent $[1, k]$ -set	$ N(v) \cap S \in [1,k]$	$ N(v) \cap S = 0$
j-dependent $[1, k]$ -set	$ N(v) \cap S \in [1,k]$	$ N(v) \cap S \in [0, j]$
Total $[1, k]$ -set	$ N(v) \cap S \in [1,k]$	$ N(v) \cap S \in [1,k]$
j-dependent total $[1, k]$ -set	$ N(v) \cap S \in [1,k]$	$ N(v) \cap S \in [1, j]$
Efficient dominating	$ N(v) \cap S = 1$	$ N(v) \cap S = 0$

The rest of the paper is organized as follows: In Section 2, we study total [1, k]sets of lexicographic product of graphs and then, we completely characterize graphs which their lexicographic product has at least one total [1, k]-set. Then, we determine the structure of all total [1, k]-sets for these graphs. In Section 3, we prove that finding a total [1, 2]-set with minimum cardinality for a graph is NP-complete.

2. Total [1,2]-Sets of Lexicographic Products of Graphs

The lexicographic product of graphs G and H, denoted by $G \circ H$ is a graph with the vertex set $V(G \circ H) = V(G) \times V(H)$ and two vertices (g, h) and (g', h') are adjacent in $G \circ H$ if and only if either $\{g, g'\} \in E(G)$ or g = g' and $\{h, h'\} \in E(H)$.

Note that if G is not connected, then $G \circ H$ is not connected, too. So in this section, we always assume that G is a connected graph.

In this section, we investigate properties of graphs G and H such that $G \circ H$ has a total [1, 2]-set. Then we extend these results to total [1, k]-set. Note that, it is possible that $G \in \mathcal{D}_{[1,2]}^t$, whereas $G \circ H \notin \mathcal{D}_{[1,2]}^t$, or vice versa.

Definition 2.1. Let H and G be two graphs. Let $g_0 \in V(H)$ and $h_0 \in V(H)$. The sets $G^{h_0} = \{(g, h_0) \in V(G \circ H) : g \in V(G)\}$ and $H^{g_0} = \{(g_0, h) \in V(G \circ H) : h \in V(H)\}$ are called a G-Layer and a H-Layer respectively.

Lemma 2.2. Let v and v' be two adjacent vertices of G and $u, u' \in V(H)$. Then

$$N_{G \circ H}((v, u)) \cup N_{G \circ H}((v', u)) = N_{G \circ H}((v, u')) \cup N_{G \circ H}((v', u'))$$

= $N_{G \circ H}((v, u)) \cup N_{G \circ H}((v', u')).$

Proof. We know that

$$N_{G \circ H}((v, u)) = \bigcup_{v_i \in N_G(v)} V(H^{v_i}) \cup \{(v, u_j) : u_j \in N_H(u)\},\$$

 \mathbf{SO}

$$N_{G\circ H}((v,u)) \cup N_{G\circ H}((v',u')) = D_1 \cup D_2 \tag{1}$$

where $D_1 = (\bigcup_{v_i \in N_G(v)} V(H^{v_i})) \cup \{(v, u_j) : u_j \in N_H(u)\}$ and $D_2 = (\bigcup_{v_i \in N_G(v')} V(H^{v_i})) \cup \{(v', u_j) : u_j \in N_H(u')\}.$ It is easy to see that

$$\{(v, u_j) : u_j \in N_H(u)\} \subseteq V(H^v).$$

$$(2)$$

and

$$\{(v', u_j) : u_j \in N_H(u')\} \subseteq V(H^{v'}).$$

$$(3)$$

By hypotheses $\{v, v'\} \in E(G)$, we have

$$V(H^{v}) \subseteq N_{G \circ H}((v', u')),$$

$$V(H^{v'}) \subseteq N_{G \circ H}((v, u)).$$
(4)

So by Relations 1, 2, 3 and 4, it is implied that

$$N_{G \circ H}((v, u)) \cup N_{G \circ H}((v', u')) = \bigcup_{v_i \in N_G(\{v, v'\})} V(H^{v_i}).$$

The equation above shows that the union of neighbors of the vertices (v, u) and (v', u') is independent from u and u'. Therefore, we have

$$N_{G \circ H}((v, u)) \cup N_{G \circ H}((v', u)) = N_{G \circ H}((v, u')) \cup N_{G \circ H}((v', u'))$$

= $N_{G \circ H}((v, u)) \cup N_{G \circ H}((v', u')).$

Lemma 2.3. Let D be a total [1, 2]-set for $G \circ H \in \mathcal{D}_{[1,2]}^t$ which contains more than two vertices of a $H_-Layer H^v$. Then $G = K_1$ and $H \in \mathcal{D}_{[1,2]}^t$.

Proof. Let *D* be a total [1, 2]-set of $G \circ H$ that contains vertices (x, v), (y, v) and (z, v) where $v \in V(G)$ and $x, y, z \in V(H)$. If there exists a vertex $v' \in V(G)$ such that $\{v, v'\} \in E(G)$, then all vertices of $H^{v'}$ are dominated by three vertices (x, v), (y, v) and (z, v). This is a contradiction. So there is not any vertex adjacent to v. Since *G* is a connected graph, $G = K_1 = (\{v\}, \emptyset)$ and $S = \{u : (v, u) \in D\}$ is a total [1, 2]-set for *H* and hence $H \in \mathcal{D}^{t}_{[1, 2]}$. \Box

Corollary 2.4. Let G be a nontrivial connected graph and $G \circ H \in \mathcal{D}^t_{[1,2]}$. Then, every total [1,2]-set of $G \circ H$ has at most two vertices of each H_- Layer. For a total [1,2]-set D, we define A_1^D as $\{(v,u) : |V(H^v) \cap D| = 1\}$ and A_2^D as $\{(v,u) : |V(H^v) \cap D| = 2\}$. The set D satisfies in one of the following conditions:

- 1) $A_1^D = \emptyset$ and $A_2^D \neq \emptyset$,
- 2) $A_1^D \neq \emptyset$ and $A_2^D \neq \emptyset$,
- 3) $A_2^D = \emptyset$ and $A_1^D \neq \emptyset$.

Lemma 2.5. Let D be a total [1,2]-set of $G \circ H \in \mathcal{D}_{[1,2]}^t$ such that $A_2^D = \emptyset$. Then, $S = \{u : (u,v) \in D\}$ is a total [1,2]-set for G. In addition, if there is a vertex $u \in S$ such that $|N(u) \cap S| = 2$; then H contains an isolated vertex.

60

Proof. The proof is by contradiction. Assume D is a total [1,2]-set of $G \circ H$ with $A_2^D = \emptyset$ and $S = \{u : (u, v) \in D\}$ is not a total set of G. Then, we have three cases to consider.

- 1. There exists a vertex like $u \in S$ such that $|N(u) \cap S| = 0$. It means that there is no vertex $u' \in N_G(u)$ such that $u' \in S$. The set D is a total [1,2]-set and $u \in S$, so there exists a vertex $v \in V(H)$ such that $(u,v) \in D$. Similarly there exists a vertex $v' \in V(H)$ such that $(u,v') \in D$. This is a contradiction against $A_2^D = \emptyset$.
- 2. There exists a vertex like $w \in V(G) \setminus S$ such that $|N_G(w) \cap S| = 0$. Then, there is no vertex like $v \in V(H)$ such that $(u, v) \in D$. Moreover, there is no vertex $w' \in N_G(w)$ such that $w' \in S$. Therefore vertices of H^w can not be dominated by any vertex in D, which is a contradiction.
- 3. There exists a vertex like $w \in V(G) \setminus S$ such that $|N(w) \cap S| > 2$. Then, there are at least three distinct vertices $w', w'', w''' \in N_G(w) \cap S$. By the definition of S, there are vertices $v', v'', v''' \in V(H)$ such that $(w', v'), (w'', v''), (w''', v''') \in D$. These vertices dominate all vertices of H^w , which is a contradiction. \Box

Lemma 2.6. Let $G \circ H \in \mathcal{D}_{[1,2]}^t$ and H does not contain any isolated vertex. Then, there exists either a 1-dependent total [1,2]-set for G or for each total [1,2]-set D of G, $A_1^D = \{(v,u) : |V(H^v) \cap D| = 1\} \neq \emptyset$ and $A_2^D = \{(v,u) : |V(H^v) \cap D| = 2\} \neq \emptyset$.

Proof. Let *D* be a total [1, 2]-set of $G \circ H$ which contains at most one vertex from each H_{-} Layer. Since *H* does not contain any isolated vertex then by Lemma 2.5 there is a 1-dependent total [1, 2]-set like *S* for *G* such that S = $\{v : (v, u) \in D\}$ and $A_2^D = \emptyset$. \Box

For a given graph $G \circ H \in \mathcal{D}_{[1,2]}^t$ and a total [1,2]-set D of $G \circ H$ where $A_2^D \neq \emptyset$, we define the set B^D as $B^D = \{\{u', u''\} : (v, u'), (v, u'') \in A_2^D\}.$

Lemma 2.7. Let $G \circ H \in \mathcal{D}^t_{[1,2]}$ where H does not contain any isolated vertex and for any total [1,2]-set D of $G \circ H$, $A_1^D \neq \emptyset$ and $A_2^D \neq \emptyset$. Then, the following conditions hold:

- 1) Every element of B^D is a total [1,2]-set for H.
- 2) The set $S' = \{v : (v, u) \in D\}$ is a 1-dependent [1, 2]-set for G.
- 3) If there is a vertex $v \in S'$ such that $|N(v) \cap S'| = 0$ then $dist_G(v, v') \ge 3$ for every $v' \in S' \setminus \{v\}$.

Proof. Let *D* be a total [1,2]-set of $G \circ H \in \mathcal{D}^t_{[1,2]}$; there are three cases to consider.

- 1) Suppose that $S = \{u^*, u^{\bullet}\} \in B$ is not a total [1, 2]-set for H. Then two cases occur and in each case, we can establish a contradiction with D is a total [1, 2]-set.
 - Let $\{u^*, u^{\bullet}\} \notin E(H)$ and there is a $(v', u') \in D$ such that $\{(v, u^*), (v', u')\} \in E(G \circ H)$. Since H dose not contain any isolated vertex, so any vertex $u'' \in N_H(u')$ is dominated by $(v', u'), (v, u^*)$ and (v, u^{\bullet}) .
 - Let $\{u^*, u^{\bullet}\}$ does not dominate all vertices of V(H). So, there is a vertex $(v', u') \in D$ such that $\{v, v'\} \in E(G)$ and (v', u') dominates all vertices of H^v . Then any vertex $u'' \in N_H(u')$ is dominated by $(v', u'), (v, u^*)$ and (v, u^{\bullet}) .
- 2) Suppose that $S' = \{v : (v, u) \in D\}$ is not a 1-dependent [1,2]-set for G. Then, three cases occur and in each case, we have a contradiction with D being a total [1,2]-set.
 - There is a vertex $v \in S'$ that is dominated by at least two vertices $v', v'' \in S'$. So there are vertices $u, u', u'' \in V(H)$ such that $(v, u), (v', u'), (v'', u'') \in D$. Since H dose not contain any isolated vertex, there is a vertex $u''' \in V(H)$ such that $\{u, u'''\} \in E(H)$. Then, (v, u'') is dominated by (v, u), (v', u') and (v'', u'').
 - There is a vertex $v \in V(G) \setminus S'$ such that $|N_G(v) \cap S'| = 0$. So no vertex of H^v is dominated by D.
 - There is a vertex $v \in V(G) \setminus S'$ such that $|N_G(x) \cap S'| > 2$. Then there are at least three vertices distinct $v', v'', v''' \in S'$ to dominate v. By definition of S', there are vertices $u', u'', u''' \in V(H)$ such that $(v', u'), (v'', u''), (v''', u''') \in D$. These vertices dominate all vertices of H^v .
- 3) Let $v \in S'$ such that $|N(v) \cap S'| = 0$ and there is a vertex $v' \in S'$ such that $dist_G(v, v') = 2$.

By $|N(v) \cap S'| = 0$, there exist vertices $u', u'' \in V(H)$ such that $(v, u'), (v, u'') \in D$ and $\{u', u''\} \in E(H)$. Suppose there is a vertex $v' \in S'$ such that $dist_G(v, v') = 2$. So, there is a vertex $v'' \in V(G)$ such that $\{v, v''\}, \{v', v''\} \in E(G)$. The vertices (v, u'), (v, u'') and (v', u') dominate all vertices of $H^{v''}$. It is contradictory with D being a total [1,2]-set. So we have $dist_G(v, v') \ge 3$. \Box

Lemma 2.8. Let D be a total [1, 2]-set of $G \circ H \in \mathcal{D}_{[1,2]}^t$ such that $A_1^D = \emptyset$. Then $S' = \{v : (v, u) \in D\}$ is an efficient dominating set of G.

Proof. Since *D* be a total [1,2]-set of $G \circ H$, then there is a vertex $v \in S'$ such that the set *D* contains (v, u'), (v, u'') for some vertex $u', u'' \in V(H)$. By Lemma 2.7, $\{u', u''\}$ is a total [1,2]-set for *H*. So for any vertex $v' \in N_G(v)$, none of vertices in $H^{v'}$ cannot be contained in *D*. Thus $dist_G(v, v') \ge 3$ and *S* is an efficient dominating set of *G*. \Box

In the sequel $\mathcal{SD}_{[i,j]}^k(G)$ is used to denote the set of all k-dependent [i,j]-set S of G such that S satisfies in the following condition

$$(\forall v \in S | N(v) \cap S| = 0) \to (\forall v' \in S \setminus \{v\} d(v, v') \ge 3).$$

Corollary 2.9. Let G be a connected nontrivial graph and D be a total [1, 2]-set of $G \circ H \in \mathcal{D}_{[1,2]}^t$, one of the following cases holds:

- If $A_1^D = \{(u, v) : |V(H^v) \cap D| = 1\} = \emptyset$, then there is a total [1,2]-set $S = \{u^*, u^\bullet\}$ in H and an efficient dominating set S' in G such that $D' = S' \times S$ is a total [1,2]-set for $G \circ H$ and |D| = |D'| = 2|S'|.
- If $A_2^D = \{(u,v) : |V(H^v) \cap D| = 2\} = \emptyset$ and H contains an isolated vertex v. Then there is a total [1,2]-set S in G where $D' = S \times \{v\}$ and D' is a total [1,2]-set for $G \circ H$. Moreover, we have |D| = |D'| = |S|.
- If $A_2^D = \{(u, v) : |V(H^v) \cap D| = 2\} = \emptyset$ and H does not contain any isolated vertex, then for every vertex $v \in V(H)$ there is a 1-dependent total [1, 2]-set S in G such that $D' = S \times \{v\}$ and D' is a total [1, 2]-set for $G \circ H$. Clearly, |D| = |D'| = |S|.
- If $A_1^D \neq \emptyset$ and $A_2^D \neq \emptyset$, then there is a total [1,2]-set $S = \{u^*, u^*\}$ in Hand a 1-dependent total [1,2]-set S' in G such that for any vertex $v \in S$ and $u \in X$ where $X = \{x : |N_G(x) \cap S'| = 0\}$, $dist(v, u) \ge 3$. Moreover $D' = ((X \times S) \cup (S' \setminus X) \times \{u^*\})$ is a total [1,2]-set of size |D| in $G \circ H$ and |D| = |D'| = |S'| + |X|.

Proof. This corollary is a direct result of Lemma 2.2, 2.5, 2.7 and 2.8. \Box

Theorem 2.10. Let G and H be two graphs. Then, $G \circ H \in \mathcal{D}_{[1,2]}^t$ if and only if one of the following conditions holds:

- 1. $G = K_1$ and $H \in \mathcal{D}^t_{[1,2]}$;
- 2. G has a total [1,2]-set S such that if S has a vertex v where $|N(v) \cap S| = 2$ then H has an isolated vertex;
- 3. G is an efficient domination graph and $\gamma_{t[1,2]}(H) = 2$;

4. $SD^{1}_{[1,2]}(G) \neq \emptyset$ and $\gamma_{t[1,2]}(H) = 2$.

Proof. Suppose that D be a total [1, 2]-set of $G \circ H \in \mathcal{D}^t_{[1,2]}$. If D contains more than two vertices of a H_- Layer, then by Lemma 2.3, $G = K_1$ and $H \in \mathcal{D}^t_{[1,2]}$. If D contains at most two vertices of each H_- Layer, then there is a total [1, 2]-set D' for $G \circ H$ such that |D'| = |D| and vertices of D' have been choosen from two G_- Layers as G^{u^*} and G^{u^\bullet} . Without lose of generality we consider that $S = \{v : (v, u) \in D'\}$ and $S' = \{u^*, u^\bullet\}$. Then, the set D' satisfies one of the following conditions:

- a) By Lemma 2.5, $D = \{(v, u^*) : v \in S\}$, so S is a total [1, 2]-set for G and if there exists a vertex $v \in D$ such that $|N(v) \cap S| = 2$, then H has an isolated vertex.
- b) $D' = \{(v, u^*) : v \in S \text{ and } u \in S'\}$, by Corollary 2.9, S is an efficient dominating set of G and S' is a total [1, 2]-set for H.
- c) There is a vertex $w \in S$ such that $(w, u^*) \in D'$ but $(w, u^{\bullet}) \notin D'$. By Lemma 2.7, we have $S \in SD^1_{[1,2]}(G)$ and S' is a total [1,2]-set for H.

Now, we show the other side as follows:

- 1. If $G = K_1$ and H has a total [1,2]-set S', then it is easy to see that $G \circ H = H$ and S' is a total [1,2]-set of $G \circ H$.
- 2. Assume that S is a total [1,2]-set of G and $u^* \in V(H)$. We define D as $S \times \{u^*\}$. Since every vertex of G^{u^*} is dominated by at least one of vertices of D, then every vertex of other G_{-} Layers is dominated by D. So, for any vertex $(v', u') \in G \circ H$, we have $|N((v', u')) \cap D| \ge 1$. Now, it is sufficient to show that $|N((v', u')) \cap D| \le 2$. To this end, we consider two cases:
 - a) For every vertex $v \in S$, $|N(v) \cap S| = 1$: So, it is clear that for any vertex (v', u^*) of G^{u^*} , $|N((v', u^*)) \cap D| \leq 2$. If $u' \neq u^*$, we need to show that $|N((v', u')) \cap D| \leq 2$. Then following cases can happen:
 - a1) $(v', u^*) \in D$ and $\{u', u^*\} \in E(H)$; for every $v'' \in S$ adjacent to v', (v', u') is dominated by (v', u^*) and (v'', u^*) . Since $(v', u^*) \in D$ and $v' \in S$, so $|N(v') \cap S| = 2$ and $|N((v', u')) \cap D| = |N(v') \cap S| + 1 = 2$.
 - a2) $(v', u^{\star}) \in D$ and $\{u', u^{\star}\} \notin E(H)$; if $v'' \in S$ and $\{v', v''\} \in E(G)$ then (v', u') is dominated by (v'', u^{\star}) . So $|N((v', u')) \cap D| = |N(v') \cap S| = 1$.

64

- a3) $(v', u^{\star}) \notin D$; for every $v'' \in S$ and $\{v', v''\} \in E(G)$, (v', u')is dominated by (v'', u^{\star}) . Since $(v', u^{\star}) \notin D$, $v' \notin S$. We have $|N((v', u')) \cap D| = |N(v') \cap S| \leq 2$.
- b) There is a vertex $v \in S$ such that $|N(v) \cap S| = 2$ and u^* is an isolated vertex in H. For every vertex $v'' \in S$ and $\{v', v''\} \in E(G), (v', u')$ is dominated by (v'', u^*) . So it is the case that $|N((v', u')) \cap D| = |N(v') \cap S| \leq 2$.
- 3. Let S be an efficient dominating set of G, $S' = \{u^*, u^\bullet\}$ is a total [1,2]set for H and $D = \{(v, u) : v \in S \text{ and } u \in S'\}$. It is easy to see that D is a total dominating set of $G \circ H$.

If $v' \in S$, then every $(v', u') \in V(H^{v'})$ are dominated by either (v', u^*) or (v', u^{\bullet}) . Since S is an efficient dominating set of G, then $N_G(v') \cap S = \emptyset$ and (v', u') is not dominated by any other vertices. If $v' \notin S$, then there is exactly one vertex $v'' \in S$ such that $\{v', v''\} \in E(G)$ and every $(v', u') \in V(H^{v'})$ are dominated by either (v'', u^*) and (v'', u^{\bullet}) . So, D is a total [1, 2]-set for $G \circ H$.

4. Suppose that $S \in \mathcal{SD}^1_{[1,2]}, S' = \{u^\star, u^\bullet\}$ is a total [1,2]-set for H and

$$D = \{(v, u^*), (v, u^\bullet) : v \in S \text{ and } |N(v) \cap S| = 0\}$$
$$\cup \{(v, u^*) : v \in S \text{ and } |N(v) \cap S| = 1\}.$$

By definition of D, It is easy to see that for any vertex $(v, u) \in D$, there is a vertex $(v', u') \in D$ such that $\{(v, u), (v', u')\} \in E(G \circ H)$. So, D is a total set of $G \circ H$. Now, we must show that D dominates all vertices of $G \circ H$ at least one and at most two times. It is clear $S = \{v : (v, u^*) \in D\} \in S\mathcal{D}^1_{[1,2]}$. We consider three kind of vertices and we will show vertices of each H_- Layer are dominated by at least one and two vertices of D.

- a) $v \in S$ and $|N(v) \cap S| = 0$: Since $S' = \{u^*, u^\bullet\}$ is a total [1,2]-set for $G \circ H$, $(v, u^*) \in D$ and $(v, u^\bullet) \in D$. Then, all of the vertices of H^v are dominated by (v, u^*) and (v, u^\bullet) . Since $|N(v) \cap S| = 0$. So, any other vertex cannot dominate vertices of H^v . Therefore $1 \leq |N(v, u) \cap D| \leq 2$.
- b) $v \in S$ and $|N(v) \cap S| = 1$: So, there is a vertex $v' \in S$ such that $\{v, v'\} \in E(G)$, (v', u^*) dominates all of the vertices of H^v and these vertices can also be dominated by (v, u^*) . Since S is a 1-dependent [1, 2]-set for G, then there is not any other vertex in neighborhood of v in S, so $1 \leq |N(v, u) \cap D| \leq 2$.

P. SHARIFANI AND M. R. HOOSHMANDASL

c) $v \notin S$: Since S is a 1-dependent [1,2]-set for G, it is easy to see that there is a vertex $v' \in S$ such that $\{v, v'\} \in E(G)$. So, all of the vertices of H^v are dominated by (v', u^*) . If $|N(v') \cap S| = 0$, then (v', u^{\bullet}) dominates vertices of H^v and any other vertices can not dominate them. If there exist a $v'' \in S$ such that $\{v, v''\} \in E(G)$ and it is contradict to $dist_G(v', v'') \geq 3$. If $|N(v') \cap S| = 0$, there maybe exists a vertex $(v'', u^*) \in D$ such that $|N(v') \cap S| \neq 0$ and there is no vertex in $H^{v''}$ and other H_{-} Layers dominate vertices of H^v . \Box

In the sequel, we express necessary and sufficient conditions for the given graphs G and H such that $G \circ H$ has a total [1, k]-set. The Lemma 2.3, 2.5, 2.7 and Corollary 2.9 are generalized to total [1, k]-set. Since proofs in this section can be similarly obtained from the case on total [1, 2]-sets, we omit them.

Theorem 2.11. Let D be a total [1, k]-set for $G \circ H$.

- a) If D contains more than k vertices of a $H_{-}Layer$, then $G = K_1$ and $H \in \mathcal{D}_{[1,k]}^t$.
- b) If D contains at most one vertex of every $H_{-}Layers$, then $S = \{v \in V(G) : (v, u) \in D\}$ is a (k 1)-dependent total [1, k]-set of G. Moreover if there is a vertex $v \in S$ such that $|N(v) \cap S| = k$, then H contains an isolated vertex.
- c) If H does not contain any isolated vertex and $S = \{v \in V(G) : (v, u) \in D\}$ is not a total set of G, then D contains at most k vertices of each H^v and satisfies the following conditions:
 - c1) The set $S' = \{u \in V(H) : (v, u) \in D\}$ is a total [1, k]-set of H with cardinality to at most k and there is a vertex $x \in S$ such that $1 < |D \cap V(H^x)| \leq |S'|;$
 - c2) S is a (k-1)-dependent [1,k]-set for G;
 - c3) If there exist a vertex $v \in S$ such that $|N(v) \cap S| = 0$, then $1 < |D \cap V(H^v)| \leq \lfloor k/2 \rfloor$ or for any vertex $v' \in S \{v\}$, we have $dist_G(v, v') \geq 3$.

Theorem 2.12. Let G and H be two graphs. $G \circ H \in \mathcal{D}_{[1,k]}^t$ if and only if G and H satisfy one of the following conditions

- 1. $G = K_1 \text{ and } H \in \mathcal{D}^t_{[1,k]};$
- 2. G has a total [1, k]-set S and if S has a vertex v such that $|N(v) \cap S| = k$ then H has an isolated vertex;

- 3. G is an efficient domination graph and $\gamma_{t[1,k]}(H) \leq k$;
- 4. G has a (k-1)-dependent [1,k]-set S and if $S \in SD^{k-1}_{[1,k]}(G)$ then $\gamma_{t[1,k]}(H) \leq k$ and otherwise $\gamma_{t[1,k]}(H) \leq k/2$.

3. Complexity

In this section, we will show that the decision problem for total [1, 2]-set is NP-complete. We will do this by reduction the NP-complete problem, Exact 3-Cover, to Total [1, 2]-Set.

Exact 3-cover problem: Input of this problem is a finite set $X = \{x_1, x_2, ..., x_{3q}\}$

with |X| = 3q and a collection C of 3-element subsets of X such as $C_i = \{x_{i_1}, x_{i_2}, x_{i_3}\}$. our goal is to understand is there a $C' \subseteq C$ such that every element of X appears in exactly one element of C'?

Total [1,2]-set problem: Input of this problem is a graph G = (V, E) and a positive integer $k \leq |V|$. We want to investigate is there any total [1,2]-set of cardinality at most k for G.

Theorem 3.1. Total [1, 2]-SET is *NP*-complete for bipartite graphs.

Proof. Let $D \subseteq V$ is given, we verify D is a total [1, 2]-set. For any vertex $v \in D$, we check neighborhood of each vertex and compute span number of any vertex $v \in V$. If there is a vertex v with span number more than 2, this set isn't a total [1, 2]-set for G. It is obvious this algorithm is done in polynomial time and total [1, 2]-set is a NP problem. Now for a set X, and a collection C of 3-element subsets of X, we build a graph and transform EX-ACT 3-COVER into a total [1, 2]-set problem. Let $X = \{x_1, x_2, ..., x_{3q}\}$ and $C = \{C_1, C_2, ..., C_t\}$. For each $C_i \in C$, we build a cycle C_4 with a vertex u_i and add new vertices $\{v_{1_1}, v_{1_2}, v_{1_3}, v_{2_1}, v_{2_3}, \cdots, v_{t_1}, v_{t_2}, v_{t_3}\}$. We and connect all vertices v_{i1}, v_{i2}, v_{i3} to u_i . Then add some other vertices $\{x_1, x_2, ..., x_{3q}\}$ and edges $x_i v_{j_1}, x_i v_{j_2}$ and $x_i v_{j_3}$, if $x_i \in C_j.G$ is a bipartite graph.

Let k = 2t + q. Suppose that C' is a solution for set X and collection C of EXACT 3-COVER. We build a set D of vertices of G contain every u_i , $1 \leq i \leq t$, and another vertex of C_4 adjacent to u_i and one of the v_{j_1}, v_{j_2} or v_{j_3} for each $C_j \in C'$. If C' exists, then it's cardinality is precisely q, and so |D| = 2t + q = k. We can check easily that D is a [1, 2]-total set of G.

Conversely, suppose that G has a total [1, 2]-set D with $|D| \leq 2t + q = k$. Then D must contain two vertices of every C_4 , in the best case we select u_i and one of the vertices in that adjacency in C_4 . We select 2t vertices that dominate all

P. SHARIFANI AND M. R. HOOSHMANDASL

vertices of cycles and all vertices of form v_{i_1}, v_{i_2} or v_{i_3} for $1 \leq i \leq t$. Since each v_{i_j} dominates only three vertices of $\{x_1, x_2, ..., x_{3q}\}$ We have to select exactly q vertices of them, i.e. we select q 3-element subsets of form $\{v_{i_1}, v_{i_2}, v_{i_3}\}$ and one element of each of them. Each of this v_{i_j} correspond to a C_i and union of them is a exact cover for C. \Box

Example 3.2. Let $C = \{C_1, C_2, C_3, C_4\}$ where $C_1 = \{x_1, x_2, x_4\}, C_2 = \{x_3, x_5, x_7\}, C_3 = \{x_4, x_5, x_6, x_7\}$ and $C_4 = \{x_6, x_8, x_9\}$, Corresponding graph was shown in Figure 1.

Figure 1. NP-completeness for bipartite graph

Acknowledgements

The authors are grateful to reviewers, Dr. Saeid Alikhani and Dr. Elham Abbasi for their constructive comments and suggestions on improving our paper.

References

- D. W. Bange, A. E. Barkauskas, and P. J. Slater, Efficient dominating sets in graphs, *Applications of Discrete Mathematics*, (1988), 189-199.
- [2] C. Liao and G. Chang, Algorithmic aspect of k-tuple domination in graphs, *Taiwanese Journal of Mathematics*, 6 (2002), 415-420.
- [3] M. Chellali, O. Favaron, T. Haynes, S. Hedetniemi, and A. McRae, Independent [1, k]-sets in graphs, Australasian Journal of Combinatorics, 59 (2014), 144-156.
- [4] M. Chellali, T. Haynes, S. Hedetniemi, and A. McRae, [1, 2]-sets in graphs, Discrete Applied Mathematics, 161 (2013), 2885-2893.

- [5] A. Goharshady, M. Hooshmandasl, and M. Alambardar Meybodi, [1, 2]sets and [1, 2]-total sets in trees with algorithms, *Discrete Applied Mathematics*, 198 (2016), 136-146.
- [6] R. Hammack, W. Imrich, and S. Klavzar, Handbook of product graphs, CRC press, (2011).
- [7] T. Haynes, S. Hedetniemi, and P. Slater, *Domination in graphs: advanced topics*, Marcel Dekker, (1998).
- [8] T. Haynes, S. Hedetniemi, and P. Slater, Fundamentals of domination in graphs, CRC Press, (1998).
- [9] S. Hedetniemi and R. Laskar, *Topics on domination*, Elsevier, (1991).
- [10] M. Henning and A. Yeo, Total domination and graph products, Springer, (2013), 103-108.
- [11] D. B. West, Introduction to graph theory, Prentice hall Upper Saddle River, (2001).
- [12] X. Yang and B. Wu, [1,2]-domination in graphs, Discrete Applied Mathematics, (2014).

Pouyah Sharifani

Ph.D of Computer Science Department of Computer Science Yazd University Yazd, Iran E-mail: pouyeh.sharifani@gmail.com

Mohammad Reza Hooshmandasl

Associate Professor of Mathematics Department of Computer Science Yazd University Yazd, Iran E-mail: hooshmandasl@yazd.ac.ir