ON NILPOTENCY OF OUTER POINTWISE INNER ACTOR OF
THE LIE ALGEBRA CROSSED MODULES

A. ALLAHYARI AND F. SAEEDI

ABSTRACT. Let £ be a Lie algebra crossed module and Actp;(£) be a point
wise inner Actor of £. In this paper, we introduce lower and upper central
series of £ and show that if Actm(%) £

J

/InnAct(m) is the nilpotent of
p J

class k, then Actp;(£)/InnAct(£) is the nilpotent of the maximum class j +
k. Moreover, if dim(£/(£% N Z;(£))) < 1, then Actp;(£)/InnAct(£) is the
nilpotent of the maximum class i + j — 1.

1. Introduction

Crossed modules in groups were introduced by Whitehead [13] in order to study
homotopy relations of groups. Lie algebra crossed modules were used by Roisin and
Lavendhomme as sufficient coefficients of a non-abelian cohomology of a T-algebra
in [10].

A crossed module of Lie algebras is a homomorphism d : L1 — Lg along with an
action of Ly on Lq satisfying special conditions. For an introduction and notation,
we refer to Casas [2], Casas and Ladra [3, 4] .

llgaz et. al. [6] introduced the concept of solvability and nilpotence for Lie
algebra crossed modules. In this paper, we introduce the upper and lower central
series for Lie algebra crossed modules and show if Act,;( %) /InnAct(%) is
the nilpotent of class k, then Act,;(£)/InnAct(£) is the nilpotent of the maximum
class k + j. In addition, if dim(£?/(£ N Z;(£))) < 1, then Acty;(£)/InnAct(L) is
the nilpotent of the maximum class ¢ + j — 1.

Note that if j = 0, the results would be the same as Jamshidi Rad and Saeedi
[7]. The idea of this paper is obtained from papers of Rai [11] and Sah’s [12] in
groups theory.

The paper is organized as follows. In section 2, we introduce the definitions
and elementary symbols of Lie algebra crossed modules. In section 3, we define
the upper and lower central series for crossed modules and prove some preliminary
lemmas. In section 4, after proving the required lemmas, we express and prove the
main theorem.

2. Preliminaries on Crossed Modules

A crossed module of Lie algebras is a homomorphism d : L; — L along with
an action of Ly on Ly, denoted by (lg,l;) —' I for all Iy € Ly and [; € L, such
that satisfies the following conditions:

(1) d(*li) = [lo, d(l)],
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2 A. ALLAHYARI AND F. SAEEDI

(2) 4B = [, 1],

for all Iy € Ly and I,1} € Ly. The crossed module £ is denoted as £ : (Ly, Lo, d).
The crossed module M : (M7, My, d') is called a subcrossed module £ : (Ly, Lo, d)
and shown as M < £ if My and M; are subalgebras Ly and L;, respectively and d’
is the restriction of d on M7 and M, acts on M7 as Lg acts on L.

A subcrossed module M : (My, My,d’) of a crossed module £ : (Ly, Lg,d) is an
ideal of £ and shown as M < £ if My and M; are ideals of Ly and L, respectively
and for all lg € Lo, mg € My, l1 € L1 and my € M,

l“ml € M; and ™[y € M.

Let M : (My, Mo,d)) and N : (Ny, No,d|) are two ideals of crossed module £ :
(L1, Lo,d). Then, M NN is an ideal of £ and defined as

MNON: (Ml le,MoﬂNQ,d‘).

Let £ : (L1, Lo, d) be a Lie algebra crossed module. Then, the center of this crossed
module is an ideal of it and shown as Z(£) and defined as

Z(L) : (*°L1,Str,(L1) N Z(Lo), d))

in which
Lopy ={l; € Ly|*l; =0, ¥ Iy € Lo},
Str,(L1) = {lo € Lo|"ly =0, ¥ 1, € Ly}.
The crossed module £ is abelian, if it coincides with its center.

Let £ : (Ly, Lo, d) be a Lie algebra crossed module. The derived crossed module of
L is defined as

L% (Dry(L1), L3, d))

in which DLO(Ll) = <l0l1 : l() S Lo,ll S L1> (see [5])
A homomorphism between two Lie algebra crossed modules £ : (Ly, Lo,d) and
L' (LY, Ly,d') is a pair (f, g) of Lie algebra homomorphisms f : L1 — L} and
g : Ly — Ly satisfying the following conditions:

(1) d'f = gd,

(2) f(oly) =90 f(iy)
forall lg € Lo and Iy € Ly.

Definition. Assume £ : (L1, Lo, d) is a crossed module. A derivation of £ is a pair
(a, B) : L — L satisfying the following conditions:

(1) o € Der(Ly),

(2) A € Der(Lo),

(3) da = pd,

(@) alh) =" a(ly) +7®) (1),
for all i € Lo and Iy € Lq.

The set of all derivations of £ is denoted by Der(£), which is a Lie algebra with

bracket as in the following:

[(O"ﬁ)a ((Jél,ﬁ/)} = ([O&,O{l], [ﬁ?ﬁ/]) = (OéO/ - O/O"ﬂ/ﬁl - ﬁlﬁ)

Definition. Assume £ : (L, Lo, d) is a Lie algebra crossed module. Then a map
6 : Ly — Ly is called crossed derivation if

5(llo, o)) =" 8(5) =" 5(lo)

—_— N —
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for all lp,1l{, € Lo. The set of all crossed derivations from Ly to Ly is denoted by
Der(Lg, L1), which turns into a Lie algebra via the following bracket:

[01, 2] = 61dda — daddy
for all 51,62 € Der(Lo, Ll)
Proposition 2.1. Every 6 € Der(Lg, L1) induces two derivations 6° € Der(Lg)
and §* € Der(Ly) defined as
8°=dé and 6''=dd
and satisfy the following identities:
(1) 66° = 816,
(2) 6°d = ds*,
(3) (6%,0°) € Der(L).

Definition. Let £ : (L1, Lo, d) be a Lie algebra crossed module. Then Der(L) acts
on Der(Lg, L1) as follows:

(@B)§ .= b — 68

for all a, § € Der(£) and ¢ € Der(Lg, L1). Now the homomorphism A : Der(Lg, L) —
Der(£L) defined by § — (dd,dd) is a crossed module and it is denoted by Act(L).
We have

Act(L) : (Der(Lg, L1),Der(L), A).

Proposition 2.2. There always exists a canonical homomorphism of crossed mod-
ules as follows:
(e,m) : L — Act(L)
in which
e: L1 — Der(Lg, L) n:Ly — Der(L)
and
L — d, lo = (auy,Biy)
with
81, (lo) =" 1, aug (1) =" iy Bio(lg) = [lo, Tp),
for all lp,l; € Lo and Iy € Ly. The image of this homomorphism is an ideal of
Act(L), denoted by InnAct(L), and it is given by

InnAct(L) : (e(L1),n(Lo), A))-
It can be easily shown that ker(e,n) = Z(L).

Definition. Let £ : (L1, Lo, d) be a Lie algebra crossed module. Then pointwise
inner Actor of £ is defined as

ACtpi (L) . (Derm—(Lg, Ll), Derpi (L), A|)
in which
Der,i(Lo, L1) = {6 € Der(Lo, L) s.t ¥y € Lo 31, € Ly| 5(lp) =" 11},

(L) = Viy € Ly o € Lo st a(ly) =l Iy
Derpz(L) - {(ayﬂ) e Der(L) ‘ VZO 6 LO Ell(/) 6 L6 S.t /B(lo) _ [l(l)’lo]

It can easily be proved that Actp;(£) is a subcrossed module of Act(£) including
InnAct(L). (see [1]).
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Definition. Let £ : (L1, Lo, d) be a Lie algebra crossed module. Then, ID*Act(£)
is defined as

ID*Act(£) : (ID*(Lo, L1), ID*(L), A))

in which
% . (5(10) € DLO(LI); Vi € Lo,
ID*(Lo, L1) = {5 € Der(Lo La) | 500) = 0, Wiy € Str, (L1) N Z(Lo)

and

Oé(ll) S DLO(Ll)L Vi, € Ll,
* _ a(ll) = 07 Vll S Ll7
ID*(L) = ¢ (o, B) € Der(L) B(lo) € L2, Vi € Lo,

B(lo) =0, Vip € StLO (Ll) N Z(L())

It can easily be shown that ID*Act(£) is a subcrossed module of Act(£) including
Acty; (L) (see [1]).

Definition. Let £ : (L1, Lo, d) be a Lie algebra crossed module and N : (N, Ny, d))
be an ideal of £. Then, Act™ (L) is defined as

Act™(L) : (Der™ (Lo, L1), Der™(£), A))
in which

Der™(Lo, L1) = {6 € Der(Lg, L1) |6(zo) € Ny Vo € Lo} ,

Der™(£) = {(a, B) € Der(L) |a(z1) € Ny Va; € Ly, B(xo) € Ny Vo € Lo} .

3. Upper and lower central series of Lie algebra crossed modules

Definition. Let £ : (L1, Lo, d) be a Lie algebra crossed module. Then the lower
central series £ is defined as

LYDL2D...oLm DL D

in which,
LY=L (L1, Lo, d)
£%: (D, (Ly), L, d))
L3 (Dry (D, (L)), Ly, d))

L™ (Dry(Dry(- - (Dry(L1)))), Ly, d,)-

n—1 times

For simplicity we use the L™ : (D} (L1), Ly, d)).

Definition. Let £ : (L1, Lo, d) be a Lie algebra crossed module. Then the upper
central series £ is defined as

Zo(L) CZ1(L) C--- CZp(L) C Zpya (L) C -
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in which,
Zo(£) =0
Z1(L) = Z(£) : (A1(£), Bi(£) N Z1(Lo), d))
Zo(L) : (A2(L), Ba(£) N Za(Lo), d))
Zn(L) : (An(L), Bn(L) N Zp(Lo), d))
where vo;
Ai(L)=Sz1 € L1 gy =0Vmg; € Lo, 1< i<y,
001 [10@01]102
‘Toi—1 T = 0, ‘Toi—1 T = 07
BZ(L) =< x9 € Ly [101101)102]%3. Va1 € L, To; € Lo, 1
ot T :0, ey
[z0 @01, »TQi— ],, — £0\ 01 TOG1
0-Fot 02017:171:07[0 01 0 ]331:0
for Vi € N.

Definition. Let £ : (L1, Lo, d) be a Lie algebra crossed module. If there is n € Z+
such that £L"™! =0 or Z,(L) = £, then £ is the nilpotent of class n.

Lemma 3.1. Let £ : (L1, Lo,d) be a Lie algebra crossed module and xo € Lj.
Then

(1) 1 € A;(L) if and only if “°x1 € A;_;(L);

(2) [0, 0] € Bj—i(£) N Zj—i(Lo) <= yo € B;(£) N Z;(Lo)-
Proof. The proof is straightforward. O
Lemma 3.2. [7] Let £ : (L1, Lo,d) be a Lie algebra crossed module and for all
k>0, (6, (a, B) € Actl;(£). Then

(1) For all zo € Lo , there are by, € D} (L1) and ¢y, € L§ so that §(zo) =

by, and B(x0) = [Czy, To);
(2) For all 1 € Ly , there is by, € LE so that a(z1) =b=1 1.

Lemma 3.3. Let £ : (L1, Lo, d) be a Lie algebra crossed module, (0, (Qtzy, Bay)) €
InnAct(£L) and (&', (¢/, ")) € Act(L) be arbitrary. Then

(1) [6',02,] = S50 (d(ar))s

(2) [ofsayy] = Qp(lo) s

(3) [5l7 Blo} = ﬁﬁ’(lo)'

Proof. (1) Let Iy € Lo
16, 60.1(l0) = (8'd6,, — 64,d8")(lo) = 6'dby, (lo) — 60,8 (Io)

=d'd(*xy) — 64, (d6' (lp)) = 8'd(*oxy) —99'0) g
= 8"([lo, d(1)]) — [6'(lo), z1] =" &' (d(1)) =) & (lo) — [6' (Io), 21]
=l §'(d(x1)) = [21,6'(lo)] = [6'(lo), z1] =" &' (d(x1))
= 05'(d(x1)) (l0)-

SJ<i
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(2) Let z1 € Ly
[, ) (z1) = (& — aypa’)(@1) = &g (1) — 0 (1)
= O/(lox1) _lo O/(l‘1) _lo 0/(961) +5/(lo) o o Oé,(xl)

:ﬁ/(lo) xry = O[B/(lo)(l’l).

(3) Let xo € Ly
18", Bio)(w0) = (B Biy — BioB')(w0) = B'Biy (20) — L1y B’ (wo0)
= B'([lo, o) — [lo, B’ (w0)] = [8'(l0), o] + [lo, B’ (w0)] — [lo, B’ (w0)]
= [6'(lo), zo] = B (1) (20)-
|

Lemma 3.4. Let £ : (L1, Lo, d) be a Lie algebra crossed module. Let (85, , (Qtzgs B )
and (8y, , (Qyy, By, )) are two arbitrary elements of InnAct(L). Then

(1) [6m176y1] = 6[y1,m1];
(2) [azovayo] = Qzg,y0]7

(3) [6160751/0] = B[ro,yo]'

Proof. Tt can be easily proved similar to Lemma 3.3. (]

Lemma 3.5. Let £ : (L1, Lo,d) be a Lie algebra crossed module and H be a sub-
crossed module of ID*Act(L) contains InnAct(L). Then

HNActZ?E) (L) = Z(H).
Proof. See [8], Corollary 4.3. O
4. Main theorem

In this section, first we state and prove some essential lemma, and then present
the main theorem of this paper.

Lemma 4.1. Let £ : (Ly, Lo, d) be a Lie algebra crossed module and N : (N1, No, d)
an ideal of it. If

(Actpi(%))j < (Inn(Act(J%))k jkeN

then
(Acti (L)) < (Actyi(£))* N Act™ (L) + (InnAct(L))*.

Proof. Assume (6, (a, 8)) € (Act,i(£))7. We know that § € D{Derm (o) (Derpi(Lo, L1))-

Now take & be crossed induced derivation by § on 1%7?) Hence

= ; Ly Ly
J ) —1
6 6 DDerpi(%)(Derpl(NO’ Nl))
By the assumption, we have
Ly L,y Ly Ly Ly

J (=Y 2Ly pF VY C Dk (=222
DDerp,-(%)(Derpl(NO’ N, )) = DW(%)(f(Nl )) = DDeTpi(%)(Derp’(NO’ Ny ))

Using the first part of Lemma 3.2, for all o + Ny € Jff—‘;, there exists by, + N1 €
k (L
D% (§+) such that

]

§(zo 4+ No) ="0tNo .+ Ny =% b, + Ny.
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Therefore,
8((E0+N0)=5({I}0)+N1 =0 bx0+N1 = (5(1‘0) =%o bwo—i—nl for n; € Ny.
Then
6(x0) = 0b,, (z0) + 11.
We take
A=0+40p,,

Hence, A € DerN(LO, L;). Now without loss of generality, assume k < j, we have

o€ D]]Der (L )(Derpi(Lle)) < DDerm(L)(Derpi@Oa Ly)).

Therefore,
A=6 + 57131,0 S DkDerpi(L)(Derpi(LO’ Ll))
Consequently,

(1) 6=A+6, € Db, () (Derpi(Lo, L1)) N Der™ (Lo, L1) + Dfp,. (€(L1))-

; L
Let (a,f) € Der);(£). Consider & be induced derivation by «a on ﬁl By the
1
assumption, we have

Ly Lo Ly
) C (- ).

N No N

By using the second part of Lemma 3.2, for all z1 + Ny E , there exists b,, € L&

such that

) € Dery;(+

a € Derpz( T

a(z1 4+ Np) =1 21+ N1 = afz1) + Ny =1 21 + Ny
Therefore,

b

a(z1) =""1 21 +ny for ng € Ny.

We take
Y=a+ap,, -

Thus, v € Der™*(L). Now without loss of generality, assume k < j, we have

a € Der J(L1) C Der (L1).

Therefore,

y=ata, € Der J(Lq).
Consequently,
(2) a =7+ ay,, €Der};(L1)NDer™ (L) + n*(Lo).

_ L
Consider 8 be induced derivation by 8 on ﬁo. By the assumption, we have
0

L 0

B € Der’ (L ) C De ’“(L“
0

Ny No)

Using the first part of Lemma 3.2, for all zy + Ny 6 , there exists ¢z, € L0 such
that

) C (- ry;

B(zo + No) = [cay, o] + No.
Therefore,

B(ZL’O —+ No) = ﬂ(xo) —+ NO = [Cro,xo] —+ N() = ﬂ((ﬂo) = [Cro,fﬂo} + ng for ng € No.
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We take
Z = B + /B—cur0 .
Then, Z € Der™¥°(Lg). Now without loss of generality, assume k < j, we have

B € Der) (Lo) C Derf,;(L).

Therefore,

Z =B+ B_c,, €Dery,(Lo).
Consequently,
(3) B=Z+ Be,, € Dery;(Lo) N Der™(Lg) + n*(Lo).

Now, by using (1), (2) and (3), we get
(Act,i(£))7 < (Acty(£))F N Act™ (L) + (InnAct(L))*.

Definition. Let £ : (L1, Lo, d) be a Lie algebra crossed module. Then
[L, ACt(L)] : ([Lo, DeI‘(Lo, Ll)] + [Ll, Der(Ll)], [Lo, DeI‘(Lo)])

in which
[Lo,DeI‘(L(),Ll)] = {5(1‘0) |I0 € Lo, o€ DeI‘(Lo,Ll)} ;

[L1,Der(L1)] = {ca(x1) |21 € L1, € Der(L1)};

[Lo, Der(Lo)] = {B(x0) |xo € Lo, 3 € Der(Lg)} .
Lemma 4.2. Let £ : (L1, Lo, d) be a Lie algebra crossed module. Then
(4) 17, ActZ D (L)] € Z;-i31(4).
Proof. It can be proved by induction on i.

Let i = 1, it is clear from definition of Act%/(“)(L).
Assume for ¢, (4) holds. That is,

(L, Der?1“) (Lo, L1)] + [D}, (L1), Der” “)(L1)] € Aj_i11(L),
[Li, Der? ) (Lo)] € Bj_i11(£) N Z;—i11(Lo).

Now, take § € Deij(L)(LO,Ll) and [y € Lfﬁ'l. Then, there exist o € Ly and
yo € L such that ly = [z, yo]. Thus,

(lo) = 6([zo,yo]) =" (yo) —*° 6(z0)-

By inductive assumption 6(yp) € A;j_;1+1(£L) and using the Lemma 3.1 #°§(yy) €
A;_;(L). Moreover, since 6(zo) € A;(£L) and yo € L}, by using the Lemma 3.1
Yod(xg) € A;—i(L). Therefore, 6(ly) € Aj_;(£). Consequently,

(5) (L5 Der?i ) (Lo, Ly)] € Aj_i(L).

Let (o, 3) € Der% ) (£) and z, € Di*ol(Ll). Hence, there exist y; € D} (L1) and
Yo € Lg such that z; =% y;. Thus,

Oz(xl) = a(yoyl) =Y%0 a(yl) +5("/0) Y1

Now, by given inductive assumption and B(yo) € 3;(£) N Z;(Lg), we conclude that
a(zy) € Aj_;(L). Hence,

(6) [DEHH(L1), Der ) (Ly)] € Aj—i(L).
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Take g € Lé*l, then there exist yo € L and zg € Lo such that zg = [yo, z0]. Thus,

B(xo) = Blyo, z0] = [B(yo), z0] + [yo, B(20)]-
By inductive assumption and S(z) € B;(£) N Z;(Ly), we conclude that (zg) €
B;_i(£L)N Z;_;(Lo). Therefore,
(7) (6™, Der® ) (Lo)] € B;—4(£) N Z;—i(Lo)-
By using (5), (6) and (7), we obtain
(L7 ActZi (D) (L)) € Z;_i(L).

Lemma 4.3. Let £ : (L1, Lo, d) be a Lie algebra crossed module. Then
(8) [Z;(£), (ID*Act(£))'] C Zj—i(L).
Proof. First, take ¢ = 1 and prove (8) by induction on j. By definition of ID*Act(L),
it is clear that [Z(L),ID*Act(L)] = 0 = Zp(L). Thus, (8) holds for j = 1. Now,
assume that for j, (8) holds. That is,

[B;(£) N Z;(Lo), ID*(Lo, L1)] + [A;(£), ID*(L1)] € A;-1(£),

[B;(£) N Z;(Lo), 1D (Lo)] € Bj-1(£) N Zj—1(Lo).
Let § € ID*(Lo,L1) and g € Bj+1(£) N Z;41(Lo) we show that 6(zg) € A;(L) .
To this end, for all yy € Ly, using the Lemma 3.1 we have
[z0, yo] € B;(£) N Z;(Lo).

Also,

6([z0, yo]) =" 0(yo) =" d(x0) = *°6(x0) =" 6(yo) — &([x0, yo])-
By given inductive assumption §([zo,yo]) € Aj—1(£). On the other hand, since
0(yo) € Dr,(L1) we conclude that *d(yo) € A;_1(L). Then, ¥0d(zo) € A;_1(L).
By using the Lemma 3.1, 6(zo) € A;(£). Consequently,
(9) [Bj+1(£) N Zj41(Lo), ID* (Lo, L1)] € A;j(£L).
Let (o, 8) € ID*(L) and 1 € Aj+1(£L) we show that a(z1) € 4;(L). To this end,
for all ¢ € Ly, using the Lemma 3.1 we have
o, € Aj (L)
On the other hand,
a(®xy) =" a(z)) +9@) 1 = Toa(z)) = a(®0x;) P 2.

By given inductive assumption, it is clear that a(*°z;) € A;_1(£). Also, since
B € ID*(Ly) then there exists yo, 20 € Lo such that S(xg) = [yo, 2z0]. Moreover,
using the Lemma 3.1, it is easily seen that #("0)zy € A; ;(L). Hence, ®a(x) €
A;_1(£), and using the Lemma 3.1, a(z1) € A;(£). Consequently,

(10) [Aj41(£) N ID*(La)] € A;j(L).

On the other hand, since z9 € Bj11(L) N Z;11(Lo) then for all Iy € Ly, using the
Lemma 3.1

[z0,lo] € B;(£) N Z;(Lo)-
Now, using a similar method, we can easily conclude that

B(xo) € B;j(£) N Z;j(Lo).
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Thus,
(11) [Bj+1(£) N Zj41(Lo), ID*(Lo)] € B;j(£) N Z;(Lo).
By using (9), (10) and (11), we have

[Z;41(£), ID* Act(£)] € Z;(£).

Then for ¢ = 1, (8) holds.
In the following, assume that for 4, (8) holds. Hence, we have

[B;(£) N Zj(Lo), D e oy (ID* (Lo, L1))] + [A;(£), ID*"(Ly)] € A; (L),

[B;(£) N Z;(Lo), ID*'(Lo)] € B;i(£) N Z;_i(Lo).
Let & € Dy ) (ID*(Lo, L1)) and zo € Bj(£) N Zj(Lo), thus, there exist 6, €

D}D*(L)(ID*(LO,Ll)) and (a, 8) € ID*(L) such that § =(®#) §;. Moreover,

8(x0) =) 61 (o) = ady () — 615(x0).

By given inductive assumption and (10), then, we have a(d1(xo)) € A,;_;—1(L).
Also, again by inductive assumption and (11), we get d1(8(z0)) € A;_i—1(L).
Consequently,

(12) (5(3’30) S Aj,ifl(ﬁ).

Let (o, 8) € ID*"*1(L) and 2, € A;(L), thus, there exist oy € ID*(L;) and
ag € ID*(Ly) such that a = [y, as]. Moreover,

a(zy) = [ag,as](z1) = (g — asar)(x1) = aras(xy) — asag(xq).

By given inductive assumption and (10), we have aa (a1 (1)), o (c2(21)) € Aj—i—1(L).
Consequently,

(13) Ol(lL'l) c Aj—i—l(f£)~

Using the same way, let 29 € B;(£) N Z;(Lo). Since 8 € ID*"1(Ly), thus, there
exist 81 € ID*'(Lg) and By € ID*(Lg) such that 8 = [81, f2]. Moreover,

B(xo) = [B1, Bo](x0) = (B182 — B2p1)(w0) = B1P2(x0) — B2B1(x0).

By given inductive assumption and (11), we have 8251 (x¢), 8182(z0) € Bj—i—1(L)N
Zj—i—1(Lo). Consequently,

(14) B(zo) € Bj—i—1(L) N Z;_;—1(Lo).
Now, by using (12), (13) and (14), we get
[2;(£), (ID*Act(£)) ] € Zj—i-1(£).
(]

Lemma 4.4. Let £ : (L1, Lo, d) be a Lie algebra crossed module and 3 : (Hy, Ho, )
a subcrossed module of Act(L) such that H be a subcrossed module of ID*Act(L)
contains InnAct(L). Then

(15) HNActZ P (L) = Z;(H).
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Proof. We prove (15) by induction on j. First, by Lemma 3.5 (15) holds for j =1 .
Now, assume that for j, (15) holds. Hence, we have

Hy NDerZ ) (Lo, L) = A;(H),
Ho N Der?C) (L) = B;(H) N Z;(Hy).
Let 6 € Hy; NDer?+1Y)(Ly. Ly) and (o, 8) € Hy are arbitrary. We have
@25(lo) = (0(ln)) = 8(B(lo))  ¥lo € Lo.

Since §(lp) € Aj41(L) and a € ID*(L4), using the Lemma 4.3 a(d(ly)) € A,(L).
Moreover, since 8 € ID*(Lg), then there exist xg, yo € Lo such that 8(ly) = [zo, yo-
Thus,
6(B(lo)) = ([0, yo]) =" 6(yo) —*° (o).
Now, since 6(x¢),0(yo) € Aj4+1(£L), then by Lemma 3.1 we have §(8(lp)) € A;(L).
Consequently,
(g e Hy NDer? ) (Ly, Ly).

Thus, (“9§ € A;(H), and using the Lemma 3.1, § € A;41(H). Hence, we conclude
that

(16) Hy N DerZ+1 ) (Lo, Ly) € Ajq (H).
Conversely, suppose 6 € A 1(H). It is clear that § € H;. It is enough to show
§ € Der?+19)(Ly, Ly). Since § € A;11(H), by the Lemma 3.1, for all (o, 8) € Ho,
(@B)5 e Aj(H).
Consider («y,, f1,) € Ho, then
(@10:810)§ € A;(H) = Hy NDer? ) (Lo, Ly) = (@0P0)§(zg) € Aj(L), Vo € Lo.
Therefore, we have
a1, 0(20) — 6By, (z0) =" 6(x0) — 6([lo, o))
=10 §(zg) =10 6(x0) +%0 6(1o)
=" §(lp) € A;(L), Vo € Lo.

Now, by the Lemma 3.1 6(lp) € A;;1(£). Thus, § € DerZ+:(*) (L, L;). Conse-
quently,
(17) Aj1(H) C Hy nDerZ+1 ) (L, Ly).
Using (16) and (17)

Hy NDerZ 1) (Lo, Ly) = Ajy1(3).
Also, assume (o, ) € Hy N DerZ+1(8) (L), We show that (a, 8) € Bjy1(H) N
Zj4+1(Hp). To this end, for all (o', 8") € Hy

[(e, B), (@, B)] = ([a, @], [8, B']) = (@’ — & x, BB" — B'B).

Consider x1 € L be arbitrary, then

(ad — ' a)(z1) = ad/ (z1) — o' a(xy).

Now, since o/(z1) € Dr,(L1), using the Lemma 4.2, a(c/(z1)) € A;(£). On the
other hand, by given the assumption, a(z1) € A;41(£), and using the Lemma 4.3,
o/ (a(x1)) € A;j(L). Therefore, for all z1 € Ly

(18) [, &)(z1) € Aj(L).
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Also, if g € Lo be arbitrary, using a similar method, we have
(19) 8,8 (x0) € B;(£) N Zj(Lo).
Using (18) and (19)
(0, 8), (', B)] € Ho N Dexr()(£) = B;(30) 1 Z;(Hy).

Now, by the Lemma 3.1

(a,8) € Bj1(H) N Zj1(Ho).
Conversely, suppose (o, ) € B;11(H) N Z;41(Hy). We show that (o, 5) € Ho N
DerZi+1)(£). It is clear that (a,8) € Hp. It is enough to show (a,8) €

DerZi+1)(L). Let (oq,,B,) € Ho be arbitrary, then using the Lemma 3.1 and
inductive assumption, we have

[(04,6), (agovﬁllo)] = ([a7a20]’ [ﬁvﬁllo]) € BJ(}C) N Zj(HO) =HpN Deij(L)(L)'
Moreover, using the Lemma 3.3, Proposition 2.2 and the above statement, we obtain
8, B1,)(0) = By (x0) = [B(lo), o] € Bj(£) N Zj(Lo) Vo € Lo.

Now, using the Lemma 3.1 5(ly) € B;4+1(£)NZ;11(Lo). Similarly, it can be shown
for all 1 € L1, a(ly) € Aj11(£L). Thus, (o, B) € DerZi+1)(£), and Consequently,

(a, 8) € Ho N DerZ-f+1(L)(L).

d
Corollary 4.5. Let £ : (L1, Lo, d) be a Lie algebra crossed module. Then
Actpi (L) N ActZ B (L) = Z;(Act,i(L)).
Proof. Using the Lemma 4.4, it is clear. (]

Theorem 4.6. Let £ be a Lie algebra crossed module and Actpi(%)/lnnAct(%)
the nilpotent of class k, then Acty;(£)/InnAct(L) is the nilpotent of the mazimum
class k+j. Moreover, if Actpi(%)/lnnAct(%) be an obvious crossed module,
then Acty;(£)/InnAct(L) is the nilpotent of the mazimum class j.

Proof. Since Actp;( )/InnAct(-%5) is the nilpotent of the class k, so

£
Z;(£) Z;j (L)

k+1
Act,; (

L
Zj(L)) C InnAct(Zj(L)

By given the Lemma 4.1, we have

ActF (L) C Actyi(£) N Act?(“)(L) + InnAct(£),

).

and using the Corollary 4.5
ActiF1(L) C Zj(Actp;(£)) + InnAct(£).
Therefore,
Act;jkﬂ(ﬁ) C Inn/ T Act(L).

Thus, we conclude that Acty;(£)/InnAct(£) is the nilpotent of the maximum class
k+j. O
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Definition. Let £ : (L1, Lg,d) be a Lie algebra crossed module. we define the
dimension of £ as follows:

dim £ = (dim Ly, dim Ly).

Corollary 4.7. Let L : (L1, Lg,d) be a non-abelian Lie algebra crossed module
such that dim(£L/(£L*N Z;(L))) < (1,1), then Acty;(£)/InnAct(L) is the nilpotent
of the mazximum class i+ j.

Proof. 1t is proved by considering £%/(£* N Z;(£L)) = (£/(Z;(£)))?, using Theorem
4.6 and Theorem 3.10 [7]. O
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