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Abstract. The main purpose of this paper is to investigate the effect
of Φ-derivatives on commutativity of rings and algebras. Let R be a
2-torsion free prime ring, d : R → R be a Φ-derivation such that Φ is
an epimorphism and dΦ = Φd = d. If [Φ(a),Φ(x)]d(y) = d(x)[y, a] for
all x, y, a ∈ R, then R is commutative or d is zero. Another result in
this regard reads as follows: Let (A, ∗) be a unital, involutive algebra,
and let Ψ : A × A → A be a ∗-two variable Φ-derivation such that
Ψ(e, a0) = e for some a0 ∈ A, where e is the unity of A. If {a ∈ A :
Ψ(a, a0) = 0} = {0}, then A is commutative.
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1 Introduction

Throughout the paper, R denotes an associative ring. Let us recall some
basic definitions and set the notations which are used in what follows.
As usual, we denote the commutator xy − yx by [x, y] for all x, y ∈ R.
A ring R is n-torsion free, where n > 1 is an integer, in case nx = 0
implies x = 0 (x ∈ R). Recall that a ring R is called prime if for
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x, y ∈ R, xRy = {0} implies that x = 0 or y = 0, and is semiprime if
xRx = {0} implies x = 0. Moreover, the center of a ring (or an algebra)
R is Z(R) := {x ∈ R | xy = yx for all y ∈ R}. The Jacobson radical
of an algebra A is the intersection of all primitive ideals of A which is
denoted by rad(A). An algebra A is called semisimple if rad(A) = {0}.
For more details about Jacobson radical, see [6].
An additive mapping d : R → R is called a derivation if d(xy) =
d(x)y+xd(y) holds for all x, y ∈ R. Let us introduce a background of our
study. In 1957, Posner [12] noticed the remarkable potential of deriva-
tions on commutativity of rings. Indeed, he proved that if d is a nonzero
derivation of a 2-torsion free prim ring R such that [[d(x), x], y] = 0 for
all x, y ∈ R, then R is commutative. During a few recent decades, this
result has made a great deal of excitement among the mathematicians
to investigate the relation between the commutativity of rings and the
existence of certain specific types of derivations. For example, many al-
gebraists such as Bres̆ar, Vukman, Ashraf, Daif and Rehman have made
remarkable contributions to this area of study. Vukman [15] showed that
R is commutative if char(R) 6= 0 and [[d(x), x], x] = 0 for all x ∈ R.
On the other hand, Lanski [10] proved that if [[d(x), x], y] = 0 for any
x in a noncommutative Lie ideal and y ∈ R, then either R is commu-
tative or R is a 2-torsion free ring and it satisfies the standard identity
of degree 4. Furthermore, Ashraf and Rehman [2] proved that if R is
a prime ring, I a nonzero ideal of R and d is a derivation of R such
that d(xy + yx) = xy + yx for all x, y ∈ I, then R is commutative.
In addition, Quadri et al. [13], extended the above-mentioned result as
follows:
Let R be a prime ring, I a nonzero ideal of R and F a generalized deriva-
tion associated with a nonzero derivation d such that F (xy + yx) =
xy + yx for all x, y ∈ I. Then R is commutative. For more results,
see, e.g. [1, 4, 7, 10, 11, 12, 13, 14, 15, 16], and references therein.
After studying these articles, we realized that Φ-derivations are able
to affect the commutativity of rings. Let Φ : R → R be an additive
mapping. An additive mapping d : R → R is called a Φ-derivation
if d(ab) = d(a)b + Φ(a)d(b) holds for all a, b ∈ R. We remark that
some authors use a slightly different definition so that d(a)Φ(b) + ad(b)
appears on the right hand side (see [3]). Clearly, if Φ = I, the iden-
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tity mapping on R, then we reach a derivation. Moreover, if Φ is a
homomorphism of R, then d = I − Φ is a Φ-derivation. Hence the
notion of a Φ-derivation may be viewed as an extension of both the
concepts of a derivation and a homomorphism. Now we provide an ex-
ample of a Φ-derivation. Let Φ be a homomorphism of R or at least
A = {c ∈ R | (Φ(ab)− Φ(a)Φ(b))c = 0 for all a, b ∈ R} 6= ∅. Then the
mapping d : a 7→ ca−Φ(a)c, where c is an arbitrary fixed element of A,
is a Φ-derivation. In the present study, we obtain the following results:
Let R be a 2-torsion free prime ring, and let d : R → R be a Φ-
derivation such that dΦ = Φd = d. Let Φ be an epimorphism satisfying
[Φ(a),Φ(x)]d(y) = d(x)[y, a] for all x, y, a ∈ R, then R is commutative
or d is zero. As another result, we prove that if d is a Φ-derivation of
R such that Φ(a)d(x) = d(x)a for all x, a ∈ R, then R is commuta-
tive or d is zero. Moreover, using ∗-two variable Φ-derivations, we show
that every involutive algebra is commutative under certain conditions.
Indeed, we prove the following theorem. Let (A, ∗) be a unital, involu-
tive algebra and let Ψ : A × A → A be a ∗-two variable Φ-derivation
such that Ψ(e, a0) = e for some a0 ∈ A, where e is the unity of A. If
{a ∈ A : Ψ(a, a0) = 0} = {0}, then A is commutative. As a con-
sequence of this result, we obtain some conditions under which every
∗-two variable Φ-derivation on a unital, involutive Banach algebra is
continuous.

2 Main Results

Throughout this section, without further mention, e stands for the iden-
tity element of any unital algebra or unital ring. Let Φ : R → R be an
additive mapping. Recall that an additive mapping d : R→ R is called
a Φ-derivation if d(ab) = d(a)b+ Φ(a)d(b) holds for all a, b ∈ R.
We begin with the following lemma which will be used extensively to
prove our theorems.

Lemma 2.1. Let R be a prime ring and let d : R→ R be a Φ-derivation.
(i) If a is an element of R such that ad(x) = 0 for all x ∈ R, and further
Φ : R→ R is a surjective mapping, then either a = 0 or d is zero.
(ii) If a is an element of R such that d(x)a = 0 for all x ∈ R, then
either a = 0 or d is zero.
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Proof. (i) Replacing x by xy in ad(x) = 0, we get that

0 = ad(xy) = ad(x)y + aΦ(x)d(y) = aΦ(x)d(y)

for all x, y ∈ R. This equation with the surjectivity of Φ implies that
axd(y) = 0 for all x, y ∈ R. Since R is prime, either a = 0 or d is zero.
(ii) Straightforward. �
The following theorem has been motivated by [12].

Theorem 2.2. Let R be a 2-torsion free prime ring. Let d2 be a deriva-
tion and d1 be a Φ-derivation of R such that d1d2 is a Φ-derivation. If
Φ(d2(x)) = d2(x) for all x ∈ R and further Φ is an epimorphism, then
at least one of d1 and d2 is zero.

Proof. By hypothesis, d1d2 is a Φ-derivation. Thus,

d1d2(ab) = d1d2(a)b+ Φ(a)d1d2(b). (1)

Since d2 is a derivation and d1 is a Φ-derivation, we have

d1d2(ab) = d1d2(a)b+ d2(a)d1(b) + d1(a)d2(b) + Φ(a)d1d2(b). (2)

Comparing (1) and (2), we obtain that

d1(a)d2(b) + d2(a)d1(b) = 0 for all a, b ∈ R. (3)

Replacing a by ad1(c) in (3), we obtain d1(ad1(c))d2(b)+d2(ad1(c))d1(b) =
0 for all a, b, c ∈ R. This equation with the fact that Φ(d2(a)) = d2(a)
for all a ∈ R and using equation (3), we have

0 = d1(a)d1(c)d2(b) + Φ(a)d2
1(c)d2(b) + Φ(d2(a)d1(c) + ad2d1(c))d1(b)

= d1(a)d1(c)d2(b) + Φ(a)d2
1(c)d2(b) + d2(a)Φ(d1(c))d1(b) + Φ(a)d2(d1(c))d1(b)

= d1(a)d1(c)d2(b) + Φ(a)(d1(d1(c))d2(b) + d2(d1(c))d1(b)) + d2(a)Φ(d1(c))d1(b)

= d1(a)d1(c)d2(b) + d2(a)Φ(d1(c))d1(b)

= −d1(a)d2(c)d1(b) + d2(a)Φ(d1(c))d1(b)

= (d2(a)Φ(d1(c))− d1(a)d2(c))d1(b),

which means that

(d2(a)Φ(d1(c))− d1(a)d2(c))d1(b) = 0 for all a, b, c ∈ R.
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According to Lemma 2.1, we have d2(a)Φ(d1(c)) − d1(a)d2(c) = 0 for
all a, c ∈ R, or else d1 is zero. If d1 is zero, then our goal is achieved.
If not, d2(a)Φ(d1(c)) − d1(a)d2(c) = 0 for all a, c ∈ R. Replacing b
by c in equation (3), we arrive at d1(a)d2(c) + d2(a)d1(c) = 0 for all
a, c ∈ R. Adding these last two equations, we find that 0 = d2(a)d1(c)+
d2(a)Φ(d1(c)) = d2(a)(d1(c)+Φ(d1(c)). Applying Lemma 2.1 again, we,
therefore, have d1(c) = −Φ(d1(c)) for all c ∈ R or else d2 is zero. If
d2 is zero, then the objective is obtained. If not, d1(c) = −Φ(d1(c)) for
all c ∈ R. By using d2(a)Φ(d1(c)) − d1(a)d2(c) = 0 with the fact that
d1(c) = −Φ(d1(c)), we arrive at

−d2(a)d1(c)− d1(a)d2(c) = 0 for all a, c ∈ R. (4)

After replacing cb instead of c in equation (4) and then using that, we
get

0 = d1(a)d2(c)b− d1(a)cd2(b) + d2(a)d1(c)b− d2(a)Φ(c)d1(b)

= (d1(a)d2(c) + d2(a)d1(c))b− d1(a)cd2(b)− d2(a)Φ(c)d1(b)

= −d1(a)c d2(b)− d2(a)Φ(c)d1(b).

Hence,

d1(a)cd2(b) = −d2(a)Φ(c)d1(b) for all a, b, c ∈ R. (5)

If we replace c by d2(c) in equation (5), then we have

d1(a)d2(c)d2(b) = −d2(a)Φ(d2(c))d1(b) = −d2(a)d2(c)d1(b) for all a, b, c ∈ R.

From this equation and equation (4), we infer that

0 = −d2(a)d1(c)d2(b) + d2(a)d2(c)d1(b)

= d2(a)(d2(c)d1(b)− d1(c)d2(b))

for all a, b, c ∈ R. It follows from Lemma 2.1 that d2 is zero or d2(c)d1(b)−
d1(c)d2(b) = 0. If d2 = 0, then our aim is accomplished. Let d2(a) 6= 0
for some a ∈ R. Hence, we have

d2(c)d1(b)− d1(c)d2(b) = 0 for all c, b ∈ R. (6)
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Comparing equations (3) and (6), we conclude that 2d2(c)d1(b) = 0 for
all b, c ∈ R. Since R is 2-torsion free, d2(c)d1(b) = 0. Reusing Lemma
2.1 with replacing a by d2(c), we find that d1 is zero or else d2(c) = 0
for all c ∈ R. Since we are assuming that d2(a) 6= 0 for some a ∈ R,
d1 = 0. Thereby, our proof is complete. �

Theorem 2.3. Let R be a 2-torsion free prime ring and let d be a Φ-
derivation of R such that Φ is a homomorphism. If Φ(a)d(x) = d(x)a
for all x, a ∈ R, then R is commutative or d is zero.

Proof. We have

Φ(a)d(x) = d(x)a for all x, a ∈ R. (7)

Replacing x by xy in equation (7), we have

Φ(a)d(x)y + Φ(a)Φ(x)d(y)− d(x)ya− Φ(x)d(y)a = 0. (8)

Putting d(x)a instead of Φ(a)d(x) and Φ(a)d(y) instead of d(y)a in (8),
we have

0 = d(x)ay + Φ(a)Φ(x)d(y)− d(x)ya− Φ(x)Φ(a)d(y)

= d(x)[a, y] + Φ(ax)d(y)− Φ(xa)d(y)

= d(x)[a, y] + Φ(ax− xa)d(y)

= d(x)[a, y] + Φ([a, x])d(y),

which means that

d(x)[a, y] + Φ([a, x])d(y) = 0 for all x, y, a ∈ R. (9)

According to (7), we have

Φ([a, x])d(y) = d(y)[a, x] for all a, x, y ∈ R. (10)

Comparing equations (9) and (10), we obtain that

d(x)[a, y] + d(y)[a, x] = 0 for all x, a, y ∈ R. (11)
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Replacing y by yz in equation (11) and then using equations (7) and
(11), we arrive at

0 = d(x)[a, yz] + d(yz)[a, x]

= d(x)y[a, z] + d(x)[a, y]z + d(y)z[a, x] + Φ(y)d(z)[a, x]

= Φ(y)d(x)[a, z]− d(y)[a, x]z + d(y)z[a, x]− Φ(y)d(x)[a, z]

= d(y)z[a, x]− d(y)[a, x]z

= d(y)(z[a, x]− [a, x]z),

which means that

d(y)(z[a, x]− [a, x]z) = 0 for all a, x, y, z ∈ R. (12)

Applying Lemma 2.1, it is obtained that d(y) = 0, or else z[a, x] −
[a, x]z = 0 for all a, x, y, z ∈ R. If d is zero, then we get the required re-
sult. If not, z[a, x]− [a, x]z = 0 for all a, x, z ∈ R. Define D1(x) = [a, x]
and D2(x) = [z, x]. It is evident that D1 and D2 are derivation. We have
D2D1(x) = D2([a, x]) = [z, [a, x]] = z[a, x] − [a, x]z = 0 and applying
Theorem 2.2 with Φ = I completes the proof. �

In the following theorem, the surjectivity of Φ is unnecessary.

Theorem 2.4. Let R be a 2-torsion free prime ring, let d1 be a deriva-
tion and let d2 be a Φ-derivation of R such that [Φ, d1] = 0 and Φ is a
homomorphism. If d1d2 is a Φ-derivation, then at least one of d1 and
d2 is zero.

Proof. The proof of this theorem is almost like the proof of Theorem
2.2, and we leave it to the interested reader. �
In the following, we present another theorem in this regard.

Theorem 2.5. Let R be a 2-torsion free prime ring, let d : R → R be
a Φ-derivation such that dΦ = Φd = d and let Φ be an epimorphism. If
[Φ(a),Φ(x)]d(y) = d(x)[y, a] for all x, y, a ∈ R, then R is commutative
or d is zero.

Proof. Given that

[Φ(a),Φ(x)]d(y) = d(x)[y, a] for all x, y, a ∈ R. (13)
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Replacing x by xd(z) in equation (13), we have

[Φ(a),Φ(x)Φ(d(z))]d(y) = [Φ(a),Φ(x)d(z)]d(y)

= d(xd(z))[y, a]

for all a, x, y, z ∈ R. Thus,

Φ(x)[Φ(a), d(z)]d(y) + [Φ(a),Φ(x)]d(z)d(y)

= d(x)d(z)[y, a] + Φ(x)d(d(z))[y, a].

Replacing x by d(z) in equation (13), we see that [Φ(a),Φ(d(z))]d(y)−
d(d(z))[y, a] = 0, and the above equation is written as follows:

[Φ(a),Φ(x)]d(z)d(y) = d(x)d(z)[y, a] for all a, x, y, z ∈ R. (14)

It follows from equation (13) that [Φ(a),Φ(x)]d(z) = d(x)[z, a] and
d(z)[y, a] = [Φ(a),Φ(z)]d(y). Then, equation (14) becomes d(x)[z, a]d(y)−
d(x)[Φ(a),Φ(z)]d(y) = 0; factoring out d(x) on the left and d(y) on the
right, we have

d(x)([z, a]− [Φ(a),Φ(z)])d(y) = 0

for all a, x, y, z ∈ R. It follows from Lemma 2.1 that d is zero, or else
[z, a] − [Φ(a),Φ(z)] = 0 for all a, x, y, z ∈ R. If d is zero, then there is
nothing to be proved. Suppose that

[z, a]− [Φ(a),Φ(z)] = 0 for all a, x, y, z ∈ R. (15)

Considering equations (13) and (15), we find that

[x, a]d(y) = d(x)[y, a] for all a, x, y ∈ R. (16)

Replacing x by xd(r) in equation (16), we have [xd(r), a]d(y) = d(xd(r))[y, a]
and so, we get that

x[d(r), a]d(y) + [x, a]d(r)d(y) = d(x)d(r)[y, a] + Φ(x)d(d(r))[y, a].

In view of equation (16), the above equation becomes

x[d(r), a]d(y) + d(x)[r, a]d(y) = d(x)[r, a]d(y) + Φ(x)d2(r)[y, a]
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for all a, r, x, y ∈ R; subtracting d(x)[r, a]d(y) from this, we arrive at

x[d(r), a]d(y) = Φ(x)d2(r)[y, a] for all a, r, x, y ∈ R. (17)

It follows from equation (16) that [d(r), a]d(y) = d2(r)[y, a]. This equa-
tion with equation (17), implies that (x − Φ(x))d2(r)[y, a] = 0 for all
a, r, x, y ∈ R. According to Lemma 2.1, we conclude that either [y, a] = 0
for all y, a ∈ R or (x − Φ(x))d2(r) = 0 for all r, x ∈ R. If [y, a] = 0 for
all y, a ∈ R, then R is commutative. If not, we assume

(x− Φ(x))d2(r) = 0 for all r, x ∈ R. (18)

Replacing x by d(r) in equation (16), it is obtained that d2(r)[y, a] =
d(d(r))[y, a] = [d(r), a]d(y) for all a, r, y ∈ R. Hence, (17) is written as
follows:

x[d(r), a]d(y) = Φ(x)[d(r), a]d(y) for all a, r, x, y ∈ R.

Therefore, (x − Φ(x))[d(r), a]d(y) = 0 for all a, r, x, y ∈ R. From this
and Lemma 2.1, we arrive at (x − Φ(x))[d(r), a] = 0 for all a, r.x ∈ R,
or else d is zero. If d is zero, then our objective is achieved. Suppose
that (x − Φ(x))[d(r), a] = 0 for all a, r, x ∈ R. Replacing r by d(r) in
the previous equation, we have (x − Φ(x))[d(d(r)), a] = 0. From this
equality and the fact that (x−Φ(x))d2(r) = 0 for all x, r ∈ R (see (18)),
we have

0 = (x− Φ(x))d2(r)a− (x− Φ(x))ad2(r)

= 0− (x− Φ(x))ad2(r).

This means (x − Φ(x))ad2(r) = 0 for all a, r, x ∈ R and primness of R
forces that (x− Φ(x)) = 0 or d2(r) = 0. If x = Φ(x) for all x ∈ R, then
Φ([z, a]) = [z, a] for all z, a ∈ R. This equation together with equation
(15) yield that [a, z] = [Φ(z),Φ(a)] = [z, a] for all a, z ∈ R. Hence, we
have

0 = [z, a]− [a, z] = [z, a] + [z, a] = 2[z, a].

Since R is 2-torsion free, [z, a] = 0 for all z, a ∈ R. It means that R
is commutative. Now suppose that d2(r) = 0 for all r ∈ R. Replacing
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r by xy in the preceding equation, and then using the assumption that
dΦ = Φd = d, we have

0 = d2(xy) = d(d(x)y + Φ(x)d(y))

= d(d(x)y) + d(Φ(x)d(y))

= d2(x)y + Φ(d(x))d(y) + d(Φ(x))d(y) + Φ2(x)d2(y)

= 0 + d(x)d(y) + d(x)d(y) + 0

= 2d(x)d(y).

Since R is 2-torsion free, d(x)d(y) = 0 for all x, y ∈ R. It follows from
Lemma 2.1 that d is zero, as desired. �

In the following, we provide an example that shows that the condi-
tions of Theorem 2.5 are not superfluous.

Example 2.6. Let R be a ring and let

R =

{ 0 a b
0 0 c
0 0 0

 : a, b, c ∈ R

}

Clearly, R is a ring. Define the additive mappings d,Φ : R→ R by

Φ

( 0 a b
0 0 c
0 0 0

) =

 0 0 b
0 0 c
0 0 0

 ,

d

( 0 a b
0 0 c
0 0 0

) =

 0 0 0
0 0 c
0 0 0

 ,
It is routine to see that d(AB) = d(A)B + Φ(A)d(B) for all A,B ∈ R,
which means that d is a Φ-derivation such that dΦ = Φd = d. Further-
more, [Φ(A),Φ(X)]d(Y ) = d(X)[Y,A] holds for all X,Y,A ∈ R. It is
clear that Φ is not an epimorphism and it is observed that d is nonzero
and also R is a noncommutative ring.

In the next theorem, we investigate the commutativity of ∗-algebras
with two variable Φ-derivations. Let A be a complex algebra. Recall
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that an involution over A is a map ∗ : A → A satisfying the following
conditions for all a, b ∈ A and λ ∈ C:
(a∗)∗ = a, (ab)∗ = b∗a∗, (a + b)∗ = a∗ + b∗, (λa)∗ = λa∗. An algebra
A equipped with an involution ∗ is called an involutive algebra or ∗-
algebra and is denoted, as an ordered pair, by (A, ∗). Note that if A is
a ∗-algebra, then a straightforward verification shows that A×A is also
a ∗-algebra by regarding the following structure:
(i) (a, b) + (c, d) = (a+ c, b+ d);
(ii) λ(a, b) = (λa, λb):
(iii) (a, b).(c, d) = (ac, bd);
(iv) (a, b)∗ = (a∗, b∗);
for a, b ∈ A and λ ∈ C.
Let (A, ∗) be an involutive algebra. A mapping T : A → A is called a
∗-map if T (a) = (T (a∗))∗ for all a ∈ A. Similar to the ∗-mappings, a
bi-mapping Ψ : A × A → A is a ∗-map if Ψ(a, b) = (Ψ(a∗, b∗))∗ for all
a, b ∈ A. Let Φ : A → A be a linear mapping. A bi-linear mapping (i.e.,
linear in both arguments) Ψ : A × A → A is called a left two variable
Φ-derivation if Ψ(ab, c) = Ψ(a, c)b + Φ(a)Ψ(b, c) for all a, b, c ∈ A. A
right two variable Φ-derivation is defined, similarly. A bi-linear mapping
Ψ : A×A → A is said to be a two variable Φ-derivation if it is both a
left-and a right two variable Φ-derivation. A ∗-two variable Φ-derivation
means a two variable Φ-derivation Ψ : A × A → A, whenever both Ψ
and Φ are ∗-maps.
Suppose d1, d2 : A → A are two ∗-Φ-derivations such that Φ is a ∗-
map. If d2(A) ⊆ Z(A) and [d1(a),Φ(b)] = 0 for all a, b ∈ A, then
Ψ : A × A → A defined by Ψ(a, b) = d1(a)d2(b) is a ∗-two variable
Φ-derivation.

Before proving Theorem 2.8, we need the lemma below.

Lemma 2.7. [[9], Remark 2.6] Let R be a unital ring and let Ψ : R ×
R → R be a bi-additive mapping satisfying Ψ(xy, z) = Ψ(x, z)Σ(y) +
Σ(x)Ψ(y, z) and Ψ(x, yz) = Ψ(x, y)Σ(z)+Σ(y)Ψ(x, z) for all x, y, z ∈ R.
Then

Σ(x)Ψ(e, y) = Σ(y)Ψ(x, e)

Ψ(e, y)Σ(x) = Ψ(x, e)Σ(y),

for all x, y ∈ R.
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Theorem 2.8. Let (A, ∗) be a unital, involutive algebra and let Ψ :
A×A → A be a ∗-two variable Φ-derivation such that Ψ(e, a0) = e for
some a0 ∈ A. If {a ∈ A : Ψ(a, a0) = 0} = {0}, then A is commutative.

Proof. Let Ψ be a ∗-left two variable Φ-derivation. So, we have

Ψ(ab, c) =
(

Ψ(b∗a∗, c∗)
)∗

=
(

Ψ(b∗, c∗)a∗ + Φ(b∗)Ψ(a∗, c∗)
)∗

= aΨ(b, c) + Ψ(a, c)Φ(b)

Moreover, we know that Ψ(ab, c) = Ψ(a, c)b+ Φ(a)Ψ(b, c) for all a, b, c ∈
A. Hence, we have the following expressions:

Ψ(ab, c) =
1

2
Ψ(ab, c) +

1

2
Ψ(ab, c)

=
Ψ(a, c)b+ Φ(a)Ψ(b, c)

2
+
aΨ(b, c) + Ψ(a, c)Φ(b)

2

So, we have

Ψ(ab, c) = Ψ(a, c)

(
b+ Φ(b)

2

)
+

(
Φ(a) + a

2

)
Ψ(b, c),

for all a, b, c ∈ A. Considering Φ+I
2 = Σ, where I is the identity mapping

on A, we see that

Ψ(ab, c) = Ψ(a, c)Σ(b) + Σ(a)Ψ(b, c),

for all a, b, c ∈ A. Similarly, one can obtain that

Ψ(a, bc) = Ψ(a, b)Σ(c) + Σ(b)Ψ(a, c)

for all a, b, c ∈ A. We proceed our proof according to the proof of [8,
Theorem 2.16] and in order to make this paper self contained, we state its
proof here. Let a0 be an element of A such that Ψ(e, a0) = e. Therefore,
we have

e = Ψ(e, a0) = Ψ(e e, a0)

= Σ(e)Ψ(e, a0) + Ψ(e, a0)Σ(e)

= 2Σ(e).
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Hence, Σ(e) = e
2 . It follows from Lemma 2.7 that Σ(a)Ψ(e, b) =

Σ(b)Ψ(a, e) and Ψ(e, b)Σ(a) = Ψ(a, e)Σ(b) for all a, b ∈ A. Define
D1(a) = Ψ(e, a) and D2(a) = Ψ(a, e) for all a ∈ A. Hence, Σ(a)D1(b) =
Σ(b)D2(a) and D1(b)Σ(a) = D2(a)Σ(b) for all a, b ∈ A. Thus,

D1(ab) = D1(a)Σ(b) + Σ(a)D1(b)

= D2(b)Σ(a) + Σ(b)D2(a)

= D2(ba).

It means that D1(ab) = D2(ba) for all a, b ∈ A. Putting b = e in the
previous equation, we obtain that D1(ae) = D2(ea) for all a ∈ A; and
it means that D1 = D2. Therefore, we have Ψ(a, e) = Ψ(e, a) for all
a ∈ A. Suppose that a and b are two arbitrary elements of A. Then, we
have

Ψ(a, b) = Ψ(ea, b)

= Ψ(e, b)Σ(a) + Σ(e)Ψ(a, b)

= Ψ(e, b)Σ(a) +
Ψ(a, b)

2
.

So, Ψ(a, b) = 2Ψ(e, b)Σ(a). Reusing Lemma 2.7 and applying the fact
that Ψ(a, e) = Ψ(e, a) for all a ∈ A, we get

Ψ(b, a) = 2Ψ(e, a)Σ(b)

= 2Ψ(b, e)Σ(a)

= 2Ψ(e, b)Σ(a)

= Ψ(a, b).

It means that Ψ is symmetric. Let a be an arbitrary element of A. Then

Ψ(a, a0) = Ψ(ae, a0)

= Ψ(a, a0)Σ(e) + Σ(a)Ψ(e, a0)

=
Ψ(a, a0)

2
+ Σ(a).

Hence, Σ(a) = Ψ(a,a0)
2 . Now, we define a linear mapping Λ : A → A by
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Λ(a) = Ψ(a, a0). Obviously, Λ(e) = e. Furthermore, we have

Λ(ab) = Ψ(ab, a0)

= Ψ(a, a0)Σ(b) + Σ(a)Ψ(b, a0)

= Ψ(a, a0)
Ψ(b, a0)

2
+

Ψ(a, a0)

2
Ψ(b, a0)

= Λ(a)
Λ(b)

2
+

Λ(a)

2
Λ(b)

= Λ(a)Λ(b).

So, Λ is a unital homomorphism. Furthermore,

Ψ(a, a0) = Ψ(a, ea0)

= Ψ(a, e)Σ(a0) + Σ(e)Ψ(a, a0)

= Ψ(a, e)
Ψ(a0, a0)

2
+

Ψ(a, a0)

2
.

So, Ψ(a, a0) = Ψ(a, e)Ψ(a0, a0). From this equation, we have e =
Ψ(e, a0) = Ψ(e, e)Ψ(a0, a0). Similarly, using the equation Ψ(a, a0) =
Ψ(a, a0e), we can obtain that e = Ψ(a0, a0)Ψ(e, e). Hence, Ψ(a0, a0)−1 =
Ψ(e, e). Now, we define a Σ-derivation d : A → A by d(x) = Ψ(a, e).
Since Ψ(a, a0) = Ψ(a, e)Ψ(a0, a0), Λ(a) = d(a)Λ(a0) for all a ∈ A. So,
d(a) = Λ(a)Λ(a0)−1. Moreover, we have

d(a) = d(e)Σ(a) + Σ(e)d(a) = d(e)Σ(a) +
d(a)

2
,

and so,

d(a) = 2d(e)Σ(a) = 2Λ(a0)−1 Λ(a)

2
= Λ(a0)−1Λ(a).

Similarly,

d(a) = d(a)Σ(e) + Σ(a)d(e) =
d(a)

2
+ Σ(a)d(e)

and therefore,

d(a) = 2Σ(a)d(e) = Λ(a)Λ(a0)−1.
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Hence, Λ(a)Λ(a0)−1 = Λ(a0)−1Λ(a) for all a ∈ A. Let a and b be two
arbitrary elements of A. Then

Ψ(a, b) = 2Ψ(a, e)Σ(b)

= 2d(a)
Λ(b)

2
= d(a)Λ(b)

= Λ(a)Λ(a0)−1Λ(b)

= Λ(a)Λ(b)Λ(a0)−1

= Λ(ab)Λ(a0)−1.

Our next task is to prove that A
kerΛ is a commutative algebra. Since Ψ is

symmetric, i.e. Ψ(a, b) = Ψ(b, a) for all a, b ∈ A, we have Λ(ab)Λ(a0)−1 =
Λ(ba)Λ(a0)−1. This equation implies that Λ(ab) = Λ(ba), i.e. ab− ba ∈
ker(Λ) for all a, b ∈ A. Consequently, ab+ ker(Λ) = ba+ ker(Λ) and it
implies that the quotient algebra A

kerΛ is a commutative algebra. Since
we are assuming that {a ∈ A : Ψ(a, a0) = 0} = {0}, kerΛ = {0}
and consequently, A is a commutative algebra. Thereby, our proof is
complete. �

As an immediate consequence of Theorem 2.8, we have the following
result.

Corollary 2.9. Let (A, ∗) be a unital, involutive Banach algebra. Let
Ψ : A×A → A be a ∗-two variable Φ-derivation such that Ψ(e, a0) = e
for some a0 ∈ A. If the algebra A has the conditions under which every
homomorphism of A is continuous, then both Ψ and Φ are continuous.

Proof. It follows from Theorem 2.8 that there exists a homomor-
phism Λ : A → A defined by Λ(a) = Ψ(a, a0) such that Ψ(a, b) =
Λ(ab)(Λ(a0))−1 for all a, b ∈ A. Since we are assuming the conditions
under which every homomorphism of A is continuous, we have

‖Ψ(a, b)‖ = ‖Λ(ab)(Λ(a0))−1‖ ≤ ‖Λ‖ ‖a‖ ‖b‖ ‖Λ(a0))−1‖ <∞,

which means that Ψ is continuous. According to the proof of Theorem
2.8, Φ(a)+a

2 = Σ(a) = Λ(a)
2 for all a ∈ A. Hence, Φ = Λ− I and since Λ

is continuous, so is Φ. �
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Remark 2.10. There are many different conditions under which a ho-
momorphism is continuous. For instance, if A is a Banach algebra and
B is a commutative, semisimple Banach algebra, then it follows from [5,
Proposition 5.1.1] that every homomorphism θ : A → B is automatically
continuous. For more material about the continuity of homomorphisms
and other results, see, e.g. [5, Theorem 5.1.8, Theorem 5.2.4, Coroolary
5.2.5] and [6, Corollary 3.2.4].
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