Translation hypersurfaces in Lorentz-Minkowski spaces satisfying‎ ‎$L_{n-1}G=AG$

Authors

  • Akram Mohammadpouri University of Tabriz
  • Rana Abbasi
  • Roya Abbasi
  • Mitra Narimani

DOI:

https://doi.org/10.30495/jme.v0i0.1505

Abstract

In this paper‎, ‎we give a complete classification of the translation hypersurfaces in the‎

‎$(n+1)$-dimensional‎

‎Lorentz-Minkowski space whose Gauss map G satisfies the condition‎

‎$L_{n-1}G=AG$‎

‎where $L_{n-1}$ is the linearized‎

‎operator of the first variation of the the Gauss-Kronecker curvature of the hypersurface and‎

‎$A\in \mathbb{R}^{(n+1)\times(n+1)}$‎

‎is a constant matrix.\\‎

‎\textbf{Keywords:} Gauss-Kronecker curvature‎, ‎Lorentz-Minkowski space‎, ‎Linearized operator $L_{n-1}$‎, ‎Translation hypersurface‎.

Downloads

Published

2020-07-22

Issue

Section

Vol. 15, No. 3, (2021)