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Abstract. By studying and using the quasi-pure part concept, we im-
prove some statements and show that some assumptions in some articles
are superfluous. We give some characterizations of Gelfand rings. For
example: we prove that R is Gelfand if and only if m

(∑
α∈A Iα

)
=∑

α∈Am(Iα), for each family {Iα}α∈A of ideals of R, in addition if
R is semiprimitive and Max(R) ⊆ Y ⊆ Spec(R), we show that R
is a Gelfand ring if and only if Y is normal. We prove that if R is
reduced ring, then R is a von Neumann regular ring if and only if
Spec(R) is regular. It has been shown that if R is a Gelfand ring,
then Max(R) is a quotient of Spec(R), and sometimes hM (a)’s behave
like the zerosets of the space of maximal ideal. Finally, it has been
proven that Z

(
Max(C(X))

)
= {hM (f) : f ∈ C(X)} if and only if

{hM (f) : f ∈ C(X)} is closed under countable intersection if and only
if X is pseudocompact.
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1 Introduction

The pure and quasi-pure part of an ideals of rings play important roles
in classifying certain classes of rings. These concepts along with Gelfand
concept and connection between them, have been studied in numerous
articles, for example the reader can see [6], [1] [9], [8], [7] and [13]. In this
article, by study and the use of quasi-pure part along with the spectrum
of maximal ideals with Zariski topology, we give some characterizations
of Gelfand rings. We show that some assumptions in some articles are
redundant and finally we find some connections between {hM (a) : a ∈
R} and zerosets of the space of maximal ideals.

In the rest of this section, we recall some pertinent definitions and
give two elementary lemmas. In Section 2, we recall the quasi-pure part
and study this notion. Also, we show that some assumptions in some
articles are unneeded. Section 3 is devoted to give some characteriza-
tions of Gelfand rings. We devote the final section to role of hM (a)’s in
Max(R). In this section we give some characterizations of von Neumann
regular rings and show that sometimes hM (a)’s behave like the zerosets,
and the space of maximal ideals of a Gelfand ring is quotient of the
space of prime ideals of the ring. Also, we prove that in the ring C(X);
zerosets of the space of maximal ideals are coincide with hM (f)’s, if
and only if X is pseudocompact, if and only if hM (f)’s are closed under
countable intersection.

Throughout the article, R denotes a commutative ring with identity.
The family of all maximal ideals of R is denoted by Max(R). The
intersection of all maximal ideals of a ring R, denoted by Jac(R), is
called the Jacobson radical of R. If Jac(R) = {0}, then R is called
semiprimitive. For every subset S of R, the set

{
a ∈ R : aS = {0}

}
,

denoted by Ann(S), is called the annihilator of S. Spec(R) denotes the
family of all prime ideals of R. Every minimal element of a Spec(R) is
called a minimal prime ideal. The family of all minimal prime ideals of
a ring R is denoted by Min(R). For every ring R, Rad(R) denotes the
intersection of all prime ideals of R. If Rad(R) = {0}, then R is called
reduced. A ring is called Gelfand, if each prime ideal is contained in a
unique maximal ideal. An element a of a ring is called regular element
if there is some b ∈ R such that a = a2b. If each element of a ring is
regular, then R is called von Neumann regular ring. By [11, Teorem
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1.16]; a ring R is von Neumann regular ring, if and only if R is reduced
and each prime ideal of the ring is maximal.

Throughout this article, C(X) (resp., C∗(X)) is the ring of all (resp.,
bounded) real-valued continuous functions on a Tychonoff (i.e., com-
pletely regular Hausdorff) space X. For f ∈ C(X) the zeroset of f is
the set Z(f) = {x ∈ X : f(x) = 0}. We denote the set of all zerosets
of X by Z(X). A space is called pseudocompact, if C(X) = C∗(X).
βX denotes Stone-Čech compactification of X. Suppose that A ⊆ βX,
then by MA and OA we mean the sets {f ∈ C(X) : A ⊆ clβXZ(f)}
and {f ∈ C(X) : A ⊆ intβXclβXZ(f)}, respectively. The m-topology
is defined on C(X) by taking sets of the form B(f,m) = {g ∈ C(X) :
∀x ∈ X |f(x)− g(x)| < m(x)} as a base, where f ∈ C(X) and m is a
positive unit in C(X). By [10, 7Q.2], I =

⋂
I⊆M∈Max(R)M is the closure

of I in m-topology, for each ideal I of C(X).
An ideal I of a ring R is called pure ideal if aI = I, for each a ∈ I.

By [6, Proposition 8.8], for any ideal I there is the largest pure ideal
contained in I. This ideal is called the pure part of I and we denote
it by s(I); of course, the pure part of an ideal I is denoted by I̊ in
[6, Section 8]. Clearly; an ideal I is pure, if and only if I = s(I). If
P is a prime ideal of a ring R, then P component of the zero ideal
is denoted by 0P and defined by {a ∈ R : ∃b /∈ P ab ∈ Rad(R)}.
Also, we denote the set {a ∈ R : ∃b /∈ P ab = 0} by 0(P ). Clearly,
0P = {a ∈ R : (Rad(R) : a) 6⊆ P}, 0(P ) = {a ∈ R : Ann(a) 6⊆ P},
0(P ) ⊆ 0P and if R is a reduced ring, then 0(P ) = 0P .

Lemma 1.1. For every prime ideal P of a ring R, 0P =
⋂
P⊇Q∈Min(R)Q.

Proof. Suppose that P ⊇ Q ∈ Min(R) and a ∈ 0P , then (Rad(R) :
a) 6⊆ P , so (Rad(R) : a) 6⊆ Q and therefore a ∈ Q. This implies that
0P ⊆

⋂
P⊇Q∈Min(R)Q. Now let a /∈ 0P , then (Rad(R) : a) ⊆ P and thus

S = {anx : n ∈ N and x ∈ P c} is a multiplicatively closed set disjoint
from Rad(R). Hence there is a prime ideal Q containing Rad(R) disjoint
from S, clearly we can assumeQ ∈ Min(R). Therefore a /∈ Q andQ ⊆ P ,
consequently a /∈

⋂
P⊇Q∈Min(R)Q. It deduces that 0P ⊇

⋂
P⊇Q∈Min(R)Q

which completes the proof. �
Suppose that Y ⊆ Spec(R), then

⋂
Y is denoted by k(Y ) and for

every subset S of a ring R, we denote {P ∈ Y : S ⊆ P} and {P ∈ Y :
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S 6⊆ P} by hY (S) and hcY (S), respectively. We abbreviate hSpec(R)(S),
hMin(R)(S) and hMax(R)(S) by h(S), hm(S) and hM (S), respectively.
Clearly, {hcY (S) : S ⊆ R} is a topology on Y . This topology is called
Zariski topology on Y . It is clear that {hcY (a) : a ∈ R} is a base for this
topology. An ideal I of a ring R is called z-ideal (sz-ideal, sz◦-ideal), if
for every element a (finite subset F ) of R, khM (a) ⊆ R (khM (F ) ⊆ R,
khm(F ) ⊆ R). We state some well elementary properties of these spaces
in the following lemma. One can find these in [3, Section 5].

Lemma 1.2. Let R be a ring and Y ⊆ Spec(R). The following state-
ments holds.

(a) A subset D of Y is dense in Y , if and only if k(D) = k(Y ).

(b) hcY (I) ⊆ hY (J), if and only if IJ = k(Y ).

(c) If Max(R) ⊆ Y , then

(i) hY (I) ⊆ hcY (J), if and only if I + J = R.

(ii) Y is a compact space.

(iii) Y is a T1-space, if and only if Y = Max(R).

Proof. It is straightforward. �
A map φ from an ordered set S into S is called dual closure map, if

φ preserves relation, φ(s) 6 s, for every s ∈ S and φ2 = φ. For every
ordered set S, the greatest and smallest element of S(if exist) are called
the top and bottom element, respectively.

The reader is referred to [10], [4], [5] and [14] for undefined terms
and notations.

2 Quasi-Pure Part Of An Ideal

Let us introduce the quasi-pure part by the following proposition.

Proposition 2.1. For any ideal I of a ring R, all the following sets are
equal ideal. This ideal is called quasi-pure part of I

(a)
⋃
i∈I Ann(1− i).
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(b) {a ∈ R : ∃i ∈ I a = ai}.

(c) {a ∈ R : I + Ann(a) = R}.

Proof. It is easy to see that the set (a) is an ideal and the sets (a)-(c)
are equal. �

We will denote the quasi-pure part of I bym(I). This ideal is denoted
by E(I) in [6, Definitiuon 8.10] and is called unit part of I. It is easy to
see that s(I) ⊆ m(I), and also, I is pure, if and only if I = m(I), for
each ideal I of a ring R. In [6, Proposition 8.30], it has been shown that
in each Gelfand ring the quasi-pure part and the pure part of each ideal
are equal.

In [12, Lemma 1.8], it has been shown that if R is a semiprimitive
ring, then {a ∈ R : ∃x ∈ R ∃b ∈ I hM (b) ⊆ hcM (x) ⊆ hM (a)} = m(I).
Now we develop this fact in the following proposition.

Proposition 2.2. Let R be a ring and Max(R) ⊆ Y ⊆ Spec(R). Then

(a) m(I) ⊆ {a ∈ R : ∃i ∈ I hY (i) ⊆ hY (a)◦} = {a ∈ R : hY (I) ⊆
hY (a)◦}.

(b) In addition if k(Y ) = {0}, then m(I) = {a ∈ R : ∃i ∈ I hY (i) ⊆
hY (a)◦} = {a ∈ R : hY (I) ⊆ hY (a)◦}.

Proof. Suppose that J = {a ∈ R : ∃i ∈ I hY (i) ⊆ hY (a)◦} and
K = {a ∈ R : hY (I) ⊆ hY (a)◦}.

(a). If a ∈ m(I), then, by Proposition 2.1, I + Ann(a) = R, so there
are i ∈ I and x ∈ Ann(a) such that i+ x = 1 and ax = 0. Now Lemma
1.2 shows that hY (i) ⊆ hcY (x) ⊆ hY (a) and thus hY (i) ⊆ hY (a)◦. This
implies that m(I) ⊆ J . Clearly, J ⊆ K. Now suppose that a ∈ K, then
an ideal I ′ of R exists such that hY (I) ⊆ hcY (I ′) ⊆ hY (a). Now Lemma
1.2 concludes that I + I ′ = 1, thus there are i ∈ I and i′ ∈ I ′ such that
i + i′ = 1, by Lemma 1.2. Hence hY (i) ⊆ hcY (i′) ⊆ hcY (I ′) ⊆ hY (a) and
consequently a ∈ J . This shows that J = K.

(b). Now suppose that a ∈ K, then hY (I) ⊆ hY (a)◦, so an ideal
I ′ exists such that hY (I) ⊆ hcY (I ′) ⊆ hY (a), hence I + I ′ = R and
aI ′ = {0}, by Lemma 1.2. They imply that i ∈ I and i′ ∈ I exist such
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that i + i′ = 1 and ai′ = 0, so a ∈ Ann(1 − i) and therefore a ∈ m(I),
by Proposition 2.1. Consequently, K ⊆ m(I). �

In [12, Theorem 1.12], it has been shown that “in semiprimitive rings,
if {hY (a) : a ∈ I} is closed under finite intersection; then I is a pure
ideal, if and only if hY (a) is a neighborhood of hY (I), for each a ∈ I”.
Now by the above proposition, we can see that the fact “{hY (a) : a ∈ I}
is closed under finite intersection” is redundant.

If M is a maximal ideal of a ring, then by Proposition 2.1,

m(M) = {a ∈ R : M + Ann(a) = R}
= {a ∈ R : Ann(a) 6⊆M} = 0(M) ⊆ 0M (1)

Hence a maximal ideal M of a ring is pure if and only if 0(M) = M .
Thus a maximal ideal M of a reduced ring is pure if and only if M =
0M . Hence this consequence is a generalization of [1, Theroem 1.5] and
shows that the assumption “Gelfand ring” is redundant. This fact is also
satisfies for the following corollary and [1, Corollary 1.6], analogously.

Corollary 2.3. A reduced ring is von Neumann regular, if and only if
every maximal ideal of the ring is pure.

In [6, Proposition 8.17], it has been shown that in Gelfand rings,
m(I) =

⋂
M∈hM (I)m(M). In the following we develop that proposition

in commutative rings and show that the assumption “R is a Gelfand
ring” is superfluous.

Proposition 2.4. Let R be a ring and Max(R) ⊆ Y ⊆ Spec(R). Then

m(I) =
⋂

P∈hY (I)

m(P )

Proof. One can see easily that m(I) ⊆
⋂
P∈hY (I)m(P ). Thus it is

sufficient to show that
⋂
P∈hY (I)m(P ) ⊆ m(I). Suppose that x /∈ m(I),

so I+Ann(x) 6= R, hence M ∈ Max(R) exists such that I+Ann(x) ⊆M
and therefore I ⊆ M and M + Ann(x) ⊆ M 6= R. They imply that
M ∈ hY (I) and x /∈ m(M) and consequently x /∈

⋂
P∈hY (I)m(P ). This

shows that
⋂
P∈hY (I)m(P ) ⊆ m(I). �
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By the above proposition and fact (1), we can see that

m(I) =
⋂

M∈hM (I)

m(M) =
⋂

M∈hM (I)

0(M) (2)

In addition if R is a reduced ring then m(I) =
⋂
M∈hM (I) 0M , for each

ideal I of a ring R. In [12], since the author was studying the z-ideals,
he only focused on the semiprimitive rings and gave this fact for the
semiprimitive rings, in [12, Lemma 1.10(a)].

In [1, Theorem 1.8], it has been shown that if I is a pure ideal
of a reduced Gelfand ring, then I =

⋂
M∈hM (I) 0M . In the following

corollary we develop this theorem and can conclude that the converse of
the theorem is also true. Also, by the following corollary the “Gelfand
ring” supposition is unneeded in [1, Theorem 1.8].

Corollary 2.5. For each ideal I of a ring, I is pure if and only if
I =

⋂
M∈hM (I) 0(M).

Proof. It concludes immediately from fact (2). �

Corollary 2.6. For each pair ideals I and J of a ring R, m(I ∩ J) =
m(I) ∩m(J).

Proof. By Proposition 2.4,

m(I ∩ J) =
⋂

M∈hM (I∩J)

m(M) =
⋂

M∈hM (I)∪hM (J)

m(M)

=
( ⋂
M∈hM (I)

m(M)
)
∩
( ⋂
M∈hM (J)

m(M)
)

= m(I) ∩m(J).

�
In [12] from [12, Lemma 1.8], it has been deduced that in semiprim-

itive rings, m(I) is z-ideal, for each ideal I of the ring. The following
proposition and corollary are improvements of this fact.

Proposition 2.7. R is a reduced ring if and only if m(I) is a sz◦-ideal,
for every ideal I of a ring R.
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Proof. ⇒). By fact (2) and Lemma 1.1, m(I) is an intersection of
minimal prime ideals, since every minimal prime ideal is sz◦-ideal, it
follows that m(I) is a sz◦-ideal.
⇐). Since m({0}) = {0} is a sz◦-ideal and Rad(R) is the smallest

sz◦-ideal, it follows R is reduced. �

Corollary 2.8. R is a semiprimitive ring if and only if m(I) is sz-ideal,
for every ideal I of R.

Proof. It follows from the above proposition, [2, Proposition 2.9] and
this fact that the smallest sz-ideal is Jac(R). �

In [3], inspired of notations OA and MA in context of the real-valued
continuous functions, {a ∈ R : A ⊆ hY (a)◦} and {a ∈ R : A ⊆ hY (a)}
have been denoted by OA(Y ) and MA(Y ), respectively; for each A ⊆
Y ⊆ Spec(R). Clearly, MA(Y ) = k(A) and hY (MA(Y )) = clYA.

Corollary 2.9. Let R be a ring, I be an ideal of R and Max(R) ⊆ Y ⊆
Spec(R). Then

(a) m(I) ⊆ OhY (I)(Y ) ⊆MhY (I)(Y ).

(b) If k(Y ) = {0}, then m(I) = OhY (I)(Y ).

Proof. It is evident by Proposition 2.2. �

Proposition 2.10. Suppose that Max(R) ⊆ Y ⊆ Spec(R). If I is an
ideal of R, then m(khY (I)) = m(I).

Proof. By Proposition 2.4,

m(khY (I)) =
⋂

P∈hY
(
khY (I)

)m(P ) =
⋂

P∈hY (I)

m(P ) = m(I)

�

Corollary 2.11. If I is an ideal of a ring R, then m(I) = m(
√
I) =

m(Isz) = m(Iz) = m(I); in which I is the m-closure of I.

Proof. By the above proposition, if we assume that Y = Max(R), then
m(I) = m(I), since m(I) ⊆ m(

√
I) ⊆ m(Isz) ⊆ m(Iz) ⊆ m(I), it follows

that m(I) = m(
√
I) = m(Isz) = m(Iz) = m(I). �
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3 Some Characterization Of Gelfand Rings

In [6, Theorem 8.13], it has been proven that R is a Gelfand ring if and
only if for each family {Iα}α∈ of ideals of R, s

(∑
α∈A Iα

)
=
∑

α∈A s(Iα).
In the following theorem we give some characterizations of Gelfand rings
by the quasi-pure part notion and show that the above fact is also true
for the quasi-pure part.

Theorem 3.1. The following statements are equivalent for a ring R.

(a) R is a Gelfand ring.

(b) For each ideal I of R, hM (m(I)) = hM (I).

(c) For each ideal I of R, m(I) = I.

(d) For each family {Iα}α∈A of ideals of R, we have

m

(∑
α∈A

Iα

)
=
∑
α∈A

m (Iα) = m

(∑
α∈A

m(Iα)

)
.

(e) For each family {Iα}α∈A of ideals of R,
∑

α∈A Iα = R if and only
if m

(∑
α∈A Iα

)
= R if and only if

∑
α∈Am(Iα) = R.

(f) For each pair ideals I and J of R, I + J = R if and only if
m(I) +m(J) = R.

(g) For each pair distinct maximal ideals M and N of R, m(M) +
m(N) = R.

Proof. (a) ⇒ (b). Suppose that I 6⊆ M , then i ∈ I \M and m ∈ M
exist such that i+m = 1. Hence [8, Theroem 4.1] deduces that there are
a, b ∈ R such that (1−am)(1−bi) = 0, so 1−am ∈ Ann(1−bi) ⊆ m(I),
thus 1 − am ∈ m(I) \ M . It implies that hM (m(I)) ⊆ hM (I) and
therefore hM (m(I)) = hM (I).

(b)⇒ (a). Suppose thatM ∈ Max(R), then hM (m(M)) = hM (M) =
{M}. Now Let P ∈ Spec(R) and M ∈ hM (P ). By fact (1) and Lemma
1.2, we have m(M) ⊆ 0M ⊆ P , so hM (P ) ⊆ hM (m(M)) = {M} and
therefore R is Gelfand.
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(b) ⇒ (c). By the hypothesis, m(I) = khM (m(I)) = khM (I) = I.
(c) ⇒ (b). Since m(I) = I, it follows that hM (m(I)) = hM (I), thus

hM (khM (m(I))) = hM (khM (I)) and therefore

hM (m(I)) = clY hM (m(I)) = hM (khM (m(I)))

= hM (khM (I)) = clY hM (I) = hM (I)

(b) ⇒ (d). By the supposition and Proposition 2.4,∑
α∈A

m(Iα) ⊆ m
(∑
α∈A

Iα

)
=
⋂{

m(M) :
∑
α∈A

Iα ⊆M ∈ Max(R)
}

=
⋂{

m(M) : ∀α ∈ A Iα ⊆M ∈ Max(R)
}

=
⋂{

m(M) : ∀α ∈ A m(Iα) ⊆M ∈ Max(R)
}

=
⋂{

m(M) :
∑
α∈A

m(Iα) ⊆M ∈ Max(R)
}

= m
(∑
α∈A

m(Iα)
)
⊆
∑
α∈A

m(Iα)

(d) ⇒ (e) ⇒ (f) ⇒ (g). They are straightforward.
(g) ⇒ (a). Suppose that R is not a Gelfand ring, so by [9, Theorem

4.1], there are distinct maximal ideals M and N such that m(M) ⊆ N ,
then m(M) +m(N) ⊆ N 6= R. �

In [3, Lemma 5.1], it has been shown that a reduced ring R is a
Gelfand ring if and only if hM (m(I)) = h(m(I)), for each ideal I of
R. Now the above theorem shows that the assumption “reduced” is
redundant.

Theorem 3.2. Let R be a Gelfand ring. Then the following hold.

(a) Let I (R) be the lattice of ideals of R with respect to the inclusion
order. Then the function m : I (R) → I (R), defined by I 7→
m(I), preserves the finite meets and arbitrary joins. Also, m is a
dual closure map on the ordered set I (R).

(b) For every pair ideals I and J of R,

m(I) = m(J)⇔ hM (I) = hM (J)⇔ I = J
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(c) Suppose ∼ is the following defined relation on I (R).

I ∼ J ⇔ m(I) = m(J)

Then ∼ is an equivalent relation and for each I ∈ I , m(I) and I
are the bottom and top element of the equivalent class [I], respec-
tively.

(d) I ⊆ Jac(R) if and only if m(I) ⊆ Rad(R), for each ideal I of R.

Proof. (a). By Corollary 2.6 and Theorem 3.1(d), m preserves the
finite meets and arbitrary joins. We know that m(I) ⊆ I, for every
I ∈ I (R); I ⊆ J implies m(I) ⊆ m(J), for every I, J ∈ I (R); and
m
(
m(I)

)
= m(I), for every I ∈ I (R). So we can conclude that m is a

dual closure map on the ordered set I (R).
(b). By Proposition 2.4, hM (I) = hM (J) implies that m(I) = m(J)

and by Theorem 3.1(b), m(I) = m(J) implies that hM (I) = hM (J).
Also, by Theorem 3.1(d), m(I) = m(J) deduces that I = J and by
Corollary 2.11, I = J implies that m(I) = m(J).

(c). It is evident that ∼ is an equivalent class. Since m(I) is a pure
ideal, m(m(I)) = m(I), so m(I) ∈ [I]. By Corollary 2.11, I ∈ [I]. Also,
it is clear m(I) = m(J) ⊆ J ⊆ J = I, for every J ∈ [I], thus m(I) and
I are the bottom and top element of [I], respectively.

(d). By Proposition 2.4, I ⊆ Jac(R) implies that

m(I) =
⋂

M∈Max(R)

0(M)

and therefore, by Lemma 1.2,

m(I) ⊆
⋂

M∈Max(R)

0M = Rad(R).

Conversely, by Theorem 3.1(b), hM (I) = hM (m(I)) = Max(R) and
therefore I ⊆ Jac(R). �

Lemma 3.3. If X is a topological space, then the following statements
are equivalent.

(a) X is regular.
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(b) If B is base for topology, then {B : B ∈ B} is a neighborhood base
of closed sets.

(c) X has a neighborhood base of closed sets.

(d) Each closed set F is the intersection of all closed neighborhoods of
F .

(e) If F is a base for closed sets, then for each closed set E of X, we
have

E =
⋂
{F ∈ F : F is a neighborhood of E}

Proof. (a) ⇒ (b) ⇒ (c) ⇒ (a). They are straightforward.

(a) ⇒ (d). Suppose that E is the intersection of all closed neighbor-
hoods of F . Clearly, F ⊆ E. Now let a /∈ F . Since X is regular, there

is an open set U such that a ∈ U ⊆ U ⊆ F c, so F ⊆ U
c◦ ⊆ U c, thus

a /∈ E, hence E ⊆ F and therefore E = F .

(d) ⇒ (e). Set K =
⋂
{F ∈ F : F is a neighborhood of E}. Clearly,

E ⊆ K. Suppose that x /∈ E, by the assumption, a closed set L of X
exists such that E ⊆ L◦ and x /∈ L. So F ∈ F exits such that L ⊆ F
and x /∈ F , hence E ⊆ F ◦ and x /∈ F and therefore x /∈ K. This implies
that K ⊆ E and thus K = E.

(e) ⇒ (a). Suppose that G is open and a ∈ G. Then a /∈ Gc, so
by the assumption there is a closed set F ∈ F such that a /∈ F and
Gc ⊆ F ◦, thus a ∈ F c ⊆ F c ⊆ G and therefore X is regular. �

If R is a Gelfand ring, then Max(R) is regular, by [8, Proposition
1.2] and Lemma 1.2. Thus we can conclude [3, Lemmas 5.2 and 5.3 and
Proposition 5.4], from the above lemma.

Proposition 3.4. Let R be a ring and Max(R) ⊆ Y ⊆ Spec(R). Then
the following are equivalent.

(a) Y is a regular space.

(b) hY (OA(Y )) = clYA, for every A ⊆ Y .

(c) hY (OA(Y )) = A, for every closed subset A of Y .
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Proof. (a) ⇒ (b). Since OA(Y ) ⊆ MA(Y ) = k(A), clYA = hY k(A) ⊆
hY (OA(Y )). Now suppose that P /∈ clYA. Since Y is regular, thus
Lemma 3.3 follows that there is some a ∈ R such that A ⊆ hY (a)◦ ⊆
hY (a) and P /∈ hY (a), hence a ∈ OA(Y )\P and therefore P /∈ hY (OA(Y )).
This shows that hY (OA(Y )) ⊆ clYA and thus the equality holds.

(b) ⇒ (c). It is evident.

(c)⇒ (a). SupposeA is a closed subset of Y . SinceA = hY (OA(Y )) =⋂
a∈OA(Y ) hY (a) =

⋂
A⊆hY (a)◦ hY (a), by Lemma 3.3, it follows that Y is

regular. �
In [9, Theorem 1.2], it has been shown that a ring R is Gelfand if

and only if Spec(R) is normal. In the following theorem we improve this
fact for semiprimitive rings.

Theorem 3.5. Let R be a semiprimitive ring and Max(R) ⊆ Y ⊆
Spec(R). Then the following are equivalent.

(a) R is a Gelfand ring.

(b) Max(R) is a regular space.

(c) For each ideal I of R, there is a unique closed subset A of Max(R)
such that OA ⊆ I ⊆MA.

(d) Y is normal.

(e) For each distinct maximal ideals M and N , there are a, b ∈ R such
that M ∈ hcY (a), N ∈ hcY (b) and hcY (a) ∩ hcY (b) = ∅.

Proof. (a) ⇒ (b). By [8, Proposition 1.2] and Lemma 1.2, Max(R) is
T4 and therefore Max(R) is regular.

(b) ⇒ (c). By Corollary 2.9, OhM (I) = m(I) ⊆ I ⊆ MhM (I). Sup-
pose that A is a closed subset of Max(R) and OA ⊆ I ⊆ MA, thus
Propositions 3.4 implies that A = hM (OA) ⊇ hM (I) ⊇ hM (MA) =
hM (k(hM (A))) = A = A, hence A = hM (I) and therefore hM (I) is
unique.

(c)⇒ (a). Suppose that m(M) ⊆ N , then by Corollary 2.9, O{M} =
OhM (M) = m(M) ⊆M = MhM (M) = M{M} andO{M,N} = OhM (M∩N) =
m(M ∩ N) ⊆ m(M) ⊆ M ∩ N = M{M,N}, since {M} = hM (M) and
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{M,N} = hM (M∩N) are closed subsets of Max(R), the assumption fol-
lows that {M,N} = {M˚}, i.e. M = N . Consequently R is a Gelfand
ring, by [9, Theorem 1.2].

(a) ⇒ (d). Suppose that A and B are disjoint closed sets of Y ,
then there are closed sets A′ and B′ of Spec(R) such that A = A′ ∩
Y and B = B′ ∩ Y . We claim A′ and B′ are disjoint. On contrary,
if P ∈ A′ ∩ B′ exists, so there is a maximal ideal M containing P
and k(A), k(B) ⊆ P ⊆ M , since A′ and B′ are closed, it follows that
M ∈ hk(A′) ∩ hk(B′) = A′ ∩ B′ ∩ Y and thus M ∈ A ∩ B = ∅, which
is a contradiction. Consequently A′ and B′ are disjoint closed sets of
Spec(R). By [9, Theorem 1.2], Spec(R) is normal, so A′ and B′ can be
separated by two disjoint open subsets of Spec(R), so A and B can be
separated by two disjoint open sets of Y and therefore Y is normal.

(d) ⇒ (e). Suppose that M and N are distinct maximal ideals of
R. Then {M} = hY (M) and {N} = hY (N) are disjoint closed subsets
of Y , so there are some ideals I and J of R such that {M} ⊆ hcY (I),
{N} ⊆ hcY (J) and hcY (I) ∩ hcY (J) = ∅. Thus a ∈ I \M and b ∈ J \ N
exist. Clearly, M ∈ hcY (a), N ∈ hcY (b) and hcY (a) ∩ hcY (b) = ∅.

(e) ⇒ (b). Suppose that A is a closed subset of Max(R) and a max-
imal ideal M /∈ A, then an ideal I of R exists such that A = hM (I).
For each maximal ideal N ∈ hY (I), we have N 6= M , so by the as-
sumption there are aN , bN ∈ R such that M ∈ hcY (aN ), N ∈ hcY (bN )
and hcY (aN ) ∩ hcY (bN ) = ∅. Clearly, hM (I) ⊆

⋃
N∈hM (I) h

c
M (aN ). By

Lemma 1.2, hM (I) is compact, so aN1 , aN2 , . . . , aNn exist such that
hM (I) ⊆

⋃n
i=1 h

c
M (aNi). Set U =

⋃n
i=1 h

c
M (aNi) and V =

⋂n
i=1 h

c
M (bNi),

then A ⊆ U , M ∈ V and U and V are two disjoint open sets in Max(R),
so Max(R) is regular. �

Corollary 3.6. If R is a Gelfand ring, then there is a one-to-one cor-
respondence between the family of all pure ideals of R and the family of
all ideals of R of the form OA, where A is a closed subset of Max(R).

Proof. Set ϕ the map from the family of all quasi-pure parts of ide-
als of R to the family of all ideal of R of the form OA, where A
is closed subset of Max(R), defined by ϕ(m(I)) = OhM (I). Suppose
that m(I) = m(J), then by Theorems 3.1, hM (I) = hM (m(I)) =
hM (m(J)) = hM (J) and thus ϕ is well-defined. Clearly, ϕ is onto. By
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[8, Proposition 1.2] and Lemma 1.2, Max(R) is regular. Now suppose
that OhM (I) = OhM (J), then by Proposition 3.4, hM (I) = hM

(
OhM (I)

)
=

hM
(
OhM (J)

)
= hM (J), thus by Proposition 2.4, m(I) = m(J) and there-

fore ϕ is one-to-one. �

4 The Role Of hM(a) In Max(R)

In the following theorems we give some characterizations of rings in
which each prime ideal is maximal.

Theorem 4.1. Each prime ideal of a ring is maximal if and only if
h(m(I)) = h(I), for every ideal I of the ring.

Proof. (⇒). By the assumption, R is a Gelfand ring and hM (I) = h(I),
so h(m(I)) = h(I), by Theorem 3.1.

(⇐). Suppose that there is a prime ideal P which is not maximal
and M is a maximal ideal containing P , then m(M) ⊆ 0M ⊆ P , by fact
(1) and Lemma 1.1. Thus P ∈ h(m(M)) \ h(M). �

Theorem 4.2. Let R be a reduced ring and Y = Spec(R). Then the
following statements are equivalent.

(a) R is a von Neumann regular ring.

(b) Spec(R) is a regular space.

(c) For each ideal I of R, there is a unique closed subset A of Max(R)
such that OA(Y ) ⊆ I ⊆MA(Y ).

Proof. (a)⇒ (b). Since R is a semiprimitive Gelfand ring, by Theorem
3.5, it follows that Spec(R) = Max(R) is regular.

(b) ⇒ (c). It is similar to the proof of (b) ⇒ (c) of Theorem 3.5.
(c) ⇒ (a). Suppose that M is a maximal ideal of R. By Corollary

2.9, OhY (M)(Y ) = m(M) ⊆ MhY (M)(Y ) and OhY (m(M))(Y ) = m(M) ⊆
MhY (m(M))(Y ). Since h(M) and h(m(M)) are closed sets in Spec(R), by
the assumption, it follows that h(m(M)) = h(M) = {M} and therefore
h(0M ) = {M}, by fact (1). Now Lemma 1.1 concludes that M is a
minimal prime ideal and therefore R is a von Neumann regular ring.
�
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In the following theorem we give another characterizations of Gelfand
rings and show that sometimes hM (a)’s behave like the zerosets in the
space of maximal ideals of Gelfand rings.

Theorem 4.3. Suppose that R is a semiprimitive ring and Max(R) ⊆
Y ⊆ Spec(R). Then the following are equivalent.

(a) R is a Gelfand ring.

(b) {hM (a) : a ∈ R} is a neighborhood base for Max(R).

(c) {hcM (a) : a ∈ R} is a neighborhood base for Max(R).

(d) For each closed set A in Max(R), we have A =
⋂
A⊆hM (a)◦ hM (a).

(e) For each pair of disjoint closed subsets A and B of Max(R), there
are a, b in R such that A ⊆ hcY (a), B ⊆ hcY (b) and hcY (a)∩hcY (b) =
∅.

(f) For each pair of disjoint closed subsets A and B of Max(R), there
are a, b in R such that A ⊆ hY (a)◦, B ⊆ hY (b)◦ and hY (a) ∩
hY (b) = ∅.

Proof. (a) ⇒ (b). Suppose that M ∈ hcM (I), so M ∈ hcM (m(I)), by
Theorem 3.1. Thus a ∈ m(I)\M exists, hence there is an i ∈ I such that
a(1 − i) = 0. Then, by Lemma 1.2, M ∈ hcM (a) ⊆ hM (1 − i) ⊆ hcM (I).
This implies that M ∈ hM (1− i)◦ ⊆ hM (1− i) ⊆ hcM (I).

(d) ⇔ (b) ⇒ (c) ⇒ (a). They follow from Lemma 3.3 and Theorem
3.5.

(a) ⇒ (e). By the assumption there are ideals I ′ and J ′ of R such
that A = hY (I ′) and B = hY (J ′). By Theorem 3.5, there are ideals
I and J of R such that hY (I ′) = A ⊆ hcY (I), hY (J ′) = B ⊆ hcY (J)
and hcY (I) ∩ hcY (J) = ∅. By Lemma 1.2, I ′ + I = R, thus a′ ∈ I ′

and a ∈ I exist such that a + a′ = 1 and therefore, by Lemma 1.2,
A = hY (I ′) ⊆ hY (a′) ⊆ hcY (a) ⊆ hcY (I). Similarly, we can show that
there is some b ∈ J such that B ⊆ hcY (b) ⊆ hcY (J) and thus hcY (a) ∩
hcY (b) ⊆ hcY (I) ∩ hcY (J) = ∅.

(a) ⇒ (f). By Theorem 3.5, there are disjoint open sets U and V
such that A ⊆ U and B ⊆ V . By part (b), there is a family {aα}α∈I
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of elements of R such that U =
⋃
α∈I hY (aα)◦ =

⋃
α∈I hY (aα), thus

A ⊆
⋃
α∈I hY (aα)◦. By Lemma 1.2, A is compact, so there is a finite

family
{
aαi
}n
i=1

such that A ⊆
⋃n
i=1 hY (aαi)

◦. Set a =
∏n
i=1 aαi , then

A ⊆
⋃n
i=1 hY (aαi)

◦ ⊆
⋃n
i=1 hY (ai) = hY (a), so A ⊆ hY (a)◦ ⊆ hY (a) =⋃n

i=1 hY (ai) ⊆ U . Similarly, we can show that there is some b ∈ R such
that B ⊆ hY (b)◦ ⊆ V . Hence hY (a)◦ ∩ hY (b)◦ ⊆ U ∩ V = ∅.

(e) ⇒ (a) and (f) ⇒ (a). They deduce from Theorem 3.5. �

Proposition 4.4. If R is a Gelfand ring, then Max(R) is a quotient of
Spec(R).

Proof. Suppose that η : Spec(R) → Max(R) is given by, η(P ) is the
unique maximal ideal containing P , for each P ∈ Spec(R). Suppose
that a ∈ R and I =

⋂
a∈η(P ) P . If P ∈ η−1

(
hM (a)

)
, then a ∈ η(P ), so

I ⊆ P and therefore P ∈ h(I). This shows that η−1
(
hM (a)

)
⊆ h(I). In

the other hand, by Lemma 1.1 and fact (2),

m(Ra) =
⋂

a∈M∈Max(R)

0(M) ⊆
⋂

a∈M∈Max(R)

0M

=
⋂
P⊆M

a∈M∈Max(R)

P =
⋂

a∈η(P )

P = I

Now Theorem 3.1 concludes that hM (I) ⊆ hM (m(Ra)) = hM (Ra) =
hM (a). If P ∈ h(I), then I ⊆ P ⊆ η(P ), so η(P ) ∈ hM (I) ⊆ hM (a) and
thus P ∈ η−1

(
hM (a)

)
. This shows that h(I) ⊆ η−1

(
hM (a)

)
and con-

sequently h(I) = η−1
(
hM (a)

)
. Hence η is continuous. By Lemma 1.2,

Spec(R) is compact and by [8, Proposition 1.2], Max(R) is Hausdorff,
thus η is closed and therefore Max(R) is a quotient space of Spec(R).
�

As applications of the main results obtained so far, we study the re-
lationship and interaction between {hM (a) : a ∈ R} and Z

(
Max(C(X)

)
.

For convenience, let us denote HM and M the sets {hM (a) : a ∈ R}
and Max(C(X)), respectively, and use the homeomorphism φ : βX →
M, given by φ(p) = Mp; for every p ∈ βX. It is easy to see that
φ−1

(
hM (f)

)
= clβXZ(f)

Proposition 4.5. Let X be a Tychonoff space. Then HM ⊆ Z(M) if
and only if clβXZ ∈ Z(βX), for every Z ∈ Z(X).
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Proof. Clearly, hM (f) ∈ Z(M) if and only if φ−1
(
hM (f)

)
∈ Z(βX),

thus hM (f) ∈ Z(M) is equivalent to say that clβXZ(f) ∈ Z(βX). Thus
we can claim that H ⊆ Z(M) if and only if clβXZ(f) ∈ Z(βX), for
every Z(f) ∈ Z(X). �

One can see in [10, Exercie 8B.5] that “If X is pseudocompact space,
then clβXZ ∈ Z(βX), for every Z ∈ Z(X)”. The following lemma is an
improvement of this fact.

Lemma 4.6. For a Tychonoff space X the following statements are
equivalent.

(a) X is pseudocompact.

(b) clβXZ(f) = Z(fβ), for every f ∈ C∗(X).

(c) If ∅ 6= A ∈ Z(βX), then A ∩X 6= ∅.

Proof. (a) ⇒ (b). Suppose that there is some f ∈ C∗(X) such that
Z(fβ) 6= clβXZ(f), so p ∈ Z(fβ) \ clβXZ(f) exists and thus there is
some g ∈ Op ∩ C∗(X) such that Z(g) ∩ Z(f) = ∅, so Z(f2 + g2) = ∅
and therefore 1

f2+g2
∈ C(X). Clearly, fβ(p) = gβ(p) = 0, so 1

f2+g2
∈

C(X) \ C∗(X) and consequently, X is not pseudocompact.

(b) ⇒ (c). It is clear.

(c) ⇒ (a). Suppose that X is not pseudocompact, then f ∈ C(X) \
C∗(X) exists. Clearly, g = 1

f2+1
∈ C∗(X), Z(gβ) 6= ∅ and Z(gβ) ∩X =

Z(g) = ∅. �

Proposition 4.7. Let X be a Tychonoff space. Then the following
statements are equivalent.

(a) Z(M) ⊆ HM .

(b) For every A ∈ Z(βX) there exits some Z ∈ Z(X) such that
clβXZ = A.

(c) X is pseudocompact.

(d) Z(M) = HM .
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Proof. (a) ⇒ (b). Suppose that A ∈ Z(βX), then φ(A) ∈ Z(M) ⊆
HM , thus f ∈ C(X) exits such that φ(A) = hM (f) and therefore A =
φ−1(hM (f)) = clβXZ(f).

(b) ⇒ (c). On contrary, suppose that X is not pseudocompact,
then ∅ 6= A ∈ Z(βX) exists such that A ∩ X = ∅, by Lemma 4.6.
By the assumption there is some Z ∈ Z(X) such that clβXZ = A,
so clβXZ ∩ X = ∅, hence Z = ∅ and therefore A = ∅, which is a
contradiction.

(c)⇒ (d). Suppose that A ∈ Z(M), then φ−1(A) ∈ Z(βX), thus by
the Lemma 4.6, there is some f ∈ C(X) such that clβXZ(f) = φ−1(A),
so hM (f) = φ

(
clβXZ(f)

)
= φ

(
φ−1(A)

)
= A and therefore A ∈ HM .

It follows that Z(M) ⊆ HM . Now suppose that hM (f) ∈ H, then by
Lemma 4.6, we have φ−1

(
hM (f)

)
= clβXZ(f) = Z(fβ) ∈ Z(βX) and

thus hM (f) = φ
(
φ−1(hM (f)

)
= φ

(
Z(fβ)

)
∈ Z(M). Hence Z(M) ⊇

HM and therefore Z(M) = HM .

(d) ⇒ (a). It is evident. �
Let X be not a pseudocompact space. The above proposition shows

that C(X) (that is a semiprimitive Gelfand ring) is an example of a ring
for which the zerosets of Max(R) are not of the form hM (a), for some
a ∈ R. Therefore, it is natural to ask the following question: “Does
HM ⊆ Z(M) imply that HM = Z(M)?”. The first part of the following
example shows that the answer is “No”. Another question which comes
from Proposition 4.5 is, “ Is there a semiprimitive Gelfand ring R and
a ∈ R, for which hM (a) is not a zeroset in Max(R)?”. The second part
of the next example shows that the answer is “Yes”.

Example 4.8. (a) Assume that X is an infinite discrete space. Since
for every f ∈ C(X), clβXZ(f) is a closed and open subset of βX, it
follows that clβXZ(f) ∈ Z(βX). Therefore, every hM (f) is a zeroset in
M, whereas by Proposition 4.7, a zeroset inM is not necessarily of the
form hM (f).
(b) Since N is closed in the metric space R, by [10, Section 1.10], there
is some f ∈ C(R) such that Z(f) = N. By Proposition 4.5, to show
that HM 6⊆ Z(M), it is sufficient to show that clβRZ(f) /∈ Z(βR). On
contrary, suppose clβRZ(f) = Z(gβ), for some g ∈ C∗(R). Clearly,
for each n ∈ N, there is some an ∈ R such that 0 < |an − n| < 1/n
and |g(an)| < 1/n. Set A = {an : n ∈ N}, then p ∈ clβRA exists
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such that gβ(p) = 0. It is readily seen that A and N are two disjoint
zerosets and thus clβRA ∩ clβRN = ∅, by [10, Theorem 6.5]. Hence
p ∈ Z(gβ) = clβRZ(f) = clβRN, which is a contradiction.

Now in the following proposition, we give a sufficient condition on
Gelfand rings that Z(Max(R)) ⊆ HM .

Proposition 4.9. Let R be a Gelfand ring. If HM is closed under
countable intersection, then Z

(
Max(R)

)
⊆ HM .

Proof. Suppose that Z ∈ Z
(
Max(R)

)
, then Z is a Gδ-set, by [10,

Section 1.10]. So there is a countable family {Un : n ∈ N} of open sets
such that Z =

⋂
n∈N Un. Since R is Gelfand, similar to the proof (a) ⇒

(b), it follows that {hM (a) : a ∈ R} is a neighborhood base for Max(R).
Now suppose that n ∈ N. For each M ∈ Un, there is some aM ∈ R such
that M ∈ hM (aM )◦ ⊆ hM (aM ) ⊆ Un and thus Z ⊆

⋃
M∈Un hM (aM )◦.

By Lemma 1.2, Max(R) is compact, thus Z is compact, hence there are
aM1 , aM2 , . . . , aMk

such that Z ⊆
⋃k
i=1 hM

(
aMi

)◦ ⊆ ⋃k
i=1 hM

(
aMi

)
=

hM (a1a2 . . . ak). If we set an =
∏k
i=1 aMi , then Z ⊆ hM (an) ⊆ Un.

Consequently, Z =
⋂
n∈N hM (an) ∈ HM , by the assumption. �

Now we can conclude the following corollary from Propositions 4.7
and 4.9.

Corollary 4.10. A space X is pseudocompact if and only if HM is
closed under countable intersection.
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