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for Optimality of Convex Generalized
Semi-Infinite Optimization Problems
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Abstract. In this paper, we consider the Abadie and the Basic con-
straint qualifications (CQ) for lower level problem of convex general-
ized semi-infinite programming problems, and we derive the Fritz-John
necessary optimality conditions for the problem under these constraint
qualifications.
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1. Introduction

Main problem of this paper has the following form:

CGSIP: inf
{
f(x) | x ∈ S

}
,

where

S :=
{
x ∈ Rn | g(x, y) > 0 for all y ∈ Y (x)

}
,

Y (x) :=
{
y ∈ Rm | hi(x, y) 6 0, i ∈ P

}
, (set-valued mapping)

P := {1, 2, ..., p},
f : Rn → R is convex function,

g, hi : Rn+m → R are convex functions, for all i ∈ P.
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If all emerging functions f, g, and his are relaxed to convexity, CGSIP
coincides to standard generalized semi-infinite programming problem (GSIP,
in brief).

Under suitable differentiablity assumptions, the first order optimality
conditions for GSIP were proved in various papers. The necessary con-
ditions of Fritz-John (FJ in brief) type of optimality of GSIP, can be es-
tablished under several lower-level constraint qualifications, e.g., Abadie
[11], Kuhn-Tucker [14], and Mangasarian-Fromovitz constraint qualifi-
cations [10]. First-order optimality conditions without any constraint
qualification at each solution of the lower-level problem were first given
in [5] and extended in [13].

The author and his coauthor, considered a nondifferentiable GSIP in [8]
for first time. They proved some optimality conditions in type of Fritz-
John for GSIP whit Lipschitzian data under Mangasarian-Fromovitz like
constraint qualification which is defined by Mordokhvich subdifferential.

In all of above papers, the following uniform boundedness on the set-
valued map Y (x) is a standard assumption.

Assumption A: For all x̂ ∈ S, the set-valued map Y (.) is uniformly
bounded around x̂; i.e., there exists a neighborhood U of x̂ such that
the set

⋃
x∈U Y (x) is bounded.

This assumption, however, is very restrictive for example when the con-
straint functions hi(x, y) 6 0 (i ∈ P ) are linear. In [12] the smooth
GSIPs with completely convex functions

(
this means −g(x, y) is jointly

convex and the graph of the set-valued map Y is convex
)

are considered.
In this case the FJ condition has a very simple form and the assumption
A may be removed. One of the essential purposes of this paper is to
remove this assumption for nonsmooth convex GSIP (CGSIP, shortly).

The organization of the paper is as follows. In Section 2, basic notations
and results of convex analysis are reviewed. In Section 3, we consider
convex (classic) GSIPs, and we obtain the necessary optimality condi-
tions of FJ type for them. The final section 4 is devoted to extension of
the results obtained in the preceding section to the new class of GSIP.



FRITZ-JOHN TYPE NECESSARY CONDITIONS ... 53

2. Notations and Preliminaries

Given a nonempty set A ⊆ Rn, we denote by Ā, int(A), conv(A), and
cone(A), the closure of A, the interior of A, convex hull and convex cone
containing 0 generated by A, respectively. The negative polar cone A	

and indicator function IA(.) of A are defined as

A	 := {u ∈ Rn |
〈
u, x

〉
6 0, ∀ x ∈ A},

IA(x) :=
{

0 if x ∈ A
+∞ if x /∈ A.

The bipolar theorem (see [4]) states that
(
A	
)	 = cone(A). Let D ⊆ Rn

be a closed convex set, the normal cone of D at x̄ ∈ D is define as

ND(x̄) :=
{
u ∈ Rn |

〈
u, x− x̄

〉
6 0 for all x ∈ D

}
.

The negative polar cone of ND(x̄) is called the tangent cone of D at x̄;
TD(x̄) := ND(x̄)	. It is known that TD(x̄) and ND(x̄) are always closed
convex cone with contain 0n (symbol 0n denotes the origin of Rn).
Given a proper convex function ϕ : Rn −→ R ∪ {+∞}, i.e.,

domϕ := {x ∈ Rn | ϕ(x) < +∞} 6= ∅.

For any x̂ ∈ (domϕ), the subdifferential of ϕ at x̂ is defined as the
non-empty closed convex set

∂ϕ(x̂) :=
{
ξ ∈ Rn |

〈
ξ, x− x̄

〉
6 ϕ(x)− ϕ(x̄) for all x ∈ Rn

}
.

As usual, the symbols ∂xϕ(x̄, ȳ) and ∂yϕ(x̄, ȳ) stand for the correspond-
ing partial subdifferential of ϕ at (x̄, ȳ).
The following elementary theorem will be used in this paper.

Theorem 2.1. ([4]) Suppose that ϕ and φ are two proper convex func-
tions from Rn to R ∪ {+∞}, and that x̄ ∈ int(domϕ) ∩ int(domφ).
Suppose further that D ⊆ Rn is a closed convex set.

• If ϑ(x) = max
{
ϕ(x), φ(x)

}
, then

∂ϑ(x̄) = conv
(
∂ϕ(x̄) ∪ ∂φ(x̄)

)
.
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• If ϕ attains its minimum on D at x̄, then

0n ∈ ∂ϕ(x̄) +ND(x̄).

Finally in this section, we recall the following notion. Let F : Rn ⇒ Rm

be a set-value mapping. The graph of F is defined as

gphF :=
{
(x, y) ∈ Rn × Rm | y ∈ F (x)

}
.

3. Main Results

Firstly, the lower level problem of CGSIP at x̂ ∈ S which depends on
the parameter x̂ is defined as

inf g(x̂, y) s.t. y ∈ Y (x̂), (1)

and the set of active constraints at x̂ is denoted by

Y0(x̂) :=
{
y ∈ Y (x̂) | g(x̂, y) = 0

}
.

Clearly, Y0(x̂) is just the set of minimizers of the lower level problem
(1).

Let
π :=

{
(x, y) ∈ Rn × Rm | hi(x, y) 6 0 ∀ i ∈ P

}
.

For (x0, y0) ∈ π set

B(x0, y0) :=
p⋃

i=1

∂hi(x0, y0).

The following constraint qualifications were introduced in [1] and [4] as
a very general assumption for the necessary conditions in standard op-
timization problems (differentiable and non-differentiable convex cases).
They were deeply extended in [7, 9] for optimization problems with in-
finite number constraints (convex and non-convex cases).

Definition 3.1. The convex inequalities system {hi(x, y) 6 0 | i ∈ P}
is said to satisfy the
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• Abadie constraint qualification (ACQ, briefly) at (x0, y0) ∈ π if

B	(x0, y0) ⊆ Tπ(x0, y0).

• Basic constraint qualification (BCQ, shortly) at (x0, y0) ∈ π if

Nπ(x0, y0) ⊆ cone
(
B(x0, y0)

)
. N

The relationships between the ACQ and BCQ is given in the following
lemma.

Lemma 3.2. Suppose that (x0, y0) ∈ π. Then we have

BCQ at (x0, y0) =⇒ ACQ at (x0, y0).

Furthermore, if the convex cone of B(x0, y0) is closed, these two con-
straint qualifications are equivalent.

Proof. Firstly, we suppose that the BCQ verifies. By bipolar Theorem
and by definition of tangent cone we give

B	(x0, y0) =
(
cone

(
B(x0, y0)

))	
⊆ N	

π (x0, y0) = Tπ(x0, y0).

Converesly, if ACQ holds and cone
(
B(x0, y0)

)
is closed, we conclude

that
Nπ(x0, y0) = T	

π (x0, y0) ⊆
(
B	)	

(x0, y0) = cone
(
B(x0, y0)

)
= cone

(
B(x0, y0)

)
. �

We now associate the CGSIP the following Lagrangian function

L : Rn × Rm × R× Rp −→ R
L(x, y, α, β) = αg(x, y) +

∑p
i=1 βihi(x, y).

We denote the set (maybe empty) of Karush-Kahn-Tucker (KKT) mul-
tipliers of the problem (1) at y0 ∈ Y0(x0) by

K(x0, y0) :=
{
β ∈ Rp

+ | 0m ∈ ∂yL(x0, y0, 1, β), βihi(x0, y0) = 0 ∀ i ∈ P
}
. �

Theorem 3.3. (FJ necessary condition for CGSIP under the BCQ).
Let x0 be an optimal solution to the CGSIP. Suppose furthermore that
the basic constraint qualification holds for the system{

hi(x, y) 6 0 | i ∈ P
}

at (x0, y0) ∈ gphY0.
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Then, there exist λ0, λ1 ∈ [0, 1] and β ∈ K(x0, y0) such that

0n ∈ λ0∂f(x0)− λ1∂xL(x0, y0, 1, β),

λ0 + λ1 = 1.

Proof. With the convention inf ∅ = +∞, let µ(x0) denote the value
function of lower level problem (1)

µ(x0) := inf
{
g(x0, y) | y ∈ Y (x0)

}
. (2)

It is easy to check that the convexity of g and his implies the convexity
of µ; see [Prop. 2.5][2]. Standard arguments in nonsmooth optimization
imply that x0 is then also a local minimizer of the auxiliary function

θ(x) := max
{
f(x)− f(x0),−µ(x)

}
.

The first order necessary optimality condition for convex function now
implies that

0n ∈ ∂θ(x0) ⊆ conv
(
∂f(x0) ∪

(
− ∂µ(x0)

))
.

Thus, there is a τ ∈ [0, 1] such that

0n ∈ τ∂f(x0)− (1− τ)∂µ(x0). (3)

The next step is also efficiently estimate the subdifferential ∂µ(x0).
Since y0 ∈ Y0(x0), we observe that µ(x0) = g(x0, y0) and

µ(x) 6 g(x, y), ∀ (x, y) ∈ S × Y (x).

Suppose that ξ ∈ ∂µ(x0). By the definition of the subdifferential, we
have

µ(x)− µ(x0) > 〈ξ, x− x0〉, ∀ x ∈ Rn.

Together these inequalities imply that

g(x, y)− g(x0, y0) > 〈ξ, x〉 − 〈ξ, x0〉, ∀ (x, y) ∈ S × Y (x).
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That is, if and only if (x0, y0) is a solution to the following (finite and
convex) optimization problem:

min g(x, y)− 〈ξ, x〉
s.t. hi(x, y) 6 0, i = 1, 2, ..., p.

By assumption, the basic constraint qualification holds for the above
problem at (x0, y0), and hence the KKT condition holds at (x0, y0); see
[4, VII Prop. 2.2.1]. Thus, there is a β := (β1, β2, ..., βp) ∈ Rp

+, such
that

(0n, 0m) ∈ ∂
(
g(x, y)− 〈ξ.x〉

)
(x0, y0) +

p∑
i=1

βi∂hi(x0, y0)

= ∂g(x0, y0)− (ξ, 0) +
p∑

i=1

βi∂hi(x0, y0), (4)

and
βihi(x0, y0) = 0, ∀ i = 1, 2, ..., p.

Then we use the following important relationship between the full and
partial subdifferentials of convex functions Ψ(x, y) that holds by, e.g.,
[3, Prop. 2.3.15]:

∂Ψ(x, y) ⊆ ∂xΨ(x, y)× ∂yΨ(x, y). (5)

Employing (5) in the KKT condition (4), we get
0n ∈ ∂xg(x0, y0)− ξ +

∑p
i=1 βi∂xhi(x0, y0),

0m ∈ ∂yg(x0, y0) +
∑p

i=1 βi∂yhi(x0, y0),

βihi(x0, y0) = 0, ∀ i ∈ P.

⇐⇒


ξ ∈ ∂xL(x0, y0, 1, β),

0m ∈ ∂yL(x0, y0, 1, β),

βihi(x0, y0) = 0, ∀ i ∈ P.

⇐⇒ ξ ∈
⋃

β∈K(x0,y0)

∂xL(x0, y0, 1, β).
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Since ξ was an arbitrary element of µ(x0), we thus proved

∂µ(x0) ⊆
⋃

β∈K(x0,y0)

∂xL(x0, y0, 1, β). (6)

Owning to (3) and (6) the proof is complete. �

Remark 3.4. It is clear (from definitions) that where his are differen-
tiable, then

• ACQ and BCQ are equivalent.

• In (5), and consequently in (6), equality holds.

Consequently, the result in [15, Prop. 2.1] is a corollary of Theorem 3.3.
It is known that if his are affine, then ACQ holds at each (x0, y0) ∈ π

(see [4]). Therefore, owning to Remark 3.4, Lemma 3.2, and Theorem
3.3, the following corollary is immediate.

Corollary 3.5. (FJ necessary condition for CGSIP with lower level
linear constraints). Let x0 be a locally optimal solution of the CGSIP.
Suppose that lower level constraint functions his (as i ∈ P ) are linear
on Rn × Rm. Then, for all y0 ∈ Y0(x0) there are λ0, λ1 ∈ [0, 1] and
β ∈ K(x0, y0) such that

0n ∈ λ0∂f(x0)− λ1∂xL(x0.y0, 1, β),

λ0 + λ1 = 1.

Note that the FJ condition above for the CGSIPs with linear constraint
functions hi(x, y) is very appealing since no uniform boundedness as-
sumption and no constraint qualification are required.
Observe that the necessary optimality condition in Theorem 3.3, can
be stated for one y0 ∈ Y0(x0) only. Since the Slater condition does not
depend on (x0, y0), we have the following necessary optimality condition
for all (x0, y0) ∈ gphY0.

Theorem 3.6. (FJ necessary condition for CGSIP under the Slater like
qualification condition). Let x0 be an optimal solution to the CGSIP.
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Suppose that Y0(x0) 6= ∅, and that the Slater condition holds for the
region {

(x, y) | hi(x, y) 6 0 i ∈ P
}
,

i.e., there exists (x̂, ŷ) ∈ π such that hi(x̂, ŷ) 6 0 for all i ∈ P . Then,
for each choice y0 ∈ Y0(x0) there exists λ0, λ1 ∈ [0, 1] and β ∈ K(x0, y0)
such that

0n ∈ λ0∂f(x0)− λ1∂xL(x0.y0, 1, β),

λ0 + λ1 = 1.

Proof. It is well-known that for convex optimization, if the Slater
condition holds, then the ACQ holds; see [4]. On the other hand, ac-
cording to the [6, Theorem 3.10], if the Slater condition holds, then
cone

(⋃p
i=1 ∂hi(x0, y0)

)
is closed cone. Owning to the Lemma 3.2, and

Theorem 3.3, the proof is complete. �

Note that the Slater condition above is obviously weaker than the Slater
condition for the lower level problem (1) which requires the existence of
ŷ such that hi(x0, ŷ) < 0 as i ∈ P . Theorem 3.6, generalizes the results
of [12, Theorem 4.3.5] in that no uniform boundedness assumption is
needed and the required Slater condition is weaker.
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