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Abstract. A subset S ⊆ V in a graph G = (V,E) is called a [1, k]-set,
if for every vertex v ∈ V \S, 1  |NG(v)∩S|  k. The [1, k]-domination
number of G, denoted by γ[1,k](G) is the size of the smallest [1, k]-sets
of G. A set S ⊆ V (G) is called a total [1, k]-set, if for every vertex
v ∈ V , 1  |NG(v)∩S|  k. If a graph G has at least one total [1, k]-set
then the cardinality of the smallest such set is denoted by γt[1,k](G). In
this paper, we investigate the existence of [1, k]-sets in lexicographic
products G ◦H. Furthermore, we completely characterize graphs whose
lexicographic product has at least one total [1, k]-set. Finally, we show
that finding smallest total [1, k]-set is an NP -complete problem.
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1. Introduction and Terminology

The concept of dominating set and domination number is a well studied topic in
graph theory and has many extensions and applications [8, 9]. Many variants of
domination numbers have been proposed and surveyed in the literature such as
total domination number [10], efficient and open efficient domination numbers
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[1], k-tuple domination number [2] and others like [8]. Most of these problems
are shown to be NP -hard. Recently, Chellali et al. introduced the notion of
a [j, k]-dominating set for a graph and studied some problems in this respect
[4]. They have also pointed out a number of open problems on [1, 2]-dominating
sets in [4]. Some of those problems are solved by X. Yang et al. [12] and AK.
Goharshady et al. [5].

In [3], Chellali et al. investigated independent [1, k]-sets for graphs and gave a
constructive characterization of the trees having an independent [1, k]-set. Also
they proved that the corona of two graphs G and H has an independent [1, k]-
set if and only if each component of G is an isolated vertex or i(H)  k, where
i(H) = i[1,k](G) is the minimum cardinality of an independent [1, k]-set of G.

All graphs in this paper are assumed to be a simple ones, i.e., finite, undirected,
loopless graphs without multiple edges. For notation and terminology that are
not defined here, we refer the reader to [11]. For given simple graph G with
vertex set V (G) and edge set E(G), the degree of vertex v ∈ V (G) is denoted
by dG(v), or simply d(v). We denote the minimum and maximum degrees of
vertices in G by δ(G) and ∆(G), respectively. The open neighborhood NG(v)
of a vertex v ∈ V (G) equals {u : {u, v} ∈ E(G)} and its closed neighborhood
NG[v] is defined NG(v)∪{v}. The open (resp. closed) neighborhood of S ⊆ V is
defined to be the union of open (resp. closed) neighborhoods of vertices in S and
is denoted by N(S) (resp. N [S]). A set D ⊆ V is called a dominating set of G
if for every v ∈ V \D, there exists some vertex u ∈ D such that v ∈ N(u). The
domination number of G is the minimum number among cardinalities of all
dominating sets of G and is denoted by γ(G). A set D ⊆ V is called a total
dominating set of G if for every v ∈ V , there exists some vertex u ∈ D such
that v ∈ N(u). The total domination number is the minimum number among
cardinalities of all total dominating sets of G and is denoted by γt(G). For
two given integers j and k such that j  k, a subset D ⊆ V is called a
[j, k]-set (resp. total [j, k]-set) if for every vertex v ∈ V \ D (resp. v ∈ V ),
j  |N(v) ∩D|  k. Note that total [j, k]-sets might not exist for an arbitrary
graph. The sets of all graphs like G which have at least one total [j, k]-set is
denoted by Dt[j,k]. Other types of dominating sets, that we are used in this work
are summarized in the Table 1.

Table 1: Some types of domination studied in this paper where S ⊆ V
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The rest of the paper is organized as follows: In Section 2, we study total [1, k]-
sets of lexicographic product of graphs and then, we completely characterize
graphs which their lexicographic product has at least one total [1, k]-set. Then,
we determine the structure of all total [1, k]-sets for these graphs. In Section 3,
we prove that finding a total [1, 2]-set with minimum cardinality for a graph is
NP -complete.

2. Total [1, 2]-Sets of Lexicographic Products of
Graphs

The lexicographic product of graphs G and H, denoted by G ◦ H is a graph
with the vertex set V (G ◦ H) = V (G) × V (H) and two vertices (g, h) and
(g, h) are adjacent in G ◦H if and only if either {g, g} ∈ E(G) or g = g and
{h, h} ∈ E(H).

Note that if G is not connected, then G ◦H is not connected, too. So in this
section, we always assume that G is a connected graph.

In this section, we investigate properties of graphs G and H such that G ◦H
has a total [1, 2]-set. Then we extend these results to total [1, k]-set. Note that,
it is possible that G ∈ Dt[1,2], whereas G ◦H /∈ Dt[1,2], or vice versa.

Definition 2.1. Let H and G be two graphs. Let g0 ∈ V (H) and h0 ∈
V (H). The sets Gh0 = {(g, h0) ∈ V (G ◦H) : g ∈ V (G)} and
Hg0 = {(g0, h) ∈ V (G ◦H) : h ∈ V (H)} are called a G−Layer and a H−Layer
respectively.

Lemma 2.2. Let v and v be two adjacent vertices of G and u, u ∈ V (H). Then

NG◦H((v, u)) ∪NG◦H((v, u)) = NG◦H((v, u)) ∪NG◦H((v, u))
= NG◦H((v, u)) ∪NG◦H((v, u)).

Proof. We know that

NG◦H((v, u)) =


vi∈NG(v)

V (Hvi) ∪ {(v, uj) : uj ∈ NH(u)},

so
NG◦H((v, u)) ∪NG◦H((v, u)) = D1 ∪D2 (1)

where D1 = (

vi∈NG(v) V (H

vi)) ∪ {(v, uj) : uj ∈ NH(u)} and
D2 = (


vi∈NG(v) V (H

vi)) ∪ {(v, uj) : uj ∈ NH(u)}.
It is easy to see that

{(v, uj) : uj ∈ NH(u)} ⊆ V (Hv). (2)
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and
{(v, uj) : uj ∈ NH(u)} ⊆ V (Hv). (3)

By hypotheses {v, v} ∈ E(G), we have

V (Hv) ⊆ NG◦H((v, u)),
V (Hv) ⊆ NG◦H((v, u)).

(4)

So by Relations 1, 2, 3 and 4, it is implied that

NG◦H((v, u)) ∪NG◦H((v, u)) =


vi∈NG({v,v})

V (Hvi).

The equation above shows that the union of neighbors of the vertices (v, u) and
(v, u) is independent from u and u. Therefore, we have

NG◦H((v, u)) ∪NG◦H((v, u)) = NG◦H((v, u)) ∪NG◦H((v, u))
= NG◦H((v, u)) ∪NG◦H((v, u)). 

Lemma 2.3. Let D be a total [1, 2]-set for G ◦H ∈ Dt[1,2] which contains more
than two vertices of a H−Layer Hv. Then G = K1 and H ∈ Dt[1,2].

Proof. LetD be a total [1, 2]-set of G◦H that contains vertices (x, v), (y, v) and
(z, v) where v ∈ V (G) and x, y, z ∈ V (H). If there exists a vertex v ∈ V (G)
such that {v, v} ∈ E(G), then all vertices of Hv are dominated by three
vertices (x, v), (y, v) and (z, v). This is a contradiction. So there is not any
vertex adjacent to v. Since G is a connected graph, G = K1 = ({v}, ∅) and
S = {u : (v, u) ∈ D} is a total [1, 2]-set for H and hence H ∈ Dt[1,2]. 

Corollary 2.4. Let G be a nontrivial connected graph and G◦H ∈ Dt[1,2]. Then,
every total [1, 2]-set of G ◦ H has at most two vertices of each H−Layer. For
a total [1, 2]-set D, we define AD1 as {(v, u) : |V (Hv) ∩ D| = 1} and AD2
as {(v, u) : |V (Hv) ∩ D| = 2}. The set D satisfies in one of the following
conditions:

1) AD1 = ∅ and AD2 = ∅,

2) AD1 = ∅ and AD2 = ∅,

3) AD2 = ∅ and AD1 = ∅.

Lemma 2.5. Let D be a total [1, 2]-set of G ◦ H ∈ Dt[1,2] such that AD2 =
∅. Then, S = {u : (u, v) ∈ D} is a total [1, 2]-set for G. In addition, if there is
a vertex u ∈ S such that |N(u) ∩ S| = 2; then H contains an isolated vertex.
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Proof. The proof is by contradiction. Assume D is a total [1, 2]-set of G ◦H
with AD2 = ∅ and S = {u : (u, v) ∈ D} is not a total set of G. Then, we have
three cases to consider.

1. There exists a vertex like u ∈ S such that |N(u) ∩ S| = 0. It means
that there is no vertex u ∈ NG(u) such that u ∈ S. The set D is
a total [1, 2]-set and u ∈ S, so there exists a vertex v ∈ V (H) such
that (u, v) ∈ D. Similarly there exists a vertex v ∈ V (H) such that
(u, v) ∈ D. This is a contradiction against AD2 = ∅.

2. There exists a vertex like w ∈ V (G)\S such that |NG(w)∩S| = 0. Then,
there is no vertex like v ∈ V (H) such that (u, v) ∈ D. Moreover, there
is no vertex w ∈ NG(w) such that w ∈ S. Therefore vertices of Hw can
not be dominated by any vertex in D, which is a contradiction.

3. There exists a vertex like w ∈ V (G) \S such that |N(w)∩S| > 2. Then,
there are at least three distinct vertices w, w, w ∈ NG(w)∩S. By the
definition of S, there are vertices v, v, v ∈ V (H) such that
(w, v), (w, v), (w, v) ∈ D. These vertices dominate all vertices of
Hw, which is a contradiction. 

Lemma 2.6. Let G ◦ H ∈ Dt[1,2] and H does not contain any isolated ver-
tex. Then, there exists either a 1-dependent total [1, 2]-set for G or for each
total [1, 2]-set D of G, AD1 = {(v, u) : |V (Hv)∩D| = 1} = ∅ and AD2 = {(v, u) :
|V (Hv) ∩D| = 2} = ∅.

Proof. Let D be a total [1, 2]-set of G ◦H which contains at most one vertex
from each H−Layer. Since H does not contain any isolated vertex then by
Lemma 2.5 there is a 1-dependent total [1, 2]-set like S for G such that S =
{v : (v, u) ∈ D} and AD2 = ∅. 
For a given graph G◦H ∈ Dt[1,2] and a total [1, 2]-set D of G◦H where AD2 = ∅,
we define the set BD as BD = {{u, u} : (v, u), (v, u) ∈ AD2 }.

Lemma 2.7. Let G ◦H ∈ Dt[1,2] where H does not contain any isolated vertex
and for any total [1, 2]-set D of G◦H, AD1 = ∅ and AD2 = ∅. Then, the following
conditions hold:

1) Every element of BD is a total [1, 2]-set for H.

2) The set S = {v : (v, u) ∈ D} is a 1-dependent [1, 2]-set for G.

3) If there is a vertex v ∈ S such that |N(v)∩S| = 0 then distG(v, v)  3
for every v ∈ S \ {v}.
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Proof. Let D be a total [1, 2]-set of G ◦ H ∈ Dt[1,2]; there are three cases to
consider.

1) Suppose that S = {u, u•} ∈ B is not a total [1, 2]-set for H. Then two
cases occur and in each case, we can establish a contradiction with D is
a total [1, 2]-set.

– Let {u, u•} /∈ E(H) and there is a (v, u) ∈ D such that
{(v, u), (v, u)} ∈ E(G◦H). Since H dose not contain any isolated
vertex, so any vertex u ∈ NH(u) is dominated by (v, u), (v, u)
and (v, u•).

– Let {u, u•} does not dominate all vertices of V (H). So, there is a
vertex (v, u) ∈ D such that {v, v} ∈ E(G) and (v, u) dominates
all vertices of Hv. Then any vertex u ∈ NH(u) is dominated by
(v, u), (v, u) and (v, u•).

2) Suppose that S = {v : (v, u) ∈ D} is not a 1-dependent [1, 2]-set for
G. Then, three cases occur and in each case, we have a contradiction
with D being a total [1, 2]-set.

– There is a vertex v ∈ S that is dominated by at least two ver-
tices v, v ∈ S. So there are vertices u, u, u ∈ V (H) such
that (v, u), (v, u), (v, u) ∈ D. Since H dose not contain any iso-
lated vertex, there is a vertex u ∈ V (H) such that {u, u} ∈
E(H). Then, (v, u) is dominated by (v, u),(v, u) and (v, u).

– There is a vertex v ∈ V (G) \ S such that |NG(v) ∩ S| = 0. So no
vertex of Hv is dominated by D.

– There is a vertex v ∈ V (G) \ S such that |NG(x) ∩ S| > 2. Then
there are at least three vertices distinct v, v, v ∈ S to dominate
v. By definition of S, there are vertices u, u, u ∈ V (H) such that
(v, u), (v, u), (v, u) ∈ D. These vertices dominate all vertices
of Hv.

3) Let v ∈ S such that |N(v) ∩ S| = 0 and there is a vertex v ∈ S such
that distG(v, v) = 2.

By |N(v) ∩ S| = 0, there exist vertices u, u ∈ V (H) such that
(v, u), (v, u) ∈ D and {u, u} ∈ E(H). Suppose there is a vertex v ∈ S
such that distG(v, v) = 2. So, there is a vertex v ∈ V (G) such that
{v, v}, {v, v} ∈ E(G). The vertices (v, u), (v, u) and (v, u) domi-
nate all vertices of Hv . It is contradictory with D being a total [1, 2]-
set. So we have distG(v, v)  3. 
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Lemma 2.8. Let D be a total [1, 2]-set of G◦H ∈ Dt[1,2] such that AD1 = ∅. Then
S = {v : (v, u) ∈ D} is an efficient dominating set of G.

Proof. Since D be a total [1, 2]-set of G ◦ H, then there is a vertex v ∈ S
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Lemma 2.7, {u, u} is a total [1, 2]-set for H. So for any vertex v ∈ NG(v),
none of vertices in Hv cannot be contained in D. Thus distG(v, v)  3 and S
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In the sequel SDk[i,j](G) is used to denote the set of all k-dependent [i, j]-set S
of G such that S satisfies in the following condition

(∀v ∈ S |N(v) ∩ S| = 0)→ (∀v ∈ S \ {v} d(v, v)  3).
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• If AD1 = {(u, v) : |V (Hv) ∩ D| = 1} = ∅, then there is a total [1, 2]-set
S = {u, u•} in H and an efficient dominating set S in G such that
D = S × S is a total [1, 2]-set for G ◦H and |D| = |D| = 2|S|.

• If AD2 = {(u, v) : |V (Hv) ∩ D| = 2} = ∅ and H contains an isolated
vertex v. Then there is a total [1, 2]-set S in G where D = S × {v} and
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• If AD2 = {(u, v) : |V (Hv) ∩ D| = 2} = ∅ and H does not contain any
isolated vertex, then for every vertex v ∈ V (H) there is a 1-dependent
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Theorem 2.10. Let G and H be two graphs. Then, G ◦H ∈ Dt[1,2] if and only
if one of the following conditions holds:

1. G = K1 and H ∈ Dt[1,2];

2. G has a total [1, 2]-set S such that if S has a vertex v where |N(v)∩S| = 2
then H has an isolated vertex;
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4. SD1[1,2](G) = ∅ and γt[1,2](H) = 2.

Proof. Suppose that D be a total [1, 2]-set of G◦H ∈ Dt[1,2]. If D contains more
than two vertices of a H−Layer, then by Lemma 2.3, G = K1 and H ∈ Dt[1,2].
If D contains at most two vertices of each H−Layer, then there is a total [1, 2]-
set D for G ◦ H such that |D| = |D| and vertices of D have been choosen
from two G−Layers as Gu



and Gu
•
. Without lose of generality we consider

that S = {v : (v, u) ∈ D} and S = {u, u•}. Then, the set D satisfies one of
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b) D = {(v, u) : v ∈ S and u ∈ S}, by Corollary 2.9, S is an efficient
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as S × {u}. Since every vertex of Gu



is dominated by at least one
of vertices of D, then every vertex of other G−Layers is dominated by
D. So, for any vertex (v, u) ∈ G◦H, we have |N((v, u))∩D|  1. Now,
it is sufficient to show that |N((v, u))∩D|  2. To this end, we consider
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, |N((v, u)) ∩D|  2. If u = u, we need to
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a3) (v, u) /∈ D; for every v ∈ S and {v, v} ∈ E(G), (v, u)
is dominated by (v, u). Since (v, u) /∈ D, v /∈ S. We
have|N((v, u)) ∩D| = |N(v) ∩ S|  2.

b) There is a vertex v ∈ S such that |N(v)∩S| = 2 and u is an isolated
vertex in H. For every vertex v ∈ S and {v, v} ∈ E(G), (v, u)
is dominated by (v, u). So it is the case that |N((v, u)) ∩D| =
|N(v) ∩ S|  2.

3. Let S be an efficient dominating set of G, S = {u, u•} is a total [1, 2]-
set for H and D = {(v, u) : v ∈ S and u ∈ S}. It is easy to see that D
is a total dominating set of G ◦H.

If v ∈ S, then every (v, u) ∈ V (Hv) are dominated by either (v, u)
or (v, u•). Since S is an efficient dominating set of G, then NG(v)∩S =
∅ and (v, u) is not dominated by any other vertices. If v /∈ S, then
there is exactly one vertex v ∈ S such that {v, v} ∈ E(G) and every
(v, u) ∈ V (Hv) are dominated by either (v, u) and (v, u•). So, D is
a total [1, 2]-set for G ◦H.

4. Suppose that S ∈ SD1[1,2], S = {u, u•} is a total [1, 2]-set for H and

D = {(v, u), (v, u•) : v ∈ S and |N(v) ∩ S| = 0}
∪{(v, u) : v ∈ S and |N(v) ∩ S| = 1}.

By definition of D, It is easy to see that for any vertex (v, u) ∈ D, there
is a vertex (v, u) ∈ D such that {(v, u), (v, u)} ∈ E(G ◦H). So, D is a
total set of G ◦H. Now, we must show that D dominates all vertices of
G ◦H at least one and at most two times. It is clear S = {v : (v, u) ∈
D} ∈ SD1[1,2]. We consider three kind of vertices and we will show vertices
of each H−Layer are dominated by at least one and two vertices of D.

a) v ∈ S and |N(v) ∩ S| = 0: Since S = {u, u•} is a total [1, 2]-set
for G ◦H, (v, u) ∈ D and (v, u•) ∈ D. Then, all of the vertices of
Hv are dominated by (v, u) and (v, u•). Since |N(v) ∩ S| = 0. So,
any other vertex cannot dominate vertices of Hv. Therefore 1 
|N(v, u) ∩D|  2.

b) v ∈ S and |N(v) ∩ S| = 1: So, there is a vertex v ∈ S such
that {v, v} ∈ E(G), (v, u) dominates all of the vertices of Hv

and these vertices can also be dominated by (v, u). Since S is a
1-dependent [1, 2]-set for G, then there is not any other vertex in
neighborhood of v in S, so 1  |N(v, u) ∩D|  2.
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c) v /∈ S: Since S is a 1-dependent [1, 2]-set for G, it is easy to see
that there is a vertex v ∈ S such that {v, v} ∈ E(G). So, all of the
vertices of Hv are dominated by (v, u). If |N(v) ∩ S| = 0, then
(v, u•) dominates vertices of Hv and any other vertices can not
dominate them. If there exist a v ∈ S such that {v, v} ∈ E(G)
and it is contradict to distG(v, v)  3. If |N(v) ∩ S| = 0, there
maybe exists a vertex (v, u) ∈ D such that |N(v) ∩ S| = 0 and
there is no vertex in Hv and other H−Layers dominate vertices of
Hv. 

In the sequel, we express necessary and sufficient conditions for the given graphs
G and H such that G ◦H has a total [1, k]-set. The Lemma 2.3, 2.5, 2.7 and
Corollary 2.9 are generalized to total [1, k]-set. Since proofs in this section can
be similarly obtained from the case on total [1, 2]-sets, we omit them.

Theorem 2.11. Let D be a total [1, k]-set for G ◦H.
a) If D contains more than k vertices of a H−Layer, then G = K1 and
H ∈ Dt[1,k].

b) If D contains at most one vertex of every H−Layers, then S = {v ∈
V (G) : (v, u) ∈ D} is a (k− 1)-dependent total [1, k]-set of G. Moreover
if there is a vertex v ∈ S such that |N(v) ∩ S| = k, then H contains an
isolated vertex.

c) If H does not contain any isolated vertex and S = {v ∈ V (G) : (v, u) ∈
D} is not a total set of G, then D contains at most k vertices of each
Hv and satisfies the following conditions:

c1) The set S = {u ∈ V (H) : (v, u) ∈ D} is a total [1, k]-set of H
with cardinality to at most k and there is a vertex x ∈ S such that
1 < |D ∩ V (Hx)|  |S|;

c2) S is a (k − 1)-dependent [1, k]-set for G;

c3) If there exist a vertex v ∈ S such that |N(v) ∩ S| = 0, then 1 <
|D ∩ V (Hv)|  k/2 or for any vertex v ∈ S − {v}, we have
distG(v, v)  3.

Theorem 2.12. Let G and H be two graphs. G ◦H ∈ Dt[1,k] if and only if G
and H satisfy one of the following conditions

1. G = K1 and H ∈ Dt[1,k];

2. G has a total [1, k]-set S and if S has a vertex v such that |N(v)∩S| = k
then H has an isolated vertex;
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3. G is an efficient domination graph and γt[1,k](H)  k;

4. G has a (k−1)-dependent [1, k]-set S and if S ∈ SDk−1[1,k](G) then γt[1,k](H) 
k and otherwise γt[1,k](H)  k/2.

3. Complexity

In this section, we will show that the decision problem for total [1, 2]-set is
NP -complete. We will do this by reduction the NP -complete problem, Exact
3-Cover, to Total [1, 2]-Set.

Exact 3-cover problem: Input of this problem is a finite setX = {x1, x2, ...., x3q}
with |X| = 3q and a collection C of 3-element subsets of X such as Ci =
{xi1 , xi2 , xi3}. our goal is to understand is there a C  ⊆ C such that every
element of X appears in exactly one element of C ?

Total [1, 2]-set problem: Input of this problem is a graph G = (V,E) and a
positive integer k  |V |. We want to investigate is there any total [1, 2]-set of
cardinality at most k for G.

Theorem 3.1. Total [1, 2]-SET is NP -complete for bipartite graphs.

Proof. Let D ⊆ V is given, we verify D is a total [1, 2]-set. For any vertex
v ∈ D, we check neighborhood of each vertex and compute span number of
any vertex v ∈ V . If there is a vertex v with span number more than 2, this
set isn’t a total [1, 2]-set for G. It is obvious this algorithm is done in poly-
nomial time and total [1, 2]-set is a NP problem. Now for a set X, and a
collection C of 3-element subsets of X, we build a graph and transform EX-
ACT 3-COVER into a total [1, 2]-set problem. Let X = {x1, x2, ..., x3q} and
C = {C1, C2, ..., Ct}. For each Ci ∈ C, we build a cycle C4 with a vertex ui
and add new vertices {v11 , v12 , v13 , v21 , v22 , v23 , · · · , vt1 , vt2 , vt3}. We and con-
nect all vertices vi1, vi2, vi3 to ui. Then add some other vertices {x1, x2, ..., x3q}
and edges xivj1 , xivj2 and xivj3 , if xi ∈ Cj .G is a bipartite graph.

Let k = 2t + q. Suppose that C  is a solution for set X and collection C
of EXACT 3-COVER. We build a set D of vertices of G contain every ui,
1  i  t, and another vertex of C4 adjacent to ui and one of the vj1 , vj2 or
vj3 for each Cj ∈ C . If C  exists, then it’s cardinality is precisely q, and so
|D| = 2t+ q = k. We can check easily that D is a [1, 2]-total set of G.

Conversely, suppose that G has a total [1, 2]-set D with |D|  2t+ q = k. Then
D must contain two vertices of every C4, in the best case we select ui and one
of the vertices in that adjacency in C4. We select 2t vertices that dominate all
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c) v /∈ S: Since S is a 1-dependent [1, 2]-set for G, it is easy to see
that there is a vertex v ∈ S such that {v, v} ∈ E(G). So, all of the
vertices of Hv are dominated by (v, u). If |N(v) ∩ S| = 0, then
(v, u•) dominates vertices of Hv and any other vertices can not
dominate them. If there exist a v ∈ S such that {v, v} ∈ E(G)
and it is contradict to distG(v, v)  3. If |N(v) ∩ S| = 0, there
maybe exists a vertex (v, u) ∈ D such that |N(v) ∩ S| = 0 and
there is no vertex in Hv and other H−Layers dominate vertices of
Hv. 

In the sequel, we express necessary and sufficient conditions for the given graphs
G and H such that G ◦H has a total [1, k]-set. The Lemma 2.3, 2.5, 2.7 and
Corollary 2.9 are generalized to total [1, k]-set. Since proofs in this section can
be similarly obtained from the case on total [1, 2]-sets, we omit them.

Theorem 2.11. Let D be a total [1, k]-set for G ◦H.
a) If D contains more than k vertices of a H−Layer, then G = K1 and
H ∈ Dt[1,k].

b) If D contains at most one vertex of every H−Layers, then S = {v ∈
V (G) : (v, u) ∈ D} is a (k− 1)-dependent total [1, k]-set of G. Moreover
if there is a vertex v ∈ S such that |N(v) ∩ S| = k, then H contains an
isolated vertex.

c) If H does not contain any isolated vertex and S = {v ∈ V (G) : (v, u) ∈
D} is not a total set of G, then D contains at most k vertices of each
Hv and satisfies the following conditions:

c1) The set S = {u ∈ V (H) : (v, u) ∈ D} is a total [1, k]-set of H
with cardinality to at most k and there is a vertex x ∈ S such that
1 < |D ∩ V (Hx)|  |S|;

c2) S is a (k − 1)-dependent [1, k]-set for G;

c3) If there exist a vertex v ∈ S such that |N(v) ∩ S| = 0, then 1 <
|D ∩ V (Hv)|  k/2 or for any vertex v ∈ S − {v}, we have
distG(v, v)  3.

Theorem 2.12. Let G and H be two graphs. G ◦H ∈ Dt[1,k] if and only if G
and H satisfy one of the following conditions

1. G = K1 and H ∈ Dt[1,k];

2. G has a total [1, k]-set S and if S has a vertex v such that |N(v)∩S| = k
then H has an isolated vertex;
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vertices of cycles and all vertices of form vi1 , vi2 or vi3 for 1  i  t. Since each
vij dominates only three vertices of {x1, x2, ..., x3q} We have to select exactly
q vertices of them, i.e. we select q 3-element subsets of form {vi1 , vi2 , vi3} and
one element of each of them. Each of this vij correspond to a Ci and union of
them is a exact cover for C. 

Example 3.2. Let C = {C1, C2, C3, C4} where C1 = {x1, x2, x4},C2 = {x3, x5, x7},C3 =
{x4, x5, x6, x7} and C4 = {x6, x8, x9}, Corresponding graph was shown in Fig-
ure 1.

Figure 1. NP -completeness for bipartite graph
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