Limit Points of Trigonometric Sequences

M. Faghih Ahmadi¹
Islamic Azad University - Sepidan Branch

K. Hedayatian
Shiraz University

Abstract: In this article, we find the set of all limit points of sequences of polynomials with real coefficients, in \(\cos n, \ n = 1, 2, 3, \ldots \) with degree less than or equal to three. Also, when the degree is four, the mentioned set is found in some special cases.

AMS Subject Classification: 40-XX.
Key words and Phrases: Limit points, trigonometric, sequences.

1. Introduction

Finding the limit points of a sequences or, at least, finding some topological properties of the limit points of a sequence is one of the remarkable problems in analysis. For instance, in [2], the authors have found some necessary and sufficient conditions for the connectedness of the set of all limit points of a sequence in a metric space. Some other results on the limit points of certain sequences is obtained, for example, in [3] and [4].

¹Research of the first author is supported by a grant from Islamic Azad University
Our claim in this article is to find the set of all limit points of sequence of polynomials with real coefficients, \(\cos n, n = 1, 2, 3, \ldots \) with degree less than or equal to three. Also, when the degree is four, the mentioned set is found in some cases.

2. Main Results

Theorem 1. Suppose \(f \) is a real valued continuous, periodic function on the real numbers \(\mathbb{R} \) and its period is an irrational number \(\alpha \). Then the set of all limit points of the sequence \(\{f(n)\}_{n=1}^{\infty} \) is the closed interval \([m, M] \) where \(m = \text{Min}\{f(x) : x \in \mathbb{R}\} \) and \(M = \text{Max}\{f(x) : x \in \mathbb{R}\} \).

Proof. Since \(f \) is continuous and periodic, it is uniformly continuous. So for \(\varepsilon > 0 \), there exists a \(\delta > 0 \) such that for every \(x, y \) in \(\mathbb{R} \), if \(|x - y| < \delta \) then \(|f(x) - f(y)| < \varepsilon \). But the set \(\mathbb{Z} + \alpha \mathbb{Z} = \{m + \alpha n : m, n \in \mathbb{Z}\} \) is a countable dense subset of \(\mathbb{R} \) where \(\mathbb{Z} \) denotes the set of all integers. Therefore, for each \(x \in \mathbb{R} \), integers \(m \) and \(n \) can be found so that

\[
|m - (n\alpha + x)| < \delta,
\]

and consequently, \(|f(m) - f(x)| < \varepsilon \). Now, considering the fact that \(f(\mathbb{R}) \) is a connected subset of \(\mathbb{R} \), the result follows. \(\square \)

We remark that for an irrational number \(\alpha \), \(\mathbb{N} + \alpha \mathbb{Z} \) is not dense
in \(\mathbb{R} \) where \(N \) denotes the natural numbers and so this proof can not be used when replacing \(\{f(n)\}_{-\infty}^{+\infty} \) by \(\{f(n)\}_{n=1}^{\infty} \). Nevertheless, a direct conclusion of the above theorem runs as follows:

Theorem 2. Let the function \(f \) satisfy the hypotheses of the preceding theorem. Suppose, furthermore, that \(f \) is an even function. Then the set of limit points of the sequence \(\{f(n)\}_{n=1}^{\infty} \) is the range of \(f \).

In all that follows, for a sequence \(\{p(n)\}_{n=1}^{\infty} \) let \(L_p \) be the set of all limit points of this sequence.

Theorem 3. Let \(q(x) = a_0 + a_1 x + a_2 x^2 + a_3 x^3 \), where \(a_3 \neq 0 \), and take \(p(n) = q(\cos n) \). If \(a_2^2 - 3a_1a_3 < 0 \) then \(L_p = [m, M] \) where \(m \) and \(M \) are, respectively, the minimum and maximum of the set \(\{q(1), q(-1)\} \).

If \(a_2^2 - 3a_1a_3 \geq 0 \) then \(L_p = [m, M] \) where \(m \) and \(M \) are, respectively, the minimum and maximum of the set

\[
\{q(1), q(-1), q\left(\frac{-a_2 + \sqrt{a_2^2 - 3a_1a_3}}{3a_3}\right), q\left(\frac{-a_2 - \sqrt{a_2^2 - 3a_1a_3}}{3a_3}\right)\}
\]

Proof. Consider the function \(p \) defined on \([0, 2\pi]\) by \(p(x) = q(\cos x) \).

Then \(p(x) \) is clearly even and periodic, allowing us to use Theorem 2; it remains to find the range of \(p \). If \(a_2^2 - 3a_1a_3 < 0 \) then \(p'(x) = 0 \) implies
that $x = 0, \pi, 2\pi$, and so the only values that $\cos x$ can take are 1 and -1. On the other hand, when $a_2^2 - 3a_1a_3 \geq 0$, an easy argument shows that if $p'(x) = 0$ then $\cos x$ can be

$$1, -1, \frac{-a_2 + \sqrt{a_2^2 - 3a_1a_3}}{3a_3}, \text{ or } \frac{-a_2 - \sqrt{a_2^2 - 3a_1a_3}}{3a_3}.$$ □

Theorem 4. Let $q(x) = a_0 + a_1 x + a_2 x^2$ for $a_2 \neq 0$, and let $p(n) = q(\cos n)$. Then $L_p = [m, M]$ where m and M are, respectively, the minimum and maximum of the set

$$\{a_0 + a_1 + a_2, a_0 - a_1 + a_2, a_0 - \frac{a_2^2}{4a_2}\}.$$

Proof. Considering $p(x) = a_0 + a_1 \cos x + a_2 \cos^2 x$, $x \in [0, 2\pi]$; it is sufficient to find x in the interval $[0, 2\pi]$ such that $p'(x) = 0$. Then apply Theorem 2. □

Theorem 5. Let

$$q(x) = a_0 + a_1 a_3 x + \frac{a_2 a_3}{2} x^2 + \frac{a_1 a_4}{3} x^3 + \frac{a_2 a_4}{4} x^4,$$

where $a_2 a_4 \neq 0$; and for $n \in \mathbb{N}$, take $p(n) = q(\cos n)$. If $a_3 a_4 \leq 0$ then $L_p = [m, M]$ where m and M are, respectively, the minimum and
maximum of the set
\[\{ q(1), q(-1), q(\pm \sqrt{-\frac{a_3}{a_4}}), q(-\frac{a_1}{a_2}) \} \]
and if $a_3a_4 > 0$ then we use the set $\{ q(1), q(-1), q(-\frac{a_1}{a_2}) \}$.

Proof. If $\frac{d}{dx}(q(cos x)) = 0$ then $\sin x = 0$ or
\[
(a_4 \cos^2 x + a_3)(a_2 \cos x + a_1) = a_1a_3 + a_2a_3 \cos x + a_4 \cos^2 x + a_2a_4 \cos^3 x = 0.
\]
Consequently, if the inequality $a_3a_4 \leq 0$ holds, we get $\sin x = 0$ or $\cos x = \pm \sqrt{-a_3/a_4}$ or $\cos x = -a_1/a_2$. Also, whenever $a_3a_4 > 0$ we get $\sin x = 0$ or $\cos x = -a_1/a_2$. In each case, the result holds from Theorem 2. □

Remark 1. An immediate consequence of Theorem 2, is that the set of limit points of the sequence $\{ \cos n \}_{n=1}^{\infty}$ is $[-1, 1]$. This fact has been proved before, using more complicated techniques. For instance, one can see [1, Problem 3.15, p.14].

Remark 2. In Theorems 3, 4 and 5, substituting $\cos n$ by $\sin n$, one can show that the same results hold for the sequence $\{ \sin n \}_{-\infty}^{+\infty}$.
References

Masoumeh Faghih Ahmadi
Islamic Azad University - Sepidan Branch
Sepidan, Iran
E-mail: faghiha@shirazu.ac.ir
E-mail: m_faghih_a@yahoo.com

Karim Hedayatian
Department of Mathematics
College of Sciences
Shiraz University
Shiraz 71454, Iran
E-mail: hedayatian@susc.ac.ir