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Abstract 

In this paper, we propose inverse data envelopment analysis (DEA) models in the presence of 

ratio data. We present the inputs/output estimation process based on ratio based DEA (DEA-R) 

models. We first present a multiple objective linear programming (MOLP) model to determine 

the level of inputs based on the perturbed outputs, assuming that the relative efficiency of the 

under evaluation decision making unit (DMU) preserve. We also present the relationship 

between the Pareto solutions of the proposed MOLP model and the optimal level of inputs and 

outputs of the new DMU. We presented criterion models to determine the efficiency of the new 

DMU in the inputs/output estimation process based on inverse DEA-R models in the presence of 

ratio data. We showed that in the presence of ratio data the selection of criterion model can be 

important, in order to we provide a new criterion model in the inputs/output estimation process in 

the presence of ratio data, and so on the amount of calculations is reduced. We have shown that 

the results for the new criterion model are the same as the existing criterion model presented in 

the paper. In order to show the validity of the proposed approach in the inputs/output estimation 

process based on the inverse DEA-R models, we provide an application of our models in a real 

life for a set of data regarding to medical centers in Taiwan and finally we present the research 

results.  

AMS Subject Classification: 90C05; 90C08. 
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Input/output estimation, Rati data; Criterion model, Inverse DEA. 

 

1. Introduction 

Traditional DEA models determine the efficiency of DMUs based on their inputs and outputs. 

However, in inverse DEA, the efficiency of the DMU is predetermined by the decision-maker 

(DM), and based on this score of efficiency, the optimal level of inputs or outputs are 

determined. This amount of efficiency that is predetermined by the DM is called the target 

efficiency. The concept of inverse DEA was first present by Wei et al. [39] and then by Yan et 

al. [38] developed on the issue of resource allocation. Hadi-Vencheh and Foroughi [24] proposed 

a generalized inverse DEA mode based on the model of Wei et al. [39]. They showed that some 

special cases of the inverse DEA model proposed by Wei et al. [39] may fail in some situations 

and then they revised these failures. Lertworasirikul et al. [28] considered the issue of inverse 

DEA by considering two different strategies. In the first strategy, by determining the specific 

level of efficiency for each unit under evaluation DMU, they determined the best possible level 

of inputs corresponding to a given level of outputs. In the second strategy, again considering a 

specific level for the efficiency for the under evaluation DMU, they determined the best possible 
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level of outputs corresponding to a level of given inputs and presented their models as resource 

allocation models. But the early models that they presented were nonlinear models. Due to the 

problems in solving nonlinear models, they presented new their inverse DEA model in the form 

of MOLP model. In the following, Ghiyasi [20] points out the drawbacks of Lertworasirikul et 

al. [28] and then revised the use of MOLP in the proposed inverse DEA model considering the 

variable return to scale technology (VRS) (Banker, Charnes and Cooper [9]). 

Gattouf et al. [18] presented a new model of inverse DEA on mergers and acquisitions to 

estimate the optimal level of inputs and outputs for the merged entity for a given target efficiency 

value. Amin et al. [4] presented a general model on mergers and acquisitions. They presented a 

generalized firm restructuring in two scenarios in the form of consolidation or a split. They 

considering a set of DMUs that called pre-restructuring DMUs, they produced a set of new 

DMUs that called post-restructuring DMUs, and the level of inputs and outputs from post-

restructuring DMUs are determined based on the level of inputs and outputs of pre-restructuring 

DMUs also the efficiency scores of post-restructuring DMUs are predetermined by the DM as 

target efficiency scores. Emrouznejad et al. [15] proposed a new application of inverse DEA in 

environmental efficiency to determine the optimal allocation of CO2 emissions reduction by 

Chinese manufacturing industries. Wegener and Amin [35] suggested an inverse DEA model for 

minimizing greenhouse gas emissions with an application in oil and gas. Other applications of 

inverse DEA including an application in resource allocation (Ghiyasi [21, 23]), new product 

target setting given expected changes of production frontier (Lim [29]), inter-temporal 

dependence (Jahanshahloo et al. [26]), revenue setting problems of chain stores, inverse DEA 

models based on cost and revenue efciency (Ghiyasi [22]), application of the inverse DEA to 

sensitivity analysis of DMUs (Eyni et al. [16]). Amin and Al-Muharrami [2] addresses the model 

of inverse DEA in the mergers and acquisitions of firms with negative data. Amin et al. [3] 

suggested a combined inverse DEA and goal programming approach for target setting of mergers 

as allows DM to incorporate their preferences. Emrouznejad and Yang [14] presented a literature 

review of DEA and inverse DEA. 

Amin and Ibn Boamah [6] proposed a new model of inverse DEA for estimating potential 

merger gains based on cost efficiency and used the proposed approach in the Canadian banking 

industry. Amin and Ibn Boamah [7] presented an inverse DEA approach for the two-stage 

network in the US banking sector. 

In the real world, there are many cases in which data are ratio and the ratio of input data to 

output data or vice versa is important to the DM or input/output data is presented in the form of 

ratio or percentage data. Traditional DEA models can no longer be used to evaluate the 

efficiency of DMUs if the ratio of input to output or vice versa is important to the DM, or if the 

input and output data are ratio data. We need to develop DEA models and in this situation we use 

DEA-R models. In general, we divide ratio data into three categories as follows. 

The first category includes ratio data in which the input and output data of ratio numbers are in 

the form of a fraction and the numerator and denominator corresponding to these fractions are 

known, but the DM can use this ratio data in the form of decimal numbers in the model. In this 

case, the data are used in both absolute and ratio forms in the efficiency evaluation model. In the 

presence of ratio data, the principle of convexity in underlying assumptions of the production 

possibility set (PPS) is not established in DEA. Among the articles that have been presented in 

this category to deal with ratio data in DEA models, the following articles can be mentioned. 

Emrouznejad and Amin [13], Hatami-Marbini and Toloo [25], Khoshnevis and Teirlinck [27]. 
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The above articles modified DEA models to evaluate efficiency in the presence of ratio data. In 

this category, the numerator and denominator corresponding to these fractions corresponding to 

the ratio data are known, but the nature of the data is ratio. 

The second category includes ratio data in which the ratio data are in the form of a fraction and 

the numerator and denominator corresponding to these fractional numbers may not be available 

and we have ratio numbers only available as decimal numbers or percentages. It is known and 

we must use these decimal numbers as ratio data in the model. From a series of articles that 

modified DEA models and change the underlying assumptions of the PPS in constant and 

variable return to scale technologies in the presence of ratio data. These papers provide new 

DEA models to calculate efficiency in the presence of absolute and ratio data. Among the articles 

that have been presented in this category to deal with ratio data in DEA models, the following 

articles can be mentioned. Olesen, Petersen and Podinovski [33, 34]. 

The third category includes ratio data in which the ratio data are in the form of a fraction and the 

numerator and denominator corresponding to these fractional numbers are important for the DM 

and the DM cannot use these fractions as decimal numbers in the model. These ratio data are in 

the form of the ratio of components input to components output or vice versa. These models 

were initially presented as ratio analysis models (Fernandez-Castro and Smith [17]). In these 

models, we must use the ratio of inputs to outputs and vice versa in the model. Among the 

articles that have been presented in this category to deal with ratio data in DEA models, the 

following articles can be mentioned. 

Fernandez-Castro and Smith [17], Despic, Despic, and Paradi [12], Wei et al. [36, 37, 38], 

Mozaffari et al. [32], Mozaffari, Gerami and Jablonsky [31], Gerami et al. [19, 20], Mozaffari et 

al. [21]. 
Despic, Despic and Paradi [12] presented DEA-R models by combining ratio analysis and DEA 

models. They proposed DEA-R models in the output orientation to calculate the efficiency of 

DMUs in the presence of ratio data as the ratio of components output to components input. 

Wei et al. [36, 37, 38] examined DEA-R models in the input orientation. They showed that by 

using DEA-R models in the input orientation, we can avoid the available problems in of 

traditional DEA models such as efficiency underestimation and pseudo-inefficiency. They 

showed that DEA-R models in the input orientation have higher efficiency scores than their 

corresponding scores from CCR models in the input orientation. Mozaffari et al. [32] used DEA-

R models to evaluate cost and revenue efficiency. Gerami et al. [20] used DEA-R models to 

evaluate the efficiency of the hospital supply chain in the presence of ratio data. Gerami, 

Mozaffari, and Wanke [21] proposed DEA-R models to evaluate the efficiency of two-stage 

network structures in the presence of ratio data.  

In the first category of ratio data, we can refer to the ratio of the number of research projects 

presented by some professors in a course to the total number of professors in a university, and 

these ratios are important for the DM. DM used of the numerator and denominator corresponding 

ratio data in the model. In the second category of ratio data can be referred to the percentage of 

successful operations performed to the total number of operations performed in a hospital during 

a treatment period. But the DM only uses the decimal form of this data and this data is only 

available in the form of decimal numbers. In the third category of data, we can refer to some 

concepts in economics such as immediate and current profit, or the number of patients treated to 

the total number of patients admitted to a hospital during a treatment period. It should be noted 

that in the third category of data, we use the input and output data of each of the DMUs directly 

in the model and put this data as the form of the ratio of components input to components output 
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or vice versa in the model, but what is important is that we assume that the input and output data 

are definite and their ratio is important for the DM. 

 In this paper, we use the ratio data in the third category and assume that the input and output 

data are definite numbers and their ratio is important for the DM, and we put this data as the 

form of the ratio of components input to components output in the models and do not use the 

fractional or decimal form of these numbers. 

It can be said that the main contribution of the article is as follows. In this paper, we examine one 

of the most important issues in DAE, namely inverse DEA, and estimate inputs and outputs if 

some of the input and output components change and the DM wants create a new DMU with a 

relative efficiency score that predetermined and is equal to relative efficiency score of the initial 

unit. In the process of estimating the level of inputs and outputs, we can choose two different 

strategies in inverse DEA models in the presence of ratio data. In the first strategy, by 

determining the specific level of efficiency for each unit under evaluation DMU, they determined 

the best possible level of inputs corresponding to a given level of outputs. In the second strategy, 

again considering a specific level for the efficiency for the under evaluation DMU, they 

determined the best possible level of outputs corresponding to a level of given inputs. That is, if 

we want the efficiency of the DMU to remain unchanged, we determine the optimal level of 

input or output based on DEA-R models. We obtain the necessary and sufficient conditions for 

inverse DEA-R in the input orientation models. As we know, one of the important issues in 

inverse DEA is the selection of a criterion model for comparing the efficiency scores of DMU 

before and after the process of estimating inputs and outputs. In this paper, we first develop 

inverse DEA models in the presence of ratio data, and by providing a suitable criterion model in 

the presence of ratio data, we show that we can significantly reduce the computations and thus 

show that the new criterion model presented have the same results as the previous criterion 

models. Finally, we provide a case study to examine the validity of the proposed models. 

The remainder of the paper unfolds as follows. In the Section 2, we examine DEA-R models in 

the input and output orientations and present the relationship between these models and 

traditional DEA models. Section 3 proposes the inverse DEA-R models and the inputs/output 

estimation process based on inverse DEA-R models in the presence of ratio data, in following, 

we present the criterion models for evaluating the efficiency of the new units created. Section 4 

provides a numerical example, in this way, we illustrate the inputs/output estimation process 

based on inverse DEA-R models in the presence of ratio data. Section 4 provides a real 

world data empirical investigation and shows the applicability and potential use of the proposed 

models, we present an application of the proposed approach related to medical centers in Taiwan 

and at the end, we present the results of the research. 

 

2. Ratio-based DEA models.  

Suppose we have 𝑛 decision units as 𝐷𝑀𝑈𝑗 = (𝑥𝑗, 𝑦𝑗) , 𝑗 = 1, … , 𝑛. The input and output vectors 

corresponding to 𝐷𝑀𝑈𝑗, 𝑗 = 1, … , 𝑛 as 𝑥𝑗 = (𝑥1𝑗, … , 𝑥𝑚𝑗) and 𝑦𝑗 = (𝑦1𝑗, … , 𝑦𝑠𝑗).  We suppose 

that 𝑥𝑖𝑗 > 0, 𝑦𝑟𝑗 > 0, 𝑖 = 1, … , 𝑚,  𝑟 = 1, … , 𝑠,   𝑗 = 1, … , 𝑛. Suppose the ratios   
𝑥𝑗

𝑦𝑗
,  𝑗 = 1, … , 𝑛, 

in the input orientation and the ratios 
𝑦𝑗

𝑥𝑗
, 𝑗 = 1, … , 𝑛, in the output orientation are defined. 

Suppose, we consider the multiples corresponding to the ratios   
𝑥𝑖𝑗

𝑦𝑟𝑗
,  𝑗 = 1, … , 𝑛,  𝑖 = 1, … , 𝑚,  
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𝑟 = 1, … , 𝑠, as 𝑤𝑖𝑟. Fernandez-Castro and Smith [17] proposed ratio analysis model in the input 

orientation as follows. 

 min   ∑ ∑ 𝑤𝑖𝑟
𝑚
𝑖=1

𝑠
𝑟=1 (

𝑥𝑖𝑜

𝑦𝑟𝑜
)  

  𝑠. 𝑡.   ∑ ∑ 𝑤𝑖𝑟
𝑚
𝑖=1

𝑠
𝑟=1 (

𝑥𝑖𝑗

𝑦𝑟𝑗
)  ≥ 1,   𝑗 = 1, … , 𝑛,                                            (1) 

                      𝑤𝑖𝑟 ≥ 0, 𝑖 = 1, … , 𝑚,   𝑟 = 1, … , 𝑠. 

 

We consider the variable corresponding to first constraint in model (1) as �̂�𝑗 , 𝑗 = 1, … , 𝑛. The 

dual model (1) is as follows. 
 𝑚𝑎𝑥   ∑ �̂�𝑗

𝑛
𝑗=1  

  𝑠. 𝑡.   ∑ �̂�𝑗
𝑛
𝑗=1 (

𝑥𝑖𝑗

𝑦𝑟𝑗
) ≤ (

𝑥𝑖𝑜

𝑦𝑟𝑜
),   𝑖 = 1, … , 𝑚,  𝑟 = 1, … , 𝑠                         (2) 

               �̂�𝑗 ≥ 0,  𝑗 = 1, … , 𝑛. 

 

By considering  ∑ �̂�𝑗
𝑛
𝑗=1 = 𝑡,   𝜇𝑗 =

�̂�𝑗

𝑡
 and placing 𝜃𝑅 =

1

𝑡
 from the optimization point of the 

model (2) is converted as follows. 

 𝜃𝑅
𝐼 = 𝑀𝑖𝑛 𝜃𝑅 

  𝑠. 𝑡.   ∑ 𝜇𝑗
𝑛
𝑗=1 (

𝑥𝑖𝑗

𝑦𝑟𝑗
) ≤ 𝜃𝑅(

𝑥𝑖𝑜

𝑦𝑟𝑜
),      𝑖 = 1, … , 𝑚,  𝑟 = 1, … , 𝑠                    (3) 

           ∑ 𝜇𝑗
𝑛
𝑗=1 = 1,     𝜇𝑗 ≥ 0,   𝑗 = 1, … , 𝑛.            

 

Model (3) is called the DEA-R model in the input orientation in the envelopment form. Model 

(3) by Wei et al. [36, 37, 38] and Mozaffari et al. [31] were also studied. We now examine the 

relationship between the above model (1) to traditional DEA model. 
Theorem 1. Model (1) is equivalent to the CCR multiplier model in the input orientation. 

Proof: If we define 𝐷𝑀𝑈𝑗
̂ = (

𝑥𝑖𝑗

𝑦𝑟𝑗
, 1) ,   𝑗 = 1, … , 𝑛,    𝑖 = 1, … , 𝑚,   𝑟 = 1, … , 𝑠. Then we have 𝑛 

DMUs with one output and 𝑚 + 𝑠 input. Considering the multiples corresponding to the input 

components of the new units as 𝑤𝑖𝑟 ≥ 0, 𝑖 = 1, … , 𝑚, 𝑟 = 1, … , 𝑠, and the multiples corresponding to 

the output component of the new units as 𝑢1. Then model (1) is converted as follows. 

 min   ∑ ∑ 𝑤𝑖𝑟
𝑚
𝑖=1

𝑠
𝑟=1 (

𝑥𝑖𝑜

𝑦𝑟𝑜
)  

  𝑠. 𝑡.   ∑ ∑ 𝑤𝑖𝑟
𝑚
𝑖=1

𝑠
𝑟=1 (

𝑥𝑖𝑗

𝑦𝑟𝑗
) − 1𝑢1 ≥ 1,      𝑗 = 1, … , 𝑛,                                   (4) 

                          1𝑢1 = 1,   𝑢1 ≥ 0, 𝑤𝑖𝑟 ≥ 0, 𝑖 = 1, … , 𝑚, 𝑟 = 1, … , 𝑠. 

 

That model (4) is CCR multiplier model in the input orientation (Charnes, Cooper and Rhodes 

[10]) in evaluation 𝐷𝑀𝑈𝑜
̂ = (

𝑥𝑖𝑜

𝑦𝑟𝑜
, 1) ,   𝑗 = 1, … , 𝑛,    𝑖 = 1, … , 𝑚,   𝑟 = 1, … , 𝑠. If the set of DMUs 

be as 𝐷𝑀𝑈𝑗
̂ = (

𝑥𝑖𝑗

𝑦𝑟𝑗
, 1) ,   𝑗 = 1, … , 𝑛,    𝑖 = 1, … , 𝑚,   𝑟 = 1, … , 𝑠, which completes the proof.∎ 
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Similarly, suppose, we consider the multiples corresponding to the ratios 
𝑦𝑟𝑗

𝑥𝑖𝑗
,  𝑗 = 1, … , 𝑛, 𝑖 =

1, … , 𝑚,  𝑟 = 1, … , 𝑠, as 𝑤𝑖𝑟. Fernandez-Castro and Smith [17] proposed ratio analysis model in 

the output orientation as follows. 

 max   ∑ ∑ 𝑢𝑖𝑟
𝑚
𝑖=1

𝑠
𝑟=1 (

𝑦𝑟𝑜

𝑥𝑖𝑜
)  

  𝑠. 𝑡.   ∑ ∑ 𝑢𝑖𝑟
𝑚
𝑖=1

𝑠
𝑟=1 (

𝑦𝑟𝑗

𝑥𝑖𝑗
)  ≤ 1,      𝑗 = 1, … , 𝑛,                                            (5) 

                      𝑢𝑖𝑟 ≥ 0, 𝑖 = 1, … , 𝑚, 𝑟 = 1, … , 𝑠. 

 

We consider the variable corresponding to first constraint in model (5) as �̂�𝑗 , 𝑗 = 1, … , 𝑛. The 

dual model (5) is as follows. 

 𝑚𝑖𝑛   ∑ �̂�𝑗
𝑛
𝑗=1  

  𝑠. 𝑡.   ∑ �̂�𝑗
𝑛
𝑗=1 (

𝑦𝑟𝑗

𝑥𝑖𝑗
) ≤ (

𝑦𝑟𝑜

𝑥𝑖𝑜
),      𝑖 = 1, … , 𝑚,  𝑟 = 1, … , 𝑠                         (6) 

               �̂�𝑗 ≥ 0,       𝑗 = 1, … , 𝑛. 

 

By considering  ∑ �̂�𝑛
𝑗=1 = 𝑡,   𝜆𝑗 =

�̂�𝑗

𝑡
, and placing 𝜑𝑅 =

1

𝑡
, from the optimization point, the model 

(5) is converted as follows. 

 𝜑𝑅
𝑂 = 𝑚𝑎𝑥  𝜑𝑅 

  𝑠. 𝑡.   ∑ 𝜆𝑗
𝑛
𝑗=1 (

𝑦𝑟𝑗

𝑥𝑖𝑗
) ≤ 𝜑𝑅(

𝑦𝑟𝑜

𝑥𝑖𝑜
),      𝑖 = 1, … , 𝑚,  𝑟 = 1, … , 𝑠                    (7) 

               𝜆𝑗 ≥ 0,   𝑗 = 1, … , 𝑛. 

 

Model (7) is called the DEA-R model in the output orientation in the envelopment form. Model 

(7) by Despic, Despic and Paradi [12] were also studied. We now examine the relationship 

between the above model (5) to traditional DEA model. 

Theorem 2. Model (5) is equivalent to the CCR multiplier model in the output orientation. 

Proof: If we define 𝐷𝑀𝑈𝑗
̌ = (1,

𝑦𝑟𝑗

𝑥𝑖𝑗
) ,   𝑗 = 1, … , 𝑛,    𝑖 = 1, … , 𝑚,   𝑟 = 1, … , 𝑠. Then we have 𝑛 

DMUs with one input and 𝑚 + 𝑠 output. Considering the multiples corresponding to the output 

components of the new units as 𝑢𝑖𝑟 ≥ 0, 𝑖 = 1, … , 𝑚, 𝑟 = 1, … , 𝑠, and the multiples corresponding to 

the input component of the new units as 𝑣1. Then model (5) is converted as follows. 

 max   ∑ ∑ 𝑢𝑖𝑟
𝑚
𝑖=1

𝑠
𝑟=1 (

𝑦𝑟𝑜

𝑥𝑖𝑜
)  

  𝑠. 𝑡.   ∑ ∑ 𝑢𝑖𝑟
𝑚
𝑖=1

𝑠
𝑟=1 (

𝑦𝑟𝑗

𝑥𝑖𝑗
) − 1𝑣1  ≤ 1,      𝑗 = 1, … , 𝑛,                               (8) 

                      𝑢𝑖𝑟 ≥ 0, 𝑖 = 1, … , 𝑚, 𝑟 = 1, … , 𝑠. 

 

That model (8) is CCR multiplier model in the output orientation (Charnes, Cooper and Rhodes 

[10]) in evaluation 𝐷𝑀𝑈𝑜
̌ = (1,

𝑦𝑟𝑜

𝑥𝑖𝑜
) ,   𝑗 = 1, … , 𝑛,    𝑖 = 1, … , 𝑚,   𝑟 = 1, … , 𝑠, 

 if we consider the set of DMUs as 𝐷𝑀𝑈𝑗
̌ = (1,

𝑦𝑟𝑗

𝑥𝑖𝑗
) ,   𝑗 = 1, … , 𝑛,    𝑖 = 1, … , 𝑚, 𝑟 = 1, … , 𝑠, 

which completes the proof.∎ 
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3. The inputs/output estimation process based on inverse DEA-R. 

In this section, we present inverse DEA-R models in the presence of ratio data in the input 

orientation. In this regard, we present inputs/output estimation process based on inverse DEA-R 

models. We provide criterion models to evaluate the efficiency of new units. In other words, we 

need to find the new input level of under evaluation DMU that guarantees unchanged relative 

efficiency for this DMU. 

Suppose we have 𝑛 DMUs as 𝐷𝑀𝑈𝑗 = (𝑥𝑗 , 𝑦𝑗), 𝑗 = 1, … , 𝑛 that each DMU consume input 

vector 𝑥𝑗 = (𝑥1𝑗, … , 𝑥𝑚𝑗) to product output vector 𝑦𝑗 = (𝑦1𝑗, … , 𝑦𝑠𝑗).  We suppose that 𝑥𝑖𝑗 > 0,

𝑦𝑟𝑗 > 0, 𝑖 = 1, … , 𝑚,  𝑟 = 1, … , 𝑠,   𝑗 = 1, … , 𝑛. Suppose the ratios   
𝑥𝑖𝑗

𝑦𝑟𝑗
,  𝑗 = 1, … , 𝑛, are the 

ratio ith input component to rth output component of 

𝐷𝑀𝑈𝑗 = (𝑥𝑗 , 𝑦𝑗), 𝑗 = 1, … , 𝑛. We show under evaluation DMU as 𝐷𝑀𝑈𝑜 = (𝑥𝑜 , 𝑦𝑜), also, 

assume 𝐷𝑀𝑈𝑜 perturbs its output level into 𝜂𝑜 = 𝑦𝑜 + ∆𝑦𝑜,  ∆𝑦𝑜 ≥ −𝑦𝑜, ∆𝑦𝑜 ∈ 𝑅. Now we want 

to know how much we need to change the input level of 𝐷𝑀𝑈𝑜 = (𝑥𝑜 , 𝑦𝑜), so that the relative 

efficiency of this unit remains unchanged. In other words, we first perturbs the output level of 

𝐷𝑀𝑈𝑜 = (𝑥𝑜 , 𝑦𝑜) to a certain extent, and then, we must determine the input level of the new 

DMU namely 𝛾𝑜 = 𝑥𝑜 + ∆𝑥𝑜,  ∆𝑥𝑜 ≥ −𝑥𝑜, ∆𝑥𝑜 ∈ 𝑅, in such a way that the relative efficiency 

of the new unit is equal to the relative efficiency of 𝐷𝑀𝑈𝑜 = (𝑥𝑜 , 𝑦𝑜). 

We proposed the following MOLP model in the inverse DEA-R and in the presence of ratio data 

to determine 𝛾𝑜 = 𝑥𝑜 + ∆𝑥𝑜,  ∆𝑥𝑜 ≥ −𝑥𝑜, ∆𝑥𝑜 ∈ 𝑅, as follows. 

 min (𝛾1, 𝛾2, … , 𝛾𝑚) 

 𝑠. 𝑡.   ∑ 𝜇𝑗 (
𝑥𝑖𝑗

𝑦𝑟𝑗
) ≤𝑛

𝑗=1 𝜃𝑅
𝐼 (

𝛾𝑖

𝜂𝑟
𝑜) , 𝑖 = 1, … , 𝑚, 𝑟 = 1, … , 𝑠,                   (9)     

         ∑ 𝜇𝑗
𝑛
𝑗=1 = 1, 𝜇𝑗 ≥ 0, 𝑗 = 1, … , 𝑛. 

 
Definition 1. 𝐷𝑀𝑈𝑜 = (𝑥𝑜 , 𝑦𝑜) is called a weak efficient solution in evaluation with model (3) if 

the optimal value of model (3) is equal to one. 

Definition 2. Suppose (𝜇, 𝛾) that 𝛾 = (𝛾1, 𝛾2, … , 𝛾𝑚) and μ = (𝜇1, … , 𝜇𝑛) are a feasible solution 

of model (9). If there does not exist a feasible solution (�̅�, �̅�) of model (9) such that �̅� < γ then 
(𝜇, 𝛾) will be a weakly efficient solution of model (9). 

A weak efficient solution of model (9) are as new input values from 𝐷𝑀𝑈𝑜 = (𝑥𝑜 , 𝑦𝑜) for a 

disturbed output level 𝜂𝑜 = 𝑦𝑜 + ∆𝑦𝑜, ∆𝑦𝑜 ≥ −𝑦𝑜, ∆𝑦𝑜 ∈ 𝑅, to preserve relative efficiency of 

𝐷𝑀𝑈𝑜 = (𝑥𝑜 , 𝑦𝑜) after the output changes. At first, to check the relative efficiency of the new 

unit namely 𝐷𝑀𝑈𝑜
𝑛𝑒𝑤 = (𝑥𝑜 + ∆𝑥𝑜 , 𝑦𝑜 + ∆𝑦𝑜) = (𝛾𝑜, 𝜂𝑜), we present the following criterion 

model. 

 𝜃𝑅
+ = 𝑀𝑖𝑛 𝜃𝑅 

  𝑠. 𝑡.   ∑ 𝜇𝑗
𝑛
𝑗=1 (

𝑥𝑖𝑗

𝑦𝑟𝑗
) + 𝜇𝑛+1 (

𝛾𝑖
𝑜

𝜂𝑟
𝑜) ≤ 𝜃𝑅 (

𝛾𝑖
𝑜

𝜂𝑟
𝑜),      𝑖 = 1, … , 𝑚,  𝑟 = 1, … , 𝑠,        (10) 

           ∑ 𝜇𝑗
𝑛
𝑗=1 + 𝜇𝑛+1 = 1,  𝜇𝑗 ≥ 0,  𝑗 = 1, … , 𝑛,  𝜇𝑛+1 ≥ 0.  

 

Theorem 3. Suppose that 𝐷𝑀𝑈𝑜 = (𝑥𝑜 , 𝑦𝑜) perturbs its output from 𝑦𝑜 to 𝜂𝑜 = 𝑦𝑜 + ∆𝑦𝑜, ∆𝑦𝑜 ≥
−𝑦𝑜, ∆𝑦𝑜 ∈ 𝑅. Then (𝛾𝑜 , 𝜇) is a weak efficient solution of MOLP model (9) if and only if 𝜃𝑅

+ =
𝜃𝑅

𝐼 . 
Proof: First assume that (𝛾𝑜 , 𝜇) is a weak efficient solution of MOLP model (9). We show that 

the efficiency score of 𝐷𝑀𝑈𝑜 = (𝑥𝑜 , 𝑦𝑜) and 𝐷𝑀𝑈𝑜
𝑛𝑒𝑤 = (𝑥𝑜 + ∆𝑥𝑜 , 𝑦𝑜 + ∆𝑦𝑜) = (𝛾𝑜 , 𝜂𝑜) are 
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equal, i.e. 𝜃𝑅
+ = 𝜃𝑅

𝐼 .  Put 𝜇′ = (𝜇, 0)𝑇, it is easily seen that (𝜃𝑅
𝐼 , 𝜇′) is a feasible solution for 

model (10), so we will have 𝜃𝑅
+ ≤ 𝜃𝑅

𝐼 . Now suppose 𝜃𝑅
+ < 𝜃𝑅

𝐼 , let that (𝜃𝑅
+, 𝜇+) is an optimal 

solution of model (10), so according to the constraints of model (10), we will have  

∑ 𝜇𝑗
+𝑛

𝑗=1 (
𝑥𝑖𝑗

𝑦𝑟𝑗
) + 𝜇𝑛+1

+ (
𝛾𝑖

𝑜

𝜂𝑟
𝑜) ≤ 𝜃𝑅

+ (
𝛾𝑖

𝑜

𝜂𝑟
𝑜),      𝑖 = 1, … , 𝑚,  𝑟 = 1, … , 𝑠,                   (11) 

∑ 𝜇𝑗
+𝑛

𝑗=1 + 𝜇𝑛+1
+ = 1,     , 𝜇𝑛+1

+ ≥ 0, 𝜇𝑗
+ ≥ 0,  𝑗 = 1, … , 𝑛.           

Given that 𝜃𝑅
𝐼 ≤ 1 and (𝛾𝑜, 𝜇) is a weak efficient solution of MOLP model (9), so we will have 

∑ 𝜇𝑗 (
𝑥𝑖𝑗

𝑦𝑟𝑗
) ≤𝑛

𝑗=1 𝜃𝑅
𝐼 (

𝛾𝑖
𝑜

𝜂𝑟
𝑜) ≤

𝛾𝑖
𝑜

𝜂𝑟
𝑜 ,   𝑖 = 1, … , 𝑚, 𝑟 = 1, … , 𝑠,                              (12)     

∑ 𝜇𝑗
𝑛
𝑗=1 = 1, 𝜇𝑗 ≥ 0, 𝑗 = 1, … , 𝑛. 

By comparing relations (11) and (12) we will have 

∑ 𝜇𝑗
+𝑛

𝑗=1 (
𝑥𝑖𝑗

𝑦𝑟𝑗
) + 𝜇𝑛+1

+ (
𝛾𝑖

𝑜

𝜂𝑟
𝑜) ≥ ∑ 𝜇𝑗

+𝑛
𝑗=1 (

𝑥𝑖𝑗

𝑦𝑟𝑗
) + 𝜇𝑛+1

+ (∑ 𝜇𝑗 (
𝑥𝑖𝑗

𝑦𝑟𝑗
)𝑛

𝑗=1 ) = ∑ (𝜇𝑗
+ +𝑛

𝑗=1

𝜇𝑛+1
+ (∑ 𝜇𝑗

𝑛
𝑗=1 )) (

𝑥𝑖𝑗

𝑦𝑟𝑗
) ,      𝑖 = 1, … , 𝑚, 𝑟 = 1, … , 𝑠,                                        (13) 

Now, we put 

𝜇𝑗 = 𝜇𝑗
+ + 𝜇𝑛+1

+ (∑ 𝜇𝑗
𝑛
𝑗=1 ),  𝑗 = 1, … , 𝑛.           

And so according to relation (13), we will have  

∑ 𝜇𝑗 (
𝑥𝑖𝑗

𝑦𝑟𝑗
) ≤𝑛

𝑗=1 𝜃𝑅
+ (

𝛾𝑖
𝑜

𝜂𝑟
𝑜) , 𝑖 = 1, … , 𝑚, 𝑟 = 1, … 𝑠,                                            (14)     

Given that ∑ 𝜇𝑗
𝑛
𝑗=1 = 1 and ∑ 𝜇𝑗

+𝑛
𝑗=1 + 𝜇𝑛+1

+ = 1,     𝜇𝑛+1
+ ≥ 0, 𝜇𝑗

+ ≥ 0,  𝑗 = 1, … , 𝑛. Then 

∑ 𝜇𝑗
𝑛
𝑗=1 = 1, 𝜇𝑗 ≥ 0, 𝑗 = 1, … , 𝑛. 

Therefore, we have        

∑ 𝜇𝑗 (
𝑥𝑖𝑗

𝑦𝑟𝑗
) ≤𝑛

𝑗=1 𝜃𝑅
+ (

𝛾𝑖
𝑜

𝜂𝑟
𝑜) < 𝜃𝑅

𝐼 (
𝛾𝑖

𝑜

𝜂𝑟
𝑜) , 𝑖 = 1, … , 𝑚, 𝑟 = 1, … , 𝑠,                        (15) 

∑ 𝜇𝑗
𝑛
𝑗=1 = 1, 𝜇𝑗 ≥ 0, 𝑗 = 1, … , 𝑛. 

Therefore (𝛾𝑜, 𝜇) that 𝜇 = (𝜇1, … , 𝜇𝑛)  will be a feasible solution for model (9). According to 

relation (15) there exists a 0 < 𝑡 < 1 such that 

∑ 𝜇𝑗 (
𝑥𝑖𝑗

𝑦𝑟𝑗
) ≤𝑛

𝑗=1 𝜃𝑅
+ (

𝛾𝑖
𝑜

𝜂𝑟
𝑜) ≤ 𝑡𝜃𝑅

𝐼 (
𝛾𝑖

𝑜

𝜂𝑟
𝑜) , 𝑖 = 1, … , 𝑚, 𝑟 = 1, … , 𝑠,                      (16) 

∑ 𝜇𝑗
𝑛
𝑗=1 = 1, 𝜇𝑗 ≥ 0, 𝑗 = 1, … , 𝑛. 

Therefore, according to relation (16), (𝑡𝛾𝑜 , 𝜇) is a feasible solution of model (9), which 𝑡𝛾𝑜 <
𝛾𝑜 , 0 < 𝑡 < 1 and but this is impossible because 𝛾𝑜 is a weak efficient solution of model (9). 

Therefore, the contradiction assumption is invalid and we will have 𝜃𝑅
+ = 𝜃𝑅

𝐼 . 

Conversely, let 𝜃𝑅
+ = 𝜃𝑅

𝐼 , we show that (𝛾𝑜 , 𝜇) a feasible solution of model (9). By contradiction 

assume (𝛾𝑜 , 𝜇) is not a weakly efficient solution of model (9). Therefore, a feasible solution of 

model (9) will exist as (𝛾, �̂�) such that 𝛾 < 𝛾𝑜. Given that (𝛾, �̂�) is a feasible solution of model 

(9), so we will have 

∑ �̂�𝑗 (
𝑥𝑖𝑗

𝑦𝑟𝑗
) ≤𝑛

𝑗=1 𝜃𝑅
𝐼 (

�̂�𝑖

𝜂𝑟
𝑜) < 𝜃𝑅

𝐼 (
𝛾𝑖

𝑜

𝜂𝑟
𝑜) , 𝑖 = 1, … , 𝑚, 𝑟 = 1, … , 𝑠,                         (17) 

∑ �̂�𝑗
𝑛
𝑗=1 = 1, �̂�𝑗 ≥ 0, 𝑗 = 1, … , 𝑛. 

Then there exists a 0 < 𝑡 < 1 such that 

∑ �̂�𝑗 (
𝑥𝑖𝑗

𝑦𝑟𝑗
) ≤𝑛

𝑗=1 𝜃𝑅
𝐼 (

�̂�𝑖

𝜂𝑟
𝑜) ≤ 𝑡𝜃𝑅

𝐼 (
𝛾𝑖

𝑜

𝜂𝑟
𝑜) , 𝑖 = 1, … , 𝑚, 𝑟 = 1, … , 𝑠,                       (18) 

∑ �̂�𝑗
𝑛
𝑗=1 = 1, �̂�𝑗 ≥ 0, 𝑗 = 1, … , 𝑛. 
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Let 𝜇+ = (�̂�, 0)𝑇, according to relation (18), we have 

∑ 𝜇𝑗
+𝑛

𝑗=1 = 1, 𝜇𝑗
+ ≥ 0, 𝑗 = 1, … , 𝑛. 

Then, (�̂�, 𝑡𝜃𝑅
𝐼 ) is a feasible solution of model (10), so we will have 𝑡𝜃𝑅

𝐼 < 𝜃𝑅
+. But this is against 

the assumption that 𝜃𝑅
𝐼  is the optimal value of model (10). Therefore, the contradiction 

assumption is invalid and we will have (𝛾𝑜, 𝜇) is not a weakly efficient solution of model (9)  

and the proof is complete. ∎ 

Suppose we have 𝑛 decision units as 𝐷𝑀𝑈𝑗 = (𝑥𝑗 , 𝑦𝑗), 𝑗 = 1, … , 𝑛. Each DM uses the input 

vector 𝑥𝑗 = (𝑥1𝑗, … , 𝑥𝑚𝑗) to product the output vector  𝑦𝑗 = (𝑦1𝑗, … , 𝑦𝑠𝑗). Then we define the 

set 𝑇𝐷𝐸𝐴−𝑅 as follows. 

 𝑇𝐷𝐸𝐴−𝑅 = {𝐹| ∑ 𝜆𝑗
𝑛
𝑗=1 (

𝑥𝑗

𝑦𝑗
) ≤ 𝐹 , ∑ 𝜆𝑗

𝑛
𝑗=1 = 1, 𝜆𝑗 ≥ 0 }.                                               (19) 

We define a division data set, which are m × s dimension vectors as follows. 

 {
𝑥

𝑦
= (

𝑥1

𝑦1
, … ,

𝑥𝑚

𝑦1
,

𝑥1

𝑦2
, … ,

𝑥𝑚

𝑦2
, … ,

𝑥1

𝑦𝑠
, … ,

𝑥𝑚

𝑦𝑠
)} with 𝑦 = (𝑦1, … , 𝑦𝑠), 𝑥 = (𝑥1, … , 𝑥𝑚).                                                                                 

(20) 

The technology set 𝑇𝐷𝐸𝐴−𝑅 has the properties inclusion of observations, a free-disposal and 

convexity. 

Now to obtain the efficiency score based on the concept of radial efficiency, we obtain the value  

𝜃𝑅  in such a way that the unit under evaluation i.e. 𝐷𝑀𝑈𝑜 = (𝑥𝑜 , 𝑦𝑜) in the form  𝐹𝑜 = (
𝑥𝑜

𝑦𝑜) be 

on the efficiency frontier of the set 𝑇𝐷𝐸𝐴−𝑅. Therefore, we solve model (21) as follows. 

𝑚𝑖𝑛   𝜃𝑅 

𝑠. 𝑡.   𝜃𝑅(
𝑥𝑜

𝑦𝑜) ∈ 𝑇𝐷𝐸𝐴−𝑅.                                                                                                    (21) 

 

By considering multiplier corresponding to the ratio input to output of  𝐷𝑀𝑈𝑗 = (𝑥𝑗 , 𝑦𝑗) as 𝜇𝑗, 

model (21) is equivalent to the following model. 

𝑚𝑖𝑛  𝜃𝑅 

𝑠. 𝑡.  ∑ 𝜇𝑗
𝑛
𝑗=1 (

𝑥𝑖𝑗

𝑦𝑟𝑗
) ≤  𝜃𝑅(

𝑥𝑖𝑜

𝑦𝑟𝑜
),      𝑖 = 1, … , 𝑚,  𝑟 = 1, … , 𝑠,                                    (22) 

        ∑ 𝜇𝑗
𝑛
𝑗=1 = 1,     𝜇𝑗 ≥ 0,       𝑗 = 1, … , 𝑛. 

 

The model (22) is the identical to the DEA-R in input orientation namely model (3) which was 

introduced in the second section. 

We now present a new criterion model compared to model (10). If the created new unit means 

𝐷𝑀𝑈𝑜
𝑛𝑒𝑤 = (𝑥𝑜 + ∆𝑥𝑜 , 𝑦𝑜 + ∆𝑦𝑜) = (𝛾𝑜, 𝜂𝑜) belong to the set 𝑇𝐷𝐸𝐴−𝑅, that is, the created new 

unit is an internal point or a point on the efficient frontier of the set 𝑇𝐷𝐸𝐴−𝑅. 

In this case, we can present the criterion model (23) to check whether the relative efficiency of 

the unit under evaluation changes after perturbation of its inputs and outputs or not. 

 

  𝜃𝑅
𝐼𝐼 = 𝑀𝑖𝑛 𝜃𝑅 

  𝑠. 𝑡.   ∑ 𝜇𝑗
𝑛
𝑗=1 (

𝑥𝑖𝑗

𝑦𝑟𝑗
) ≤ 𝜃𝑅 (

𝛾𝑖
𝑜

𝜂𝑟
𝑜),      𝑖 = 1, … , 𝑚,  𝑟 = 1, … , 𝑠,                             (23) 

           ∑ 𝜇𝑗
𝑛
𝑗=1 = 1,       𝜇𝑗 ≥ 0,  𝑗 = 1, … , 𝑛. 
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In model (23), 𝜃𝑅
𝐼𝐼 is the relative efficiency of 𝐷𝑀𝑈𝑜

𝑛𝑒𝑤 = (𝑥𝑜 + ∆𝑥𝑜 , 𝑦𝑜 + ∆𝑦𝑜) = (𝛾𝑜, 𝜂𝑜). 

Model (23) compared to model (10) has one variable less. 

Theorem 4. Suppose that 𝐷𝑀𝑈𝑜 = (𝑥𝑜 , 𝑦𝑜) perturbs its output from 𝑦𝑜 to 𝜂𝑜 = 𝑦𝑜 + ∆𝑦𝑜, ∆𝑦𝑜 ≥
−𝑦𝑜, ∆𝑦𝑜 ∈ 𝑅. Then (𝛾𝑜 , 𝜇𝑜) is a weak efficient solution of MOLP model (9) if and only if 𝜃𝑅

𝐼𝐼 =
𝜃𝑅

𝐼 . 

Proof: First assume that 𝜃𝑅
𝐼𝐼 = 𝜃𝑅

𝐼 , we show that (𝛾𝑜, 𝜇𝑜) is a weak efficient solution of MOLP 

model (9). Assume that (𝛾𝑜 , 𝜇𝑜) is not a weak efficient solution of MOLP model (9). Thus there 

is a feasible solution (𝛾, �̂�) of model (9) such that 𝛾 < 𝛾𝑜. So there exists a 0 < 𝑡 < 1 such that 

𝛾  ≤ 𝑡𝛾𝑜, Given that (𝛾, �̂�) is a feasible solution of model (9), so we will have 

∑ �̂�𝑗 (
𝑥𝑖𝑗

𝑦𝑟𝑗
) ≤𝑛

𝑗=1 𝜃𝑅
𝐼 (

�̂�𝑖

𝜂𝑟
𝑜) < 𝜃𝑅

𝐼 (
𝛾𝑖

𝑜

𝜂𝑟
𝑜) , 𝑖 = 1, … , 𝑚, 𝑟 = 1, … , 𝑠,                   (24) 

∑ �̂�𝑗
𝑛
𝑗=1 = 1, �̂�𝑗 ≥ 0, 𝑗 = 1, … , 𝑛. 

Assuming that 𝜃𝑅
𝐼𝐼 = 𝜃𝑅

𝐼 , therefore 

∑ �̂�𝑗 (
𝑥𝑖𝑗

𝑦𝑟𝑗
) ≤𝑛

𝑗=1 𝜃𝑅
𝐼𝐼 (

�̂�𝑖

𝜂𝑟
𝑜) ≤ 𝑡𝜃𝑅

𝐼𝐼 (
𝛾𝑖

𝑜

𝜂𝑟
𝑜) , 𝑖 = 1, … , 𝑚, 𝑟 = 1, … , 𝑠,                (25) 

∑ �̂�𝑗
𝑛
𝑗=1 = 1, �̂�𝑗 ≥ 0, 𝑗 = 1, … , 𝑛. 

Therefore (�̂�, 𝑡𝜃𝑅
𝐼𝐼) is a feasible solution for model (23) and we will have 𝑡𝜃𝑅

𝐼𝐼 < 𝜃𝑅
𝐼𝐼. 

This contradicts with the optimality of 𝜃𝑅
𝐼𝐼 in model (23) since 𝑡𝜃𝑅

𝐼𝐼 < 𝜃𝑅
𝐼𝐼 . Therefore, the 

contradiction assumption is invalid and then (𝛾𝑜, 𝜇𝑜) is a weak efficient solution of MOLP 

model (9). 

Conversely, assume that (𝛾𝑜, 𝜇𝑜) is a weak efficient solution of MOLP model (9). We show that 

𝜃𝑅
𝐼𝐼 = 𝜃𝑅

𝐼 . Given that (𝛾𝑜, 𝜇𝑜) is a weak efficient solution of MOLP model (9), so we have  

∑ 𝜇𝑗
𝑜 (

𝑥𝑖𝑗

𝑦𝑟𝑗
) ≤𝑛

𝑗=1 𝜃𝑅
𝐼 (

𝛾𝑖
𝑜

𝜂𝑟
𝑜) ,   𝑖 = 1, … , 𝑚, 𝑟 = 1, … , 𝑠,                                 (26)     

∑ 𝜇𝑗
𝑜𝑛

𝑗=1 = 1, 𝜇𝑗
𝑜 ≥ 0, 𝑗 = 1, … , 𝑛. 

This set of constraints in (26) will be the same as the set of constraints in model (23). Therefore 

(𝜇𝑜, 𝜃𝑅
𝐼 ) is a feasible solution of the model (23) and according to the optimality 𝜃𝑅

𝐼𝐼, we will have 

𝜃𝑅
𝐼𝐼 ≤ 𝜃𝑅

𝐼 . Now suppose that 𝜃𝑅
𝐼𝐼 < 𝜃𝑅

𝐼 , thus there exists a 0 < 𝑡 < 1 such that 𝜃𝑅
𝐼𝐼 ≤ 𝑡𝜃𝑅

𝐼 . Given 

that 𝜃𝑅
𝐼𝐼 is the optimal value of the model (23), assume that the optimal solution corresponding to 

this optimal value is (𝜇′, 𝜃𝑅
𝐼𝐼). Therefore, the set of constraints from model (23) will be as 

following. 

∑ 𝜇𝑗
′𝑛

𝑗=1 (
𝑥𝑖𝑗

𝑦𝑟𝑗
) ≤ 𝜃𝑅

𝐼𝐼 (
𝛾𝑖

𝑜

𝜂𝑟
𝑜),      𝑖 = 1, … , 𝑚,  𝑟 = 1, … , 𝑠,                                  (27) 

∑ 𝜇𝑗
′𝑛

𝑗=1 = 1,       𝜇𝑗
′ ≥ 0,  𝑗 = 1, … , 𝑛. 

Given that 𝜃𝑅
𝐼𝐼 ≤ 𝑡𝜃𝑅

𝐼  therefore 

∑ 𝜇𝑗
′𝑛

𝑗=1 (
𝑥𝑖𝑗

𝑦𝑟𝑗
) ≤ 𝜃𝑅

𝐼𝐼 (
𝛾𝑖

𝑜

𝜂𝑟
𝑜) ≤ 𝑡𝜃𝑅

𝐼 (
𝛾𝑖

𝑜

𝜂𝑟
𝑜),      𝑖 = 1, … , 𝑚,  𝑟 = 1, … , 𝑠,               (28) 

∑ 𝜇𝑗
′𝑛

𝑗=1 = 1,       𝜇𝑗
′ ≥ 0,  𝑗 = 1, … , 𝑛. 

Therefore (𝑡𝛾𝑜, 𝜇′) is a feasible solution of model (9) and 𝛾𝑖
𝑜 ≠ 0, 𝑖 = 1, … , 𝑚,, because 

otherwise if there exist a 1 ≤ 𝑖𝑝 ≤ 𝑚, such that 𝛾𝑖𝑝

𝑜 = 0, then 

 ∑ 𝜇𝑗
′𝑛

𝑗=1 (
𝑥𝑖𝑝𝑗

𝑦𝑟𝑗
) = 0, 𝑟 = 1, … , 𝑠, 

The relation (29) concludes that 𝜇𝑗
′ = 0, 𝑗 = 1, … , 𝑛, which is inconsistent with that 

∑ 𝜇𝑗
′𝑛

𝑗=1 = 1. Therefore 𝛾𝑖
𝑜 ≠ 0, 𝑖 = 1, … , 𝑚. Therefore, given that 𝑡𝛾𝑜  < 𝛾𝑜, which is a 

contradiction with the fact that (𝛾𝑜 , 𝜇𝑜) is a weak efficient solution of MOLP model (9). 
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Therefore, the contradiction assumption is invalid and we will have 𝜃𝑅
𝐼𝐼 = 𝜃𝑅

𝐼  and the proof is 

complete. ∎ 

As you know, in proposed inverse DEA-R models in this paper, we determine the level of inputs 

based on the perturbed outputs, assuming that the relative efficiency of the under evaluation 

DMU i.e.  𝐷𝑀𝑈𝑜 = (𝑥𝑜 , 𝑦𝑜)  preserve. We replace the under evaluation DMU i.e.  𝐷𝑀𝑈𝑜 =
(𝑥𝑜 , 𝑦𝑜) with a new unit as 𝐷𝑀𝑈𝑜

𝑛𝑒𝑤 = (𝑥𝑜 + ∆𝑥𝑜 , 𝑦𝑜 + ∆𝑦𝑜) = (𝛾𝑜, 𝜂𝑜). So that the efficiency 

of these units are equal. We are now looking to introduce a new criterion model that has less 

number of variables than previous criterion models, and with fewer calculations we can compare 

the efficiency of the created new DMU with the efficiency of the original DMU i.e.  𝐷𝑀𝑈𝑜 =
(𝑥𝑜 , 𝑦𝑜). In the new model, we remove the unit under evaluation, i.e.  𝐷𝑀𝑈𝑜 = (𝑥𝑜 , 𝑦𝑜) from 

between all DMUs, and the we put new unit, 𝐷𝑀𝑈𝑜
𝑛𝑒𝑤 = (𝑥𝑜 + ∆𝑥𝑜 , 𝑦𝑜 + ∆𝑦𝑜) = (𝛾𝑜 , 𝜂𝑜) 

instead of the primitive DMU i.e. 𝐷𝑀𝑈𝑜 = (𝑥𝑜 , 𝑦𝑜) in a set of DMUs. So the difference between 

models (10) and (23) with the new created model is that in models (10) and (23) we evaluate the 

new unit in the presence of all DMUs, but in the proposed new criterion model, we evaluate a 

new unit, 𝐷𝑀𝑈𝑜
𝑛𝑒𝑤 = (𝑥𝑜 + ∆𝑥𝑜 , 𝑦𝑜 + ∆𝑦𝑜) = (𝛾𝑜, 𝜂𝑜) in the presence of all units and new unit , 

with the exception of the under evaluation unit i.e. 𝐷𝑀𝑈𝑜 = (𝑥𝑜 , 𝑦𝑜). In the new model 𝐷𝑀𝑈𝑜 =
(𝑥𝑜 , 𝑦𝑜) does not exist among DMUs, that is, we remove 𝐷𝑀𝑈𝑜 = (𝑥𝑜 , 𝑦𝑜) from the set 𝑇𝐷𝐸𝐴−𝑅. 

Now, we proposed the new criterion model for evaluating the efficiency of the new unit, i.e. 

𝐷𝑀𝑈𝑜
𝑛𝑒𝑤 = (𝑥𝑜 + ∆𝑥𝑜 , 𝑦𝑜 + ∆𝑦𝑜) = (𝛾𝑜, 𝜂𝑜) in the absence of the unit under evaluation, i.e.  

𝐷𝑀𝑈𝑜 = (𝑥𝑜 , 𝑦𝑜) as follows. 

 

 𝜃𝑅
𝑛𝑒𝑤 = 𝑀𝑖𝑛 𝜃𝑅 

  𝑠. 𝑡.   ∑ 𝜇𝑗
𝑛
𝑗=1
𝑗≠𝑜

(
𝑥𝑖𝑗

𝑦𝑟𝑗
) + 𝜇𝑛𝑒𝑤 (

𝛾𝑖
𝑜

𝜂𝑟
𝑜) ≤ 𝜃𝑅 (

𝛾𝑖
𝑜

𝜂𝑟
𝑜),   𝑖 = 1, … , 𝑚,  𝑟 = 1, … , 𝑠,        (30) 

           ∑ 𝜇𝑗
𝑛
𝑗=1
𝑗≠𝑜

+ 𝜇𝑛𝑒𝑤 = 1,   𝜇𝑗 ≥ 0,  𝑗 = 1, … , 𝑛, 𝑗 ≠ 𝑜, 𝜇𝑛𝑒𝑤 ≥ 0. 

 

Theorem 5. Suppose that 𝐷𝑀𝑈𝑜 = (𝑥𝑜 , 𝑦𝑜) perturbs its output from 𝑦𝑜 to 𝜂𝑜 = 𝑦𝑜 + ∆𝑦𝑜, ∆𝑦𝑜 ≥
−𝑦𝑜, ∆𝑦𝑜 ∈ 𝑅. Then (𝛾𝑜 , 𝜇𝑜) is a weak efficient solution of MOLP model (9) if and only if 

𝜃𝑅
𝑛𝑒𝑤 = 𝜃𝑅

𝐼 . 
Proof: We now consider two cases. In the first case, suppose that 𝐷𝑀𝑈𝑜 = (𝑥𝑜 , 𝑦𝑜) is efficient in 

evaluation with model (3), i.e. 𝜃𝑅
𝐼 = 1. According to Theorem (3), we have 𝜃𝑅

+ = 𝜃𝑅
𝐼 , i.e. the 

optimal value of model (10) is also equal to one. Now we show that the optimal value obtained 

from model (30) is also equal to one, i.e. 𝜃𝑅
𝑛𝑒𝑤 = 1. Assuming that (𝜇′′, 𝜃𝑅

𝑛𝑒𝑤 ) is an optimal 

solution for model (30), we know that 𝜃𝑅
𝑛𝑒𝑤 ≤ 1. We show that 𝜃𝑅

𝑛𝑒𝑤 = 1. Suppose that 

𝜃𝑅
𝑛𝑒𝑤 < 1. For this purpose, we put 𝜇𝑛+1

′′′ = 𝜇𝑛𝑒𝑤
′′  and  

𝜇𝑗
′′′ = {

0    𝑗 = 𝑜

𝜇𝑗
′′   𝑗 ≠ 𝑜

  

Given that (𝜇′′, 𝜃𝑅
𝑛𝑒𝑤 ) is an optimal solution for model (30), so it is easy to see that 

(𝜇′′, 𝜇𝑛+1
′′′ , 𝜃𝑅

𝑛𝑒𝑤 ) is a feasible solution for model (10) which results in 𝜃𝑅
+ < 1, which cannot be 

true because the value of the optimal value of model (10) is equal to one. Therefore, the 

contradiction assumption is invalid and we have 𝜃𝑅
𝑛𝑒𝑤 = 1, then 𝜃𝑅

𝑛𝑒𝑤 = 𝜃𝑅
+ = 𝜃𝑅

𝐼 = 1. 
In the second case, suppose that 𝐷𝑀𝑈𝑜 = (𝑥𝑜 , 𝑦𝑜)  is inefficient in evaluating with model (3). 

Therefore 𝐷𝑀𝑈𝑜 = (𝑥𝑜 , 𝑦𝑜) is an internal point of the set 𝑇𝐷𝐸𝐴−𝑅 and adding a new unit does not 

change the set 𝑇𝐷𝐸𝐴−𝑅 and therefore the new unit is 𝐷𝑀𝑈𝑜
𝑛𝑒𝑤 = (𝑥𝑜 + ∆𝑥𝑜 , 𝑦𝑜 + ∆𝑦𝑜) =
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(𝛾𝑜, 𝜂𝑜) is also an interior point of 𝑇𝐷𝐸𝐴−𝑅 and is an inefficient unit, and removing it will not 

change the set 𝑇𝐷𝐸𝐴−𝑅. So the new unit means 𝐷𝑀𝑈𝑜
𝑛𝑒𝑤 = (𝑥𝑜 + ∆𝑥𝑜 , 𝑦𝑜 + ∆𝑦𝑜) = (𝛾𝑜 , 𝜂𝑜) will 

be evaluated in terms of units 𝐷𝑀𝑈𝑗 = (𝑥𝑗 , 𝑦𝑗),   𝑗 = 1, … , 𝑛, 𝑗 ≠ 𝑜. Therefore, the solutions of 

models (10) and (30) are the same, i.e. in this case, too, 𝜃𝑅
𝑛𝑒𝑤 = 𝜃𝑅

+ = 𝜃𝑅
𝐼  and the proof is 

complete.∎ 

It should be noted that they are different in criterion models (10) and (30). Model (10) has 𝑛 +
2 variables and 𝑚 + 𝑠 + 1 constraints and model (30) has 𝑛 + 1 variables and 𝑚 + 𝑠 +
1constraints. Therefore, the number of calculations related to model (30) is significantly reduced 

compared to model (10). 

The DEA-R models presented in this paper are in the input orientation based on model (3) and 

we have proposed the approach presented in this paper in the output orientation based on model 

(7) and we consider the ratio of output components to input components, which is beyond the 

scope of this paper and is suggested as future work. 

 

4. Numerical example 

In this section we use the data from the paper of Ali, Lerme, and Seiford [1] and Chen and Ali 

[11] to illustrate the validity of the proposed models. Suppose we have 11 DMU that use two 

inputs to generate two outputs. Table (1) shows the input and output data. 

 
Table 1. Input and output data of eleven DMUs. 

DMU I1 I2 O1 O2 Efficiency scores 

(model 3) 

DMU1 40 30 160 100 1 

DMU2 30 60 180 70 1 

DMU3 93 40 170 60 0.729 

DMU4 50 70 190 130 1 

DMU5 80 30 180 120 1 

DMU6 35 45 140 82 0.94 

DMU7 105 75 120 90 0.356 

DMU8 97 67 100 82 0.361 

DMU9 100 50 140 40 0.494 

DMU10 90 60 140 105 0.512 

DMU11 98 65 140 50 0.397 

 

First, we use model (3) to evaluate the efficiency of DMUs based on the ratio of input 

components to output components. As can be seen in the last column of Table (1), units, 1, 2, 4, 

and 5 are efficient units, and other units are inefficient in evaluated by model (3). 

Suppose that the amount of changes in the components of the first and second outputs of the unit 

under evaluation, i.e. 𝐷𝑀𝑈𝑜 = (𝑥𝑜 , 𝑦𝑜) is denoted by ∆𝑦1𝑜 and ∆𝑦2𝑜, respectively, and also the 

value of the components of the first and second outputs of the new unit i.e. 𝐷𝑀𝑈𝑜
𝑛𝑒𝑤 =

(𝑥𝑜 + ∆𝑥𝑜 , 𝑦𝑜 + ∆𝑦𝑜) = (𝛾𝑜 , 𝜂𝑜) are denoted by 𝜂1
𝑜 and 𝜂2

𝑜, respectively. Assume that the 

amount of changes of the components of the first and second inputs corresponding to the unit 

under evaluation i.e. 𝐷𝑀𝑈𝑜 = (𝑥𝑜 , 𝑦𝑜) from model (9) is indicated by ∆𝑥1𝑜
∗  and ∆𝑥2𝑜

∗ , 

respectively, and also the value of the components of the first and second inputs of the new unit 

i.e. 𝐷𝑀𝑈𝑜
𝑛𝑒𝑤 = (𝑥𝑜 + ∆𝑥𝑜 , 𝑦𝑜 + ∆𝑦𝑜) = (𝛾𝑜, 𝜂𝑜) are denoted by 𝛾1

𝑜 and 𝛾2
𝑜, respectively that 

theses values determine from model (9). 

To illustrate the inputs/output estimation process based on inverse DEA-R models in the 

presence of ratio data, first consider the inefficient unit 3. As can be seen in the last column of 
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Table (1), the efficiency score of unit 3 is equal to 0.729. Suppose this unit increases the value of 

its first and second outputs by 10 and 50 units, respectively. Then we have 

(𝜂1
3, 𝜂2

3) = (𝑦13 + ∆𝑦13, 𝑦23 + ∆𝑦23) = (170 + 10,60 + 50) = (180,110) 
In this case, if we want its efficiency does not change and its be equal to 0.729. According to 

model (9), the minimum input level of this DMU is determined as follows. 

(𝛾1
3, 𝛾2

3) = (𝑥13 + ∆𝑥13
∗ , 𝑥23 + ∆𝑥23

∗ ) = (93 − 31.272,40 + 6.296) = (61.728,46.296 ). 

As can be seen, the amount of the first and second inputs decreases and increases by 31.272 and 

6.296, respectively. The efficiency score of the new unit means 𝐷𝑀𝑈3
𝑛𝑒𝑤 = (𝑥3 + ∆𝑥3, 𝑦3 +

∆𝑦3) = (𝛾3, 𝜂3) = (61.728,46.296,180,110), based on the criterion models (10), (23), and (30) 

are equal to 𝜃𝑅
+ = 0.729, 𝜃𝑅

𝐼𝐼 = 0.729, 𝜃𝑅
𝑛𝑒𝑤 = 0.729, respectively. 

As can be seen, all three criterion models obtain the efficiency score of the new unit equal to 

0.729 and this shows that the solution proposed by model (9) have the relative efficiency score 

equal to the efficiency score of the unit under evaluation. 

Now consider efficiency unit 5. As can be seen in the last column of Table (1), the efficiency 

value of the unit 3 is equal to one and this unit is an efficient unit. Suppose this unit increases the 

value of its first output by 20 units and does not change its second output. Then we have 

(𝜂1
5, 𝜂2

5) = (𝑦15 + ∆𝑦15, 𝑦25 + ∆𝑦25) = (180 + 20,120 + 0) = (200,120). 

In this case, if we want its efficiency does not change and its be is equal to one. According to 

model (9), the minimum input level of this DMU is determined as follows. 

(𝛾1
5, 𝛾2

5) = (𝑥15 + ∆𝑥15
∗ , 𝑥25 + ∆𝑥25

∗ ) = (80 − 30,30 + 7.5) = (50, 37.5). 
As can be seen, the amount of the first and second inputs decreases and increases by 30 and 7.5, 

respectively. The efficiency score of the new unit means 𝐷𝑀𝑈5
𝑛𝑒𝑤 = (𝑥5 + ∆𝑥5, 𝑦5 + ∆𝑦5) =

(𝛾5, 𝜂5) = (200,120,50, 37.5), based on the criterion models (10), (23), and (30) are equal 𝜃𝑅
+ =

1, 𝜃𝑅
𝐼𝐼 = 1, 𝜃𝑅

𝑛𝑒𝑤 = 1, respectively. 

As can be seen, all three criterion models obtain the efficiency score of the new unit equal to one 

and this shows that the solution proposed by model (9) have the relative efficiency score equal to 

the efficiency score of the unit under evaluation. 

In order to the sensitivity analysis of the results related to the proposed approach in this paper, 

we also used the inputs/output estimation process based on inverse DEA-R models in the 

presence of ratio data for units 6 and 9, the results are shown in Table (2). 

 
Table 2. The results corresponding to different DMU for inputs/outputs estimation based on proposed approach.  

DMU DMU3 DMU6 DMU5 DMU9 DMU9 

𝜂1
𝑜 180 180 200 175 165 

𝜂2
𝑜 110 120 120 80 65 

∆𝑦1𝑜 10 40 20 35 25 

∆𝑦2𝑜 50 38 0 40 25 

𝛾1
𝑜 61.728 51.064 50 88.563 83.502 

𝛾2
𝑜 46.296 38.298 37.5 66.422  62.627 

∆𝑥1𝑜
∗  −31.272 16.064 -30 -11 −16.498 

∆𝑥2𝑜
∗  6.296 −6.702 7.5 16.422 12.627 

𝜃𝑅
+ 0.729 0.94 1 0.494 0.494 

𝜃𝑅
𝐼𝐼 0.729 0.94 1 0.494 0.494 

𝜃𝑅
𝑛𝑒𝑤 0.729 0.94 1 0.494 0.494 

 

5. Case study 

In this section, we apply the approach presented in this paper to the real-world data set. For this 

purpose, we apply the inputs/output estimation process based on inverse DEA-R models in the 
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presence of ratio data that proposed in this paper for 21 medical centers in Taiwan. These 

medical centers are included private and public health centers in 2005. Also, this data has been 

used in the article Wei et al. [37]. Input and output data sets including two inputs and outputs are 

listed in Table (3). 

 
Table 3. 

The input and output variables of Taiwan medical centers in 2005. (Wei et al. [37]). 

DMU 

Sickbed Physician Out-patient In-patient Surgeries 

Efficiency 

scores 

(model 3) 

DMU1 2618 1106 2,029,864 680,136 38,714 0.814 

DMU2 1212 473 1,003,707 297,719 18,575 0.792 

DMU3 1721 531 1,592,960 408,556 36,658 0.843 

DMU4 2902 973 2,596,143 855,467 75,348 1 

DMU5 1389 447 1,116,161 337,523 23,803 0.842 

DMU6 1500 547 1,476,282 378,658 22,503 0.842 

DMU7 340 145 1,300,016 55,003 5,614 1 

DMU8 571 305 1,052,992 199,780 26,026 1 

DMU9 1168 369 1,849,711 326,109 30,967 1 

DMU10 921 372 1,089,975 209,323 23,847 0.746 

DMU11 920 316 334,090 268,723 15,130 0.981 

DMU12 3236 1023 1,954,775 920,215 56,167 0.98 

DMU13 495 130 332,741 136,351 23,423 1 

DMU14 1759 491 1,465,374 430,407 35,599 0.908 

DMU15 1357 390 1,277,752 368,174 36,006 0.986 

DMU16 2468 675 1,825,332 668,467 32,275 0.98 

DMU17 962 316 550,700 247,961 15,618 0.878 

DMU18 745 272 1,277,899 217,371 11,671 1 

DMU19 1662 590 1,916,888 418,205 21,551 0.855 

DMU20 898 275 698,945 209,134 11,748 0.822 

 
In this paper we select all medical centers (21) as evaluation subjects, including seven public 

hospitals (33%) and private hospitals (67%). Two inputs and three outputs were selected. Note 

that the total inputs and outputs were less than half of all DMUs in conformity with empirical 

rules. The inputs include: sickbeds and physicians, outputs include: out-patients, in-patients, and 

surgeries. For example, consider DMU 4, this DMU serviced 2,596,143 out-patients, and 

855,467 in-patients, and conducted 75,348 surgeries in 2005, with 2902 sickbeds and 973 

physicians.  
Due to the nature of the data, we can use DEA-R models in the input orientation, i.e. model (3) 

to evaluate the efficiency of these centers. In the input orientation models presented in the paper, 

we use the ratio of input components to output components as in Table (4) and these ratios are 

defined and are important for the DM and management. 
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Table 4. 

The ratios of inputs to outputs in order to using in the input orientation. 

Number of sickbeds / Number of 

out-patients 

Number of sickbeds / Number of 

in-patients 
Number of sickbeds / Number of 

surgeries 

Number of physicians / Number 

of out-patients 

Number of physicians / Number 

of in-patients 

Number of physicians / Number 

of surgeries 

 
For example, the ratio of the total number of sickbeds admitted to the hospital to the number of 

out-patients is important for hospital management, because whatever decreases the ratio of total 

sickbeds or increases the number of out-patients is important for management and the treatment 

system. Also, the goal is to determine efficient medical centers that provide more out-patients 

with the least number of sickbeds. This increases hospital services, because if the numerator and 

denominator corresponding to these fractional numbers decreases and increases respectively, 

then the number of treated patients increases to the total number of patients admitted to the 

hospital, and this issue is important for the hospital management and consequently the cost and 

revenue of the hospital decreases and increases respectively. Or consider another ratio, for 

example consider the ratio of the number of sickbeds to the number of successful surgeries, this 

ratio should be a good ratio for hospital management to offer more number of successful 

surgeries compared to the smaller number of out-patients. Then the medical centers are 

introduced as successful and efficient that offer a higher number of successful surgeries with a 

smaller number of sickbeds and in this case, this ratio is a suitable ratio.  

Or consider the ratio of the total number of physicians to the number of successful surgeries. If 

this ratio decreases, then the number of unsuccessful surgeries increases compared to the number 

of physicians, which means that the hospital performs more successful surgeries for a lower fee, 

including fees paid to physicians and staff and other costs. The hospital management perspective 

is important to reduce this ratio, because by reducing this ratio, the costs paid to the treatment 

staff will decrease, and in contrast, with the increase in the number of surgeries or successful 

operations in the hospital, the amount of services received by patients will increase and the 

income received from these patients will increase that is suitable from the point of view of 

optimization. For other ratios in Table (4) we can provide similar interpretations.  

The last column in Table (3) shows the efficiency scores obtained from Model (3) in the 

evaluation of medical centers. As can be seen, units 4, 7, 8, 9, 13, and 18 are introduced as 

efficient medical centers and other centers are inefficient. It should be noted that the technology 

used in this paper is constant returns to scales technology. 

Now, in order to examine the results of the proposed approach presented in this paper, we  

we apply the inputs/output estimation process based on inverse DEA-R models in the presence of 

ratio data that proposed in this paper. Table (5) shows these results. 

At first, consider the inefficient unit 10. As can be seen in the last column of Table (3), the 

efficiency value of unit 10 is equal to 0.746. Suppose this unit increases the amount of its first, 

second, and third outputs by 120,000, 35,000, and 80, respectively. Then, we have 

(𝜂1
10, 𝜂2

10, 𝜂3
10) = (𝑦110 + ∆𝑦110, 𝑦210 + ∆𝑦210, , 𝑦310 + ∆𝑦310) = (1089975 +

120000, 209323 + 35000, 23847 + 80) = (1209975, 244323, 23927). 
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In this case, according to model (9), the minimum input level of this DMU is determined as 

follows, if we want its efficiency does not change and its be equal to 0.746. (𝛾1
10, 𝛾2

10) =
(𝑥110 + ∆𝑥110

∗ , 𝑥210 + ∆𝑥210
∗ ) = (921 + 15.073, 372 + 130) = (936.073, 502). 

As can be seen, the first and second inputs increase to 15.073 and 130, respectively. The 

efficiency of the new unit means 𝐷𝑀𝑈10
𝑛𝑒𝑤 = (𝑥10 + ∆𝑥10, 𝑦10 + ∆𝑦10) = (𝛾10, 𝜂10) =

(1209975, 244323, 23927, 936.073, 502 ). Based on the criterion models (10), (23), and (30) 

are equal to 𝜃𝑅
+ = 0.746, 𝜃𝑅

𝐼𝐼 = 0.746, 𝜃𝑅
𝑛𝑒𝑤 = 0.746. 

As it was observed, all three criterion models obtain the efficiency score of the new unit equal to 

0.746 and this shows that the solution proposed by model (9) have the relative efficiency score 

equal to the efficiency score of the unit under evaluation. 

 Now, consider efficient unit 8. As shown in the last column of Table (3), the efficiency score of 

unit 10 is equal to one. Assume that this unit increases the value of its first, second, and third 

outputs by 80,000, 43,000, and 50 units, respectively. Then we have 

 (𝜂1
8, 𝜂2

8, 𝜂3
8) = (𝑦18 + ∆𝑦18,  𝑦28 + ∆𝑦28, 𝑦38 + ∆𝑦38) = (1052992 + 80000, 199780 +

43000, 26026 + 50) = (1132992, 242780, 26076). 

In this case, the minimum input level of a new unit corresponding to DMU 10 according to model 

(9) is determined as follows, if we want efficiency score of new unit does not change and its be 

equal to one. 

(𝛾1
8, 𝛾2

8) = (𝑥18 + ∆𝑥18
∗ , 𝑥28 + ∆𝑥28

∗ ) = (571 + 120, 305 + 65.647) = (691, 370.647). 

As can be seen, the first and second inputs increase to 120 and 65.6470, respectively. The 

efficiency of the new unit means 

 𝐷𝑀𝑈8
𝑛𝑒𝑤 = (𝑥8 + ∆𝑥8, 𝑦8 + ∆𝑦8) = (𝛾8, 𝜂8) = (1132992, 242780,26076, 691, 370.647). 

Based on the criterion models (10), (23), and (30) are equal to 𝜃𝑅
+ = 1, 𝜃𝑅

𝐼𝐼 = 1, 𝜃𝑅
𝑛𝑒𝑤 = 1. 

As can be seen, all three criterion models obtain the efficiency score of the new unit equal to one 

and this shows that the solution proposed by model (9) have the relative efficiency score equal to 

the efficiency score of the unit under evaluation.  

In order to the sensitivity analysis of the results related to the proposed approach in this paper, 

we also used the inputs/output estimation process based on inverse DEA-R models in the 

presence of ratio data for units 4 and 17, the results are shown in Table (5). 

 
Table 5. The results corresponding to different medical centers for inputs/outputs estimation  

based on proposed approach. 

DMU DMU10 DMU8 DMU17 DMU4 

𝜂1
𝑜 1209975 1132992 630700 2819143 

𝜂2
𝑜 244323 242780 269961 919467 

𝜂3
𝑜 23927 26076 15639 75643 

∆𝑦1𝑜 120000 80000 80000 223000 

∆𝑦2𝑜 35000 43000 22000 64000 

∆𝑦3𝑜 80 50 21 295 

𝛾1
𝑜 936.073 691 880 2602 

𝛾2
𝑜 502 370.647 470 1403 

∆𝑥1𝑜
∗  15.073 120 −82 −300 

∆𝑥2𝑜
∗  130 65.647 154 430 

𝜃𝑅
+ 0.746 1 0.878 1 

𝜃𝑅
𝐼𝐼 0.746 1 0.878 1 

𝜃𝑅
𝑛𝑒𝑤 0.746 1 0.878 1 
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In this analysis, we used GAMS software to analyze the results and solve the proposed models. 

According to the constraints of the criterion model (30) compared the constraints of the criterion 

models (10) and (23), this model has a smaller number of variables and we expect that the 

computational rate based on the criterion model (30) compared to the criterion models (10), (23) 

is less and we can use this model as a criterion model in the inputs/output estimation process based 

on inverse DEA-R models in the presence of ratio to reduce the time and number of calculations. 

 

6. Conclusion 

This paper presents inverse DEA-R models in the presence of ratio data. In this paper, we used the 

input orientation DEA-R models. We presented the inputs/output estimation process based on ratio 

based DEA (DEA-R) models. We showed that by determining the specific level of efficiency for 

each unit under evaluation DMU, we can determine the best possible level of inputs corresponding 

to a given level of outputs in the inputs/output estimation process based on inverse DEA-R models 

in the presence of ratio input components to output components. Next, we examined the criterion 

models in the inputs/output estimation process based on ratio based DEA (DEA-R) models. In this 

way, in order to reduce calculations, we presented a new criterion model based on DEA-R model, 

we have shown that by using this new criterion model, we can reduce the amount of computation 

outputs in the inverse DEA-R in order to compare the amount of efficiency of the unit under 

evaluation and the new unit created. We can easily use the proposed approach given that the 

models presented are linear and always feasible. As future work, we can examine inverse DEA-R 

models in the presence of ratio output components to input components, and we can develop the 

above models in other technologies such as VRS technology or non-convex technology. We can 

also develop the proposed models in this paper based on cost and revenue efficiency concepts, or 

develop the proposed models in this paper for other data structures in DEA, such as fuzzy data or 

network data.  
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