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tion of J-M -McCoy rings, as a generalization of J-McCoy and weakM -
McCoy rings, and investigate their properties. It is proved that for u.p.-
monoidsM and N if R
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is reversible, then R is J-M×N -McCoy. Also,

it is shown that a ring R is J-M -McCoy if and only if R[[x]] is J-
M -McCoy if and only if Tn(R) is J-M -McCoy, while the J-M -McCoy
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1. Introduction

Throughout this paper R andM denote an associative ring with identity
and a monoid, respectively. Let R be a ring. The symbols Tn(R), J(R)
and Nil(R) denote upper triangular matrix n × n over R, the Ja-
cobson radical of R, and the set of all nilpotent elements of R, re-
spectively. In 1997, the notion of an Armendariz ring is introduced by

Received: July 2018; Accepted: September 2018
∗Corresponding author

57

Journal of Mathematical Extension
Vol. 13, No. 4, (2019), 57-68
ISSN: 1735-8299

URL: http://www.ijmex.com

J-McCoy Rings Relative To A Monoid

A. Salimi
Central Tehran Branch, Islamic Azad University

Sh. Sahebi∗

Central Tehran Branch, Islamic Azad University

M. Deldar
Central Tehran Branch, Islamic Azad University

Abstract. Let R be a ring and M be a monoid. We introduce the no-
tion of J-M -McCoy rings, as a generalization of J-McCoy and weakM -
McCoy rings, and investigate their properties. It is proved that for u.p.-
monoidsM and N if R

J(R)
is reversible, then R is J-M×N -McCoy. Also,

it is shown that a ring R is J-M -McCoy if and only if R[[x]] is J-
M -McCoy if and only if Tn(R) is J-M -McCoy, while the J-M -McCoy
property is not Morita invariant.

AMS Subject Classification: 16U20; 16S36; 16U99; 16S15
Keywords and Phrases: J-McCoy rings, weak M -McCoy rings, J-
M -McCoy rings, reversible rings, J-semisimple rings

1. Introduction

Throughout this paper R andM denote an associative ring with identity
and a monoid, respectively. Let R be a ring. The symbols Tn(R), J(R)
and Nil(R) denote upper triangular matrix n × n over R, the Ja-
cobson radical of R, and the set of all nilpotent elements of R, re-
spectively. In 1997, the notion of an Armendariz ring is introduced by

Received: July 2018; Accepted: September 2018
∗Corresponding author

57



58 A. SALIMI, SH. SAHEBI AND M. DELDAR

Rege and Chhawcharian. They called a ring R Armendariz if when-
ever polynomials f(x) = a0 + a1x + a2x

2 + · · · + anx
n and g(x) =

b0+b1x+b2x2+· · ·+bmxm ∈ R[x]−{0} satisfy f(x)g(x) = 0 implies that
for each 1  i  n, 1  j  m, aibj = 0. A noncommutative ring R is
called left McCoy if for f(x) =

n
i=1 aix

i, g(x) =
m

j=1 bjx
j ∈ R[x]−{0}

satisfy f(x)g(x) = 0 there exists a nonzero element c ∈ R such that
cai = 0 for each i [8]. Right McCoy rings are defined similarly. A ring
R is called McCoy if it is both left and right McCoy. Commutative
rings are McCoy [6]. A number of papers have been written on Mc-
Coy property of rings (see, e.g., [1, 9, 3, 5, 2]). In [4] Liu studied a
generalization of Armendariz rings which is called M -Armendariz for a
monoid M . A ring is said to be M -Armendariz if for two nonzero ele-
ments α = a1g1+a2g2+ · · ·+angn, β = b1h1+b2h2+ · · ·+bmhm ∈ R[M ]
with αβ = 0, implies that aibj = 0 for each i, j and gi, hj ∈ M . More-
over, a generalization of McCoy rings which is called M -McCoy rings
whenever M is a monoid is introduced by E. Hashemi in [3]. A ring
is called left M -McCoy if whenever α = a1g1 + a2g2 + · · · + angn,
β = b1h1 + b2h2 + · · · + bmhm ∈ R[M ] − {0} satisfies αβ = 0, then
there exists a nonzero element c ∈ R such that cai = 0 for each i. Right
M -McCoy rings are defined analogously, and if a ring R is both left and
right M -McCoy, then it is called M -McCoy. Clearly, M -Armendariz
rings are M -McCoy. In 2008 [2], Sh. Ghalandarzadeh et al. introduced
another generalization of McCoy rings which is called left weak Mc-
Coy if whenever f(x) =

n
i=0 aix

n, g(x) =
m

j=0 bjx
m ∈ R[x] − {0}

satisfy f(x)g(x) = 0 then cai ∈ Nil(R) for some c ∈ R − {0} and
each i. They defined right weak McCoy rings similarly and said that
a ring R is weak McCoy if it is both right and left weak McCoy. In
2010, Alhevaz et al. in [1] investigated weak M -McCoy rings which are
a generalization of weak McCoy rings whenever M is a monoid. They
defined that a ring R is called left weak M -McCoy if for two nonzero
elements α =

n
i=1 aigi, β =

m
j=1 bjhj ∈ R[M ] with αβ = 0 implies

that there exists an element r ∈ R − {0} such that rai ∈ Nil(R). Also
they introduced right weak M -McCoy rings similarly. If a ring is both
left and right weak M -McCoy then it is named weak M -McCoy. As a
generalization of weak McCoy rings in 2016, M. Vahdani et al. in [5]
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called a ring R, left J-McCoy (when J(R) is the Jacobson radical of R),
if whenever two nonzero elements f(x) = a0 + a1x+ a2x

2 + · · ·+ anx
n,

g(x) = b0 + b1x + b2x
2 + · · · + bmx

m ∈ R[x] satisfy f(x)g(x) = 0, then
there exists an element c ∈ R−{0} such that cai ∈ J(R) for each i. Right
J-McCoy rings are defined similarly. A ring R is called J-McCoy if it is
both right and left J-McCoy. They proved that weak McCoy rings are
J-McCoy, but in general the converse is not true.

Motivated by above results, we introduce J-M -McCoy rings as a gen-
eralization of J-McCoy and weak M -McCoy rings. In general, we can
show that weak M -McCoy rings are J-M -McCoy, but the converse is
not always true.

2. Different Conditions on Monoids

We start this section by the following definition:

Definition 2.1. For a monoid M , a ring R is said to be right J-M -
McCoy if whenever elements α = a1g1 + · · · + angn, β = b1h1 + · · · +
bmhm ∈ R[M ]−{0} satisfy αβ = 0, then there exists a nonzero element
c ∈ R with aic ∈ J(R). We define left J-M -McCoy rings similarly. If a
ring R is both left and right J-M -McCoy, then we say that the ring R
is J-M -McCoy.

Note that, for Artinian rings, weakM -McCoy and J-M -McCoy ring are
the same.

Clearly, R is right (resp. left) J-McCoy ring if and only if R is right
(resp. left) J-M -McCoy where M = (N∪{0},+). Also, weak M -McCoy
rings are J-M -McCoy because if whenever two nonzero elements α =
a1g1+· · ·+angn, β = b1h1+· · ·+bmhm ∈ R[M ]−{0} satisfy αβ = 0 then
for each x ∈ R we have xαβ = 0. Since R is weakM -McCoy, there exists
nonzero element c ∈ R such that xaic ∈ Nil(R) and so 1− xaic ∈ U(R)
and we have aic ∈ J(R), so it shows the result. But the converse is not
always true by the [[5], Example 2.2] for M = (N ∪ {0},+).
For a monoidM andM


a submonoid ofM , we have R is J-M


-McCoy,

if R is J-M -McCoy. For it, let α =
n

i=1 aigi, β =
m

j=1 bjhj ∈ R[M

]−
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{0} such that αβ = 0. Since gi, hj ∈ M
 ⊆ M for each 1  i  n

and 1  j  m, then α, β ∈ R[M ], hence there exists r ∈ R such that
air ∈ J(R) for all 1  i  n, since R is J-M -McCoy. Therefore, R is
J-M


-McCoy.

Recall that a ring R is said to be J-semisimple (semiprimitive) if
J(R) = 0. So for J-semisimple rings, if M is a cyclic group of order
m  2, then R is not J-M -McCoy ring by [[3], Lemma 1.11]. Also,
if G is a finitely generated abelian group, then G is torsion-free (i.e.
T (G) = {e}) if and only if there exists a right J-G-McCoy ring R such
that |R|  2 by [[3], Theorem 1.14]. Note that, T (G) = {g ∈ G | ∃n >
0 : gn = e} is called the torsion subgroup of the abelian group G.

The following example shows that J-semisimple property is not a super-
fluous condition in the above discussion.

Example 2.2. Let Tn(Z8) be the upper triangular matrix ring over Z8
which is J-semisimple, andM = (Z2,+) be a monoid which is not cyclic
and torsion-free, by Corollary 3.6, Tn(Z8) is J-M -McCoy for any monoid
M .

For a monoid M , a ring R is said to be J-M -Armendariz if whenever
α = a1g1+· · ·+angn, β = b1h1+· · ·+bmhm ∈ R[M ]−{0} satisfy αβ = 0,
then aibj ∈ J(R) for each i, j. The above example shows that every J-
M -McCoy ring is not necessarily J-M -Armendariz, because Tn(Z8) is
not weak M -Armendariz by [[7], Proposition 2.12] so it is not J-M -
Armendariz.

For a monoidM , N is an ideal ofM , ifN ⊆M and if for each n ∈ N and
m ∈M then nm ∈ N . An element a of a monoid M is left cancellative
if ax = ay implies x = y for all x, y, and is right cancellative if xa = ya

implies x = y for all x, y. It is cancellative if it is both left and right
cancellative. A monoid M is cancellative if all of its elements are.

Proposition 2.3. For a monoidM and an ideal N ofM , let R be a right
(resp. left) J-N -McCoy ring. Then R is right (resp. left) J-M -McCoy
ring, if M is a cancellative monoid.

Proof. Let α =
n

i=1 aigi, β =
m

j=1 bjhj are two nonzero elements
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of R[M ] such that αβ = 0. For r ∈ N , rgi = rgj and hir = hjr, when
i = j, sinceM is cancellative. Also rg1, rg2, · · · , rgn, h1r, h2r, · · · , hmr ∈
N . Now from (

n
i=1 airgi)(

m
j=1 bjhjr) = 0, it follows that aic ∈ J(R)

for each i and some c ∈ R− {0}, since R is right J-N -McCoy, and so R
is right J-M -McCoy. 

For any α =
n

i=1 aigi ∈ R[M ] define ᾱ =
n

i=1(ai + J(R))gi ∈
R

J(R) [M ]. It is easy to see that the mapping ψ : R[M ] −→ R
J(R) [M ]

defined by ψ(
n

i=1 aigi) =
n

i=1 āigi is a ring homomorphism. Recall
that a ring R is said to be reversible if ab = 0 implies that ba = 0 for
all a, b ∈ R. Let N and N


be two nonempty finite subset of M . If there

exists an element m ∈M such that m = nn

where n ∈ N and n

 ∈ N 

and m is unique product in this form, then M is called u.p.-monoid.

For an ordered monoid M with , M is said to be strictly totally

ordered monoid if for any g1, g2, h ∈M, g1 < g2 implies that g1h < g2h

and hg1 < hg2.

Proposition 2.4. Let R̄ = R
J(R) a reversible ring. Then R is J-M -

McCoy, if M is a u.p.-monoid.

Proof. Let α =
n

i=1 aigi, β =
m

j=1 bjhj ∈ R[M ] − {0} be such
that αβ = 0. We have ᾱβ̄ = ᾱβ = 0̄. Since R

J(R) is M -McCoy by

[[3],Proposition 1.2], then there exists c̄ ∈ R
J(R) such that āic̄ = 0̄. There-

fore aic ∈ J(R) for each 1  i  n. Hence R is J-M -McCoy. 

Corollary 2.5. LetM be a strictly totally ordered monoid and R̄ = R
J(R)

a reversible ring. Then R is J-M -McCoy.

Theorem 2.6. Let M and N be u.p.-monoids and R
J(R) is reversible

ring. Then R[M ] is J-N -McCoy, and R[N ] is J-M -McCoy.

Proof.We know that by Proposition 2.4, R is J-M -McCoy. We will show
that R[M ]

J(R[M ]) is reversible. It is easy to see that
R[M ]

J(R[M ])
∼= R

J(R) [M ]. We

claim that R
J(R) [M ] is reversible. Let ᾱ =

n
i=1(ai + J(R))gi, β̄ =

m
j=1(bj + J(R))hj ∈ R

J(R) [M ] − {0̄} such that ᾱβ̄ = 0̄, then 0̄ =n
i=1

m
j=1(aibj + J(R))gihj so for each i, j we have aibj ∈ J(R), since

M is a u.p.-monoid. Hence (ai+J(R))(bj+J(R)) = 0̄, since R
J(R) is a re-
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versible ring, then bjai ∈ J(R). It follows that R[M ] is J-N -McCoy. By
the same analogy with the above proof, it follows that R[N ] is J-M -
McCoy. 

Theorem 2.7. Let M and N be u.p.-monoids. If R
J(R) is reversible and

J(R[M ]) ⊆ J(R)[M ], then R is J-M ×N -McCoy.

Proof. Suppose
s

i=1 ai(mi, ni) ∈ R[M×N ]. Without loss of generality
we assume that {n1, · · · , ns} = {n1, · · · , nt} with ni = nj when 1  i =
j  t. For any 1  p  t, denote Ap = {i|1  i  s, ni = np} thenk

p=1(


i∈Ap aimi)np ∈ R[M ][N ]. Note that mi = mi for any i, i
 ∈ Ap

with i = i

. Now it is easy to see that there exists an isomorphism of

rings R[M ×N ] −→ R[M ][N ] defined by

s

i=1

ai(mi, ni) −→
t

p=1

(


i∈Ap

aimi)np.

Suppose that (
s

i=1 ai(mi, ni))(
s



j=1 bj(m

j , n


j)) = 0 in R[M×N ]. Then

from the above isomorphism it follows that

(
t

p=1

(


i∈Ap

aimi)np)(
t




q=1

(


j∈Bq

bjmj
 )n


p) = 0.

By Theorem 2.6, R[M ] is J-N -McCoy. So, there exists


k∈Ck ckm

k ∈

R[M ] such that (


i∈Ap aimi)(


k∈Ck ckm

k) ∈ J(R[M ]) for any p and

l. Hence aick ∈ J(R) for all i, k since J(R[M ]) ⊆ J(R)[M ] for each
1  i  s and 1  k  s


. This means that R is J-M ×N -McCoy. 

Let Mi, i ∈ I be monoids and

i∈IMi = {(gi)i∈I | there exist only finite

i’s that gi = ei, the identity of M}. Then

i∈IMi is a monoid with the

equation (gi)i∈I(g

i)i∈I = (gig


i)i∈I .

Corollary 2.8. Let Mi, i ∈ I be u.p.-monoids and R
J(R) is a reversible

ring. If R is J-Mi0-McCoy for some i0 ∈ I, then R is J-

i∈IMi-McCoy.

Proof. Let α =


i aigi, β =


j bjhj ∈ R[

i∈IMi] such that αβ =

0. Then α, β ∈ R[M1×· · ·×Mn] for some finite subset {M1, · · · ,Mn} ⊆
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{Mi|i ∈ I}. Thus α, β ∈ R[Mi0×M1×· · ·×Mn]. The ring R, by Theorem
2.7 and induction is J-Mi0 ×M1×· · ·×Mn-McCoy, so there exist r ∈ R
such that air ∈ J(R) for all i. Hence R is J-


i∈IMi-McCoy. 

For a monoid M we denote by G(M) the largest subgroup of M .

Proposition 2.9. LetM be a commutative and cancellative monoid with
G(M) = {e}. If R is J-McCoy, J(R)[M ] ⊆ J(R[M ]) and J-M -McCoy
then R[M ] is J-M -McCoy.

Proof. Suppose that (


i αix
i)(


j βjx

j) = 0 where αi =

aipgip, βj =

bjqhjq ∈ R[M ]−{0}. Set g = (

i


j gip)(


j


q hjq). Clearly, for any

r ∈ R and h ∈M , (rh)(1g2) = (1g2)(rh). Thus from (


i αix
i)(


j βjx

j)
= 0 it follows that

(


i

αi(1g2)i)(


j

βj(1g2)j) = 0.

Then we have

(


i



p

aipgipg
2i)(



j



q

bjqhjqg
2j) = 0.

Suppose that gipg
2i

= gipg

2i

for some i


and i


if i


= i


, then

gip = gip , since M is cancellative and so p

= p


. Thus with-

out loss of generality we assume that i

> i


. Then gipg

2(i
−i ) =

gip , since M is cancellative. Thus it is easy to see that gip and hjq
are in G(M) for all i, j, p, q. Hence gip = hjq = e by the hypoth-
esis and then we may assume that αi = aie and βj = bje for all
i, j. So we have (


(aie)xi)(


(bje)xj) = 0 from which it follows that

(


i aix
i)(


j bjx

j) = 0. Thus there exists ck ∈ R such that aick ∈ J(R)
for all i, since R is J-McCoy. Hence (aie)(cke) ∈ J(R)[M ] ⊆ J(R[M ]) for
all i, k. If hjqg

2j

= hjqg

2j

for some j


and j


, then by analogy with

the above proof, it follows that (aie)(cke) ∈ J(R[M ]) for all i, k. Now
suppose that each pair of gipg2i’s is distinct and each pair of hjqg2j ’s is
distinct. Then aipckl ∈ J(R) for all i, p, k, l, since R is J-M -McCoy. Thus
R[M ] is J-M -McCoy. 
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3. Different Conditions on Rings

In this section we do the generalization on weakM -McCoy and J-McCoy
rings by considering different conditions on rings.

For a monoid M and ring Rk, where k ∈ I, we can easily show that
Rk is right (resp. left) J-M -McCoy ring for each k ∈ I if and only if
R =


k∈I Rk is right (resp. left) J-M -McCoy.

Proposition 3.1. For a ring R , a monoid M and an idempotent e
element of R, we have:

(1) If R is a right (resp. left) J-M -McCoy ring, then eRe is a right
(resp. left) J-M -McCoy ring;

(2) If R is an abelian ring (i.e. every idempotent element of R is
central), then R is a right (resp. left) J-M -McCoy ring if and only
if eRe is a right (resp. left).

Proof. (1): Let α =
n

i=1 eaiegi, β =
m

j=1 ebjehj be nonzero elements
of (eRe)[M ] such that αβ = 0. Since R is a right J-M -McCoy, then there
exists 0 = s ∈ R such that (eaie)s ∈ J(R). So (eaie)(ese) ∈ eJ(R)e =
J(eRe). Therefore, eRe is right J-M -McCoy.

(2): One direction is obvious by (1).

For converse, let α =
n

i=1 aigi, β =
m

j=1 bjhj be two nonzero el-
ements of R[M ] such that αβ = 0. Since e is a central idempotent
element of R, then (eαe)(eβe) = 0, where eαe, eβe are nonzero ele-
ments of (eRe)[M ]. Therefore, there exists 0 = ere ∈ eRe such that
(eaie)ere = aic ∈ J(eRe) = J(R)∩ eRe where c = re, since eRe is right
J-M -McCoy and so R is right J-M -McCoy ring, as desired. 

Theorem 3.2. For a ring R and monoid M , let I be an ideal of R. If
R
I is a right (resp. left) J-M -McCoy, then R is right (resp. left) J-M -
McCoy, if I ⊆ J(R).

Proof. Let α = a1g1+ · · ·+angn, β = b1h1+ · · ·+bmhm be two nonzero
elements of R[M ] with αβ = 0. Therefore, (

n
i=1((ai+I)gi))(

m
j=1((bj+

I)gj)) = 0 in R
I [M ]. Since R

I is a right J-M -McCoy ring, then there exists
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(c+I) ∈ R
I such that (ai+I)(c+I) ∈ J(

R
I ), but I ⊆ J(R), so aic ∈ J(R),

as desired. 

The converse of the above theorem is not true by the [[5], Example 2.5],
where M = N ∪ {0}.

Theorem 3.3. Let R be a ring and M a monoid. R is right (resp. left)
J-M -McCoy ring if and only if R[[x]] is right (resp. left) J-M -McCoy
ring.

Proof. Let R[[x]] be a right J-M -McCoy ring. If α =
n

i=1 aigi, β =m
j=1 bjhj are nonezero elements of R[M ] such that αβ = 0. There exists

0 = h(x) =
∞

i=0 dix
i in R[[x]] such that aih(x) ∈ J(R[[x]]), since R[[x]]

is right J-M -McCoy ring and R ⊆ R[[x]]. Hence aidi ∈ J(R[[x]]) ∩R ⊆
J(R) for all 1  i  n. Since h(x) = 0, there exists di = 0 such that
aidi ∈ J(R) for 1  i  n and so the proof is done. For converse, assume
that R is a right J-M -McCoy ring, then by Theorem 3.2, R[[x]] is right
J-M -McCoy ring, since J(R[[x]]) includes < x > and R ≈ R[[x]]

<x> . 

Proposition 3.4. Let N be a monoid and T be the triangular ring

T =

R M
0 S


(where R and S are two rings snd M is an (R,S)-

biomodule). Then T is right (resp. left) J-M -McCoy ring if and only
if the rings R and S are right (resp. left) J-N -McCoy rings.

Proof. Let αr =
n

i=1 rigi, βr =
m

j=1 r

jhj ∈ R[N ] such that αrβr = 0

and αs =
n

i=1 sigi, βs =
m

j=1 s

jhj ∈ S[N ] such that αsβs = 0. Set α =

n
i=1


ri 0
0 si


gi and β =

m
j=1


r

j 0
0 s


j


hj ∈ T [N ]. Therefore, αβ =

0. Then there exists

c m
0 d


∈ T such that


ri 0
0 si

 
c m
0 d


∈ J(T ),

since T is right J-N -McCoy ring. Note that J(T ) =

J(R) M
0 J(S)


and

so ric ∈ J(R) and sid ∈ J(S) for all i, j, as desired.

Conversely, assume that R and S are two right J-N -McCoy rings. Take

I =

0 M
0 0


, then T

I 

R 0
0 S


. Let α =


r1 0
0 s1


g1+ · · ·+


rn 0
0 sn


gn
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and β =

r

1 0
0 s


1


h1 + · · · +


r

m 0
0 s


m


hm ∈ T

I [N ] such that αβ =

0. Define αr = r1g1 + · · · + rngn, βr = r

1h1 + · · · + r


mhm ∈ R[N ] and

αs = s1g1 + · · · + sngn, βs = s

1h1 + · · · + s


mhm ∈ S[N ]. From αβ = 0

we have αrβr = αsβs = 0. Then there exists c ∈ R and d ∈ S such that
ric ∈ J(R) and sjd ∈ J(S) for any 1  i  n and 1  j  m, since R

and S are two right J-N -McCoy rings. Hence if we put I =

0 M
0 0


,

then T
I is right J-N -McCoy ring and so T is right J-N -McCoy ring by

Theorem 3.2. 

Recall that a regular element in a ring R is any non-zero-devisor, i.e.,
any element x ∈ R such that r.annR(x) = 0 and l.annR(x) = 0. Let R
be a ring and X ⊆ R a multiplicative set of central regular elements in
R. A right ring of fractions (or right quotient ring) for R with respect
to X is any overring S ⊇ R such that every element of X is invertible
in S and every element of S can be expressed in the form ax−1 for some
a ∈ R and x ∈ X. The right ring of fractions for R is denoted by RX−1.
Left ring of fractions are defined analogously, using fractions of the form
x−1a. Of course, if a ring of fractions is commutative, the adjectives
”right” and ”left” are not needed.

Theorem 3.5. Let R be a ring andM a monoid. If R is right (resp. left)
J-M -McCoy ring, then the right ring of fractions of R (RX−1) is right
(resp. left) J-M -McCoy ring.

Proof. Let R be a right J-M -McCoy ring. If α =
n

i=1 aic
−1
i gi, β =m

j=1 bjd
−1
j hj are two nonzero elements of RX−1[M ] such that αβ =

0. Suppose that aic−1i = c−1a

i and bjd

−1
j = d−1b


j with c, d in X. Then

α

β

= 0 such that α


=

n
i=1 a


igi and β


=

m
j=1 b


jhj are nonzero

elements of R[M ], since αβ = 0. Hence there exists a nonzero element
r ∈ R such that a


ir ∈ J(R) for each 1  i  n, since R is right J-M -

McCoy. Equivalently, for each t ∈ R we have 1− tair is left invertible in
R. So c−1w−1(1−tw−1aic−1i rcw) = c−1w−1−tw−1aic−1r is left invertible
in RX−1 for each tw−1 ∈ RX−1 and aic−1i rcw ∈ J(RX−1). Therefore,
RX−1 is right J-M -McCoy. 
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Consider a skew polynomial ring R = A[x;α], where α is an automor-
phism of the ring A, set X = {1, x, x2, · · · }. The skew-Laurant ring
A[x±1;α] is both a right and a left ring of fractions for R with respect
to X. Therefore, if R is right (resp. left) J-M -McCoy, then A[x±1;α] is
J-M -McCoy, too.

Corollary 3.6. For a ring R and a monoid M the followings are equiv-
alent.
1. A ring R is J-M -McCoy;
2. Tn(R) is J-M -McCoy for any n  2;
3. R[x]

xn is J-M -McCoy where xn is the ideal generated by xn in R.
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