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1 Introduction

Let E be a real Banach space and E∗ be its dual space. Let C be
a nonempty, closed and convex subset of E, and A : C → E∗ be a
mapping. The problem of finding a point x∗ ∈ C such that

⟨Ax∗, y − x∗⟩ ≥ 0, ∀ y ∈ C, (1)

is called a variational inequality problem. The set of solutions of varia-
tional inequality problem (1) is denoted by V I(C,A). The study of varia-
tional inequality problem originates from solving minimization problems
involving infinite-dimensional functions and calculus of variation. As an
analytical application of mechanics to the solution of partial differential
equations in infinite-dimensional spaces (see, for example, [44, 36] and
references therein ). Hartman and Stampacchia [18] initiated the system-
atic study of the theory of variational inequality problem in 1966. Later
in 1967 Lions and Stampacchia [30] studied the existence and uniqueness
of the solution. Since then, the theory of variational inequality problem
has received much attention due to its wide applications in various areas
of pure and applied sciences, such as optimal control, image recovery,
resource allocations, networking, transportation, signal processing and
so on (see, for example, [31, 23, 14, 5] and references therein). The
constraints can clearly be expressed as variational inequality problems
and (or) as fixed point problems. Consequently, the problem of finding
common elements of the set of solutions of variational inequality prob-
lems and the set of fixed points of nonlinear operators has become an
interesting area of research for many researchers working in the area
of nonlinear operator theory (see, for example, [8, 33, 34, 19] and the
references contained in them).
Many researchers in their quest to find solutions of variational inequality
problems have proposed and analyzed various iterative approximation
methods (see for example, [22, 9, 48]). A number of results on iterative
methods proposed for approximating solutions of variational inequality
problems are studied such that the operator A was often considered to
be inverse strongly monotone (see, for instance [17, 28] and references
therein). In order to relax the inverse strongly monotone condition im-
posed on the operator A, Korpelevich [26] proposed the following extra-
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gradient method in a finite dimensional Euclidean space Rn:
x1 = x ∈ C

yn = PC(xn − λA(xn)),

xn+1 = PC(xn − λA(yn)) ∀n ≥ 0,

(2)

where λ ∈ (0, 1
L), A is monotone and Lipschitz and PC is the metric

projection onto C. They proved that the sequence {xn} generated by
algorithm (2) converges weakly to a solution of problem (1). However,
it is notice that the extragradient method require the computation at
each step of the iteration process two projections onto a closed and
convex subset C of H. This might affect the efficiency of the extragra-
dient method if the feasible set is not simple enough which might also
increase the computational cost. In order to overcome this drawback,
Several modifications of the extragradient method were proposed (see,
for example [11, 10, 25, 20, 50, 49] and references therein) for solving
variational inequality problem (1). In particular, Tseng [50] proposed
the following Tseng’s extragradient method

x1 = x ∈ C

yn = PC(xn − λA(xn)),

xn+1 = yn − λ(A(yn)−A(xn)) ∀n ≥ 0,

(3)

where λ ∈ (0, 1
L), A is monotone and Lipschitz and PC is the metric

projection onto C. They proved that the sequence {xn} generated by
algorithm (3) converges weakly to a solution of problem (1) in a real
Hilbert space. Another modification of the extragradient method was
proposed by Censor et al. [11] as follows:

x0 ∈ H,

yn = PC(xn − λA(xn)),

Tn = {z ∈ H : ⟨xn − λA(xn)− yn, z − yn⟩ ≤ 0},
xn+1 = PTn(xn − λA(yn)), ∀ n ≥ 0.

(4)

They modified the extragradient method (2) by replacing the second
projection onto a closed and convex subset C with a projection onto the
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half space Tn. Algorithm (4) is therefore called subgradient extragra-
dient method. Observe that, the set Tn is a half space, thus algorithm
(4) is simpler to implement than algorithm (2). They proved that the
sequence {xn} generated by algorithm (4) converges weakly to a solution
of problem (1) in a real Hilbert space under some mild assumptions.
Recently, Kraikaew and Saejung [27] in order to obtain strong conver-
gence, combined the subgradient extragradient method (4) with Halpern
method and thus proposed the following iterative algorithm:



x0 ∈ H,

yn = PC(xn − λA(xn)),

Tn = {z ∈ H : ⟨xn − λA(xn)− yn, z − yn⟩ ≤ 0},
zn = αnx0 + (1− αn)PTn(xn − λA(yn)),

xn+1 = βnxn + (1− βn)Szn, ∀ n ≥ 0,

(5)

where βn ⊂ [a, b] ∈ (0, 1), for some a, b ∈ (0, 1) and {αn} is a sequence
in [0, 1] satisfying lim

n→∞
αn = 0 and

∑∞
n=1 αn = ∞. They proved that

the sequence {xn} generated by algorithm (5) converges strongly to a
point x∗ ∈ V I(C,A) ∩ F (S) in a real Hilbert space under some mild
assumptions.
Rezapour and Zakeri [41] see also [42] studied the problem of finding a
common element of the set of fixed points of some nonlinear mappings,
the set of solutions to a variational inclusion problems and the set of so-
lutions of some generalized equilibrium problem in a real Hilbert space.
Still in the setting of Hilbrt space, Rezapour et al. [43] studied an ex-
tragradient methods for solving split feasibility problems, generalized
equilibrium problems, and fixed point problems involving some nonlin-
ear operators.
Chidume et al. [13] proposed the following Krasnoselskii type algo-
rithm in a uniformly smooth, 2 - uniformly convex real Banach space
for approximating common element of solutions of a variational inequal-
ity problem and common fixed point of a countable family of relatively
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nonexpansive mappings as:

x0 = x ∈ E,

yn = ΠCJ
−1(Jxn − λA(xn)),

Tn = {z ∈ E : ⟨Jxn − λA(xn)− Jyn, z − yn⟩ ≤ 0},
tn = ΠTnJ

−1(Jxn − λA(yn)),

zn = J−1(αnJx0 + (1− αn)Jtn),

xn+1 = J−1(λJxn + (1− λ)J(Szn)), ∀ n ≥ 0,

(6)

where A is monotone, λ ∈ (0, 1) such that λ < α
K , α is a constant, K is

Lipschitz constant and {αn} is a sequence in [0, 1] satisfying lim
n→∞

αn = 0

and
∑∞

n=1 αn = ∞. They proved that the sequence {xn} generated by
algorithm (6) converges strongly to a point x∗ = ΠF (S)

⋂
V I(C,A)x0 under

some mild assumptions.
Observe that all the methods mentioned above require a prior knowledge
of the Lipschitz constant of the operator A as input parameter which is
very difficult to estimate when solving some practical problems.
Ma [32] introduced a new subgradient extragradient method with a self
adaptive step size for solving monotone variational inequality problems
in Banach space without prior knowledge of Lipschitz constant of the
operator. They proved that the sequence {xn} generated by the pro-
posed algorithm converges strongly to a point x̂ = ΠV I(C,A)Jx0 under
some mild assumptions.
Algorithm A
(Step 0) Take λ0 > 0, x0 ∈ E be a given starting point, µ ∈ (0, 1).
(Step 1) Given the current iterate xn, compute
yn = ΠC(Jxn − λnA(xn)),
If xn = yn, then stop: xn is a solution. Otherwise, go to step 2.
(Step 2) Construct the set Tn = {w ∈ E : ⟨Jxn − λnA(xn) − Jyn, w −
yn⟩ ≤ 0}, and compute
zn = ΠTn(Jxn − λnA(yn)), xn+1 = J−1(αnJx0 + (1− αn)Jzn),
(Step 3) compute

λn+1 =

{
min{µ(||xn−yn||2+||yn−zn||2)

2⟨A(xn)−A(yn),zn−yn⟩ , λn}, if ⟨A(xn)−A(yn), zn − yn⟩ > 0,

λn, otherwise,
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Set n := n+ 1 and return to step 1.
However, in 1964 Polyak [40] introduced the technique of inertial ex-
trapolation process as a means of speeding up the rate of convergence
of iterative methods.
Many researchers have proposed and analyzed a large number of iner-
tial type iterative schemes (see, for example [16, 48, 36] and references
therein).
Very recently, Tan and Qin [47] introduced the following Viscosity type
inertial subgradient extragradient algorithm for solving monotone vari-
ational inequality problem in real Hilbert spaces. They proved that the
sequence {xn} generated by the proposed algorithm converges strongly
to an element x∗ = PV I(C,A)f(x

∗) under some mild assumptions.
Algorithm B
Initialization: Set τ > 0, λ1 > 0, µ ∈ (0, 1). Choose a nonnegative real
sequence {αn} such that

∑∞
n=1 αn < +∞. Let x0, x1 ∈ H be arbitrarily

chosen.
Iterative steps: Calculate xn+1 as follows:

un = xn + τn(xn − xn−1),

yn = PC(un − λnA(un)),

Tn = {z ∈ H : ⟨un − λnA(un)− yn, z − yn⟩ ≤ 0},
zn = PTn(un − λnA(yn)),

xn+1 = ψnf(xn) + (1− ψn)zn, ∀ n ≥ 1,

(7)

τn =

{
min{ θn

||xn−xn−1|| , τ} , if xn ̸= xn−1,

τ, otherwise,
(8)

λn+1 =

{
min{ µ||un−yn||

||Aun−Ayn|| , λn + αn} , if Aun −Ayn ̸= 0,

λn + αn, otherwise,
(9)

where {τn} and {λn} are updated by (8) and (9) respectively.
On the other hand, Vuong [51] used the extragradient method (2) to
solve pseudomonotone variational inequalities problems in Hilbert spaces,
and thus, proved that the sequence {xn} generated by algorithm (2) con-
verges weakly to a solution of problem (1).
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Motivated by the above works, in this paper, we introduce a new in-
ertial type subgradient extragradient algorithm with self adaptive step
size technique for approximating common element in the set of solutions
of pseudomonotone variational inequality problem and the set of com-
mon fixed point of a finite family of generic generalized nonspreading
mappings in uniformly smooth and 2 - uniformly convex Banach space.
Furthermore, we prove a strong convergence of our algorithm to a so-
lution of the stated problem without prior knowledge of the Lipschitz
constant of the operator under some mild assumptions. Our result gen-
eralize and extend many existing results in the literature. We give some
numerical examples in order to illustrates the performance of our pro-
posed algorithm. Our result generalize and extend many existing results
in the literature such as those in [27, 13, 41, 42, 43].

2 Preliminaries

Throughout this paper, we denote by N the set of positive integers and
R the set of real numbers. Let E be a real Banach space with norm ||.||,
and let E∗ be the dual space of E, and SE = {x ∈ E : ||x|| = 1} is the
unit sphere of E. We denote the value of y∗ ∈ E∗ at x ∈ E by ⟨x, y∗⟩.
When {xn} is a sequence in E, we denote the strong convergence of {xn}
to x ∈ E by xn → x and the weak convergence by xn ⇀ x. The modulus
δ of convexity of E is the function δE : (0, 2] −→ [0, 1] defined by

δE(ϵ) = inf{1− ||x+ y||
2

: ||x|| ≤ 1, ||y|| ≤ 1, ||x− y|| ≥ ϵ}.

E is uniformly convex if and only if δE(ϵ) > 0 for every ϵ ∈ (0, 2]. The
space E is said to be 2-uniformly convex if there exists a constant c > 0
such that δE(ϵ) ≥ cϵ2 for every ϵ ∈ (0, 2]. Observe that every 2-uniformly
convex Banach space is uniformly convex.
A Banach space E is called smooth if the limit

lim
t→0

||x+ ty|| − ||x||
t

exists for all x, y ∈ SE and for any λ ∈ (0, 1), if ||λx+ (1− λ)y|| < 1 for
all x, y ∈ SE with x ̸= y, then E is said to be strictly convex.
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The modulus of smoothness of E is the function ρE : [0,∞) −→ [0,∞)
defined by

ρE(τ) = sup{||x+ τy|| − ||x− τy||
2

− 1 : x, y ∈ SE}.

E is called uniformly smooth if the lim
τ→0

ρE(τ)
τ = 0 ; q - uniformly smooth

if there exists a positive constant Cq such that ρE(τ) ≤ Cq(τ)
q for any

τ > 0.
Observe that every q - uniformly smooth Banach space is uniformly
smooth. Also, every uniformly convex Banach space is strictly con-
vex and reflexive. Typical examples of such spaces, (see, for example
Chidume [12], pp. 34, 54) are Lp, lp and Wm

p which are q - uniformly
smooth for 1 ≤ q < 2; 2 - uniformly smooth and uniformly convex (see,
for instance [52]). The normalized duality mapping J from E into 2E

∗

is defined by

Jx = {x∗ ∈ E∗ : ⟨x, x∗⟩ = ||x||.||x∗||, ||x∗|| = ||x||}
for all x ∈ E.

Remark 2.1. Observe that the normalized duality mapping J has the
following basic properties (see, for more details [12]):

(T1) If E is smooth Banach space, then J is single - valued mapping
from E into E∗;

(T2) If E is strictly convex Banach space, then J is one to one;

(T3) If E is uniformly smooth Banach space, then J is uniformly norm
to norm continuous on each bounded subset of E;

(T4) If E is reflexive Banach space, then J is surjective;

(T5) If E is reflexive, smooth and strictly convex Banach space with
dual E∗ and J∗ : E∗ −→ E is the normalized duality mapping in
E∗, then J∗ = J−1;

(T6) If E is reflexive, smooth and strictly convex Banach space, then
the normalized duality mapping J is single - valued, one to one
and onto.
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A Banach space E is uniformly smooth if and only if E∗ is uniformly
convex.

Let E be a reflexive, smooth and strictly convex Banach space and
C be a nonempty, closed and convex subset of E (see, for more details
[3]).
A mapping ϕ : E × E −→ [0,∞) defined by

ϕ(x, y) = ||x||2 − 2⟨x, Jy⟩+ ||y||2, ∀ x, y ∈ E, (10)

Observe that in a Hilbert space H, ϕ(x, y) = ||x− y||2, ∀ x, y ∈ H.
Obviously, the functional ϕ satisfies the following properties (see, for
more details [3]).

(||x|| − ||y||)2 ≤ ϕ(x, y) ≤ (||x||+ ||y||)2, ∀ x, y ∈ E; (11)

ϕ(x, y) = ϕ(x, z) + ϕ(z, y) + 2⟨x− z, Jz − Jy⟩, ∀ x, y, z ∈ E; (12)

ϕ(x, y) = ⟨x, Jx−Jy⟩+⟨y−x, Jy⟩ ≤ ||x||||Jx−Jy||+||y−x||||y||, ∀x, y ∈ E;
(13)

ϕ(z, J−1(αJx+ (1− α)Jy)) ≤ αϕ(z, x) + (1− α)ϕ(z, y), ∀ x, y ∈ E,
(14)

and α ∈ (0, 1).

Remark 2.2. Let E be a strictly convex Banach space, then for all
x, y ∈ E, ϕ(x, y) = 0 if and only if x = y (see, for example [38]).

Define a functional V : E × E∗ −→ [0,∞) (see for example [3]) by

V (x, x∗) = ||x||2 − 2⟨x, x∗⟩+ ||y||2, ∀ x ∈ E, and x∗ ∈ E∗. (15)

The following relation is easily verified,

V (x, x∗) = ϕ(x, J−1(x∗)), ∀ x ∈ E, and x∗ ∈ E∗. (16)

Observe that the mapping g defined by fixing x ∈ E, and g(x∗) =
V (x, x∗) for all x∗ ∈ E∗ is a continuous, convex function from E∗ into
R.
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Lemma 2.3. [3] Let E be a strictly convex, reflexive and smooth Banach
space, and let V be as defined in (15). Then

V (x, x∗) + 2⟨J−1x∗ − x, y∗⟩ ≤ V (x, x∗ + y∗) ∀ x ∈ E, and x∗, y∗ ∈ E∗.
(17)

Let E be a reflexive, strictly convex and smooth Banach space and C be
a nonempty, closed and convex subset of E.
It is shown that, see Alber [3] for each x ∈ E, there exists a unique
element k ∈ C ( written as ΠCx) such that

ϕ(k, x) = inf
y∈C

ϕ(y, x).

The mapping ΠC : E −→ C defined by ΠCx = k, is called generalized
projection (see, for example [3]).
Note, if E is a Hilbert space H, then ΠC is a metric projection of H
onto C.

Lemma 2.4. (see for more details [2],[3]) Let E be a smooth, reflex-
ive and strictly convex Banach space and C be a nonempty, closed and
convex subset of E. Then the following inequalities hold:

ϕ(x,ΠCy) + ϕ(ΠCy, y) ≤ ϕ(x, y), ∀ x ∈ C and y ∈ E; (18)

If x ∈ E and z ∈ C, then z = ΠCx⇐⇒ ⟨z−y, Jx−Jz⟩ ≥ 0,
(19)

for all y ∈ C.

Lemma 2.5. [39] Let E be a uniformly smooth Banach space and r > 0.
Then, there exists a continuous, strictly increasing and convex function
g : [0, 2r] −→ [0,∞) with g(0) = 0 and

ϕ(u, J−1(tJx+(1−t)Jy)) ≤ tϕ(u, x)+(1−t)ϕ(u, y)−t(1−t)g(||Jx−Jy||),
(20)

∀ t ∈ [0, 1], u ∈ E and x, y ∈ Br(0) where Br(0) := {h ∈ E : ||h|| ≤
r}.

Lemma 2.6. [38] Let E be a uniformly convex and smooth Banach
space and {µn} and {λn} be two sequences in E. If lim

n→∞
ϕ(µn, λn) = 0

and either {µn} or {λn} is bounded, then lim
n→∞

||µn − λn|| = 0.



AN INERTIAL TYPE SUBGRADIENT EXTRAGRADIENT... 11

Lemma 2.7. [6, 52] Let E be a 2 - uniformly convex Banach space.
Then, there exists τ > 0 such that

1

τ
||x− y||2 ≤ ϕ(x, y), ∀ x, y ∈ E. (21)

Remark 2.8. Without loss of generality, we may assume τ ∈ (0, 1).

Definition 2.9. Let T : C → C be a mapping.

1. A point x∈C is called a fixed point of T if Tx = x, where F (T ) :=
{x ∈ C : Tx = x} is the set of fixed point of T .

2. A point x ∈ C is said to be asymptotic fixed point of T , if there
exists sequence {xn} ⊆ C such that xn ⇀ x and lim

n→∞
||xn−Txn|| =

0. We denote the set of all asymptotic fixed point of T by F̂ (T ).

3. T is said to be quasi - ϕ - nonexpansive if F (T ) ̸= ∅, and

ϕ(p, Tx) ≤ ϕ(p, x), ∀ x ∈ C and p ∈ F (T ). (22)

4. T is called nonspreading [24] if for all x, y ∈ C and

ϕ(Tx, Ty) + ϕ(Ty, Tx) ≤ ϕ(Tx, y) + ϕ(Ty, x). (23)

5. T is called generalized nonspreading [4] for all x, y ∈ C if there
exist α, β, γ, δ ∈ R such that

αϕ(Tx, Ty) + (1− α)ϕ(x, Ty) + γ{ϕ(Ty, Tx)− ϕ(Ty, x)}
≤ βϕ(Tx, y) + (1− β)ϕ(x, y) + δ{ϕ(y, Tx)− ϕ(y, x)}.

6. T is called generic (α, β, γ, δ, ε, ξ) generalized nonspreading [46] if
for all x, y ∈ C the following inequalities holds: (i) (α+β+γ+δ) ≥
0; (ii) (α+ β) > 0; and (iii)

αϕ(Tx, Ty) + βϕ(x, Ty) + γϕ(Tx, y) + δϕ(x, y)

≤ ε{ϕ(Ty, Tx)− ϕ(Ty, x)}+ ξ{ϕ(y, Tx)− ϕ(y, x)}. (24)
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Remark 2.10. Observe that, (i) if α + β = −γ − δ = 1, then
generic (α, β, γ, δ, ε, ξ)− generalized nonspreading mapping reduces
to generalized nonspreading; (ii) if α = 1, β = δ = ξ = 0 and
γ = ε = −1 then generic (α, β, γ, δ, ε, ξ)− generalized nonspreading
mapping reduces to nonspreading mapping; (iii) if α = 1, β =
γ = ξ = ε = 0, δ = −1 then generic (α, β, γ, δ, ε, ξ)− generalized
nonspreading mapping reduces to nonexpansive mapping.

7. T is called demiclosed at zero if for any sequence {xn} ⊂ C with
xn ⇀ x ∈ C and

||xn − Txn|| −→ 0 as n −→ ∞, then Tx = x.

Definition 2.11. Let A : C → E∗ be a mapping. Then A is said to be

1. monotone if the following inequality hold

⟨Ax−Ay, x− y⟩ ≥ 0, ∀ x, y ∈ C.

2. pseudomonotone if

⟨A(x), y − x⟩ ≥ 0 ⇒ ⟨A(y), y − x⟩ ≥ 0, ∀ x, y ∈ C.

3. Lipschitz continuous if there exists a constant L > 0 such that

||Ax−Ay|| ≤ L||x− y||, ∀ x, y ∈ C.

4. weakly sequentially continuous if for any {xn} ⊂ C such that xn ⇀
x implies Axn ⇀ Ax.

Definition 2.12. [37, 29] Let A : C −→ E∗ be an operator. The Minty
variational inequality problem (MV IP ) consist of finding a point x∗ ∈ C
such that

⟨A(x∗), y − x∗⟩ ≥ 0, ∀ y ∈ C. (25)

The set of solutions of (25) is denoted byM(C,A). Some existing results
for the (MV IP ) have been presented in [29]. Also, the assumption that
M(C,A) ̸= ∅ has been used in solving the variational inequality problem
V I(C,A) in finite dimensional spaces (see, for example [45]).
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Lemma 2.13. [37] Consider the variational inequality problem V I(C,A).
Suppose the mapping h : [0, 1] −→ E∗ defined by h(t) = A(tx+ (1− t)y)
and t ∈ [0, 1] is continuous for all x, y ∈ C (i.e, h is hemicontinuous),
then M(C,A) ⊂ V I(C,A). Moreover, if A is pseudomonotone, then
V I(C,A) is closed, convex and V I(C,A) =M(C,A).

Lemma 2.14. [53] If {bn} is a sequence of nonnegative real numbers
satisfying the following inequality:

bn+1 ≤ (1− ψn)bn + ψnσn + γn, n ≥ 0,

where (i) {ψn} ⊂ [0, 1],
∑∞

n=1 ψn = ∞; (ii) lim supσn ≤ 0; (iii) γn ≥ 0
and

∑∞
n=1 γn <∞, then, bn −→ 0 as n −→ ∞.

Lemma 2.15. [35] Let {bn} be a sequence of real numbers such that
there exists a subsequence {bni} of {bn} such that bni < bni+1 for all
i ∈ N. Then, there exists a nondecreasing sequence {mk} ⊂ N such that
mk −→ ∞ and the following properties are satisfied for all k ∈ N;

bmk
≤ bmk+1 and bk ≤ bmk+1,

In fact, mk = max{j ≤ k : bj < bj+1}.

Lemma 2.16. [46] Let E be a strictly convex Banach space with a uni-
formly Gâteaux differentiable norm, let C be a nonempty, closed and
convex subset of E and let T be a generic generalized nonspreading map-
ping of C into itself such that F (T ) is nonempty. Then F̂ (T ) = F (T ).

Lemma 2.17. [38] Let E be a smooth and strictly convex Banach space,
let C be a nonempty, closed and convex subset of E and let T be a quasi
- nonexpansive mapping from C into itself such that F (T ) is nonempty.
Assume that

ϕ(u, Ty) ≤ ϕ(u, y),

for all u ∈ F (T ) and y ∈ C. Then F (T ) is closed and convex.

Lemma 2.18. [46] Let E be smooth and strictly convex Banach space
and C be a nonempty, closed and convex subset of E. Let T : C −→ C
be generic (α, β, γ, δ, ε, ξ) - generalized nonspreading mapping. Assume
F (T ) ̸= ∅, then T is quasi - nonexpansive and hence F (T ) is closed and
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convex.
We give the proof of Lemma 2.18 for the sake of completeness.
Proof. Since T : C −→ C is generic (α, β, γ, δ, ε, ξ) - generalized non-
spreading mapping with F (T ) ̸= ∅, then for any y ∈ C, let p ∈ F (T ) and
replace x with p in equation (24) of definition (2.9), we obtain

αϕ(Tx, Ty) + βϕ(x, Ty) + γϕ(Tx, y) + δϕ(x, y)

≤ ε{ϕ(Ty, Tx)− ϕ(Ty, x)}+ ξ{ϕ(y, Tx)− ϕ(y, x)}

αϕ(p, Ty) + βϕ(p, Ty) + γϕ(p, y) + δϕ(p, y)

≤ ε{ϕ(Ty, p)− ϕ(Ty, p)}+ ξ{ϕ(y, p)− ϕ(y, p)}

αϕ(p, Ty) + βϕ(p, Ty) + γϕ(p, y) + δϕ(p, y) ≤ 0.

This implies that

(α+ β)ϕ(p, Ty) + (γ + δ)ϕ(p, y) ≤ 0.

Thus

(α+ β)ϕ(p, Ty) ≤ −(γ + δ)ϕ(p, y).

Using conditions (i) and (ii) of definition (2.9) (6), we have

ϕ(p, Ty) ≤ − (γ + δ)

(α+ β)
ϕ(p, y)

≤ ϕ(p, y)

ϕ(p, Ty) ≤ ϕ(p, y). (26)

Hence, T is quasi - nonexpansive and by Lemma 2.17, we have that F (T )
is closed and convex.
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3 Main Results

In this section, we first establish an important Lemma and then prove a
strong convergence theorem for finding a common element of the set of
solutions of pseudomonotone variational inequality problem and com-
mon fixed point of a finite family of generic generalized nonspreading
mappings in uniformly smooth and 2 - uniformly convex real Banach
space. Furthermore, to obtain strong convergence of our algorithm, we
make the following assumptions.
Assumption A

(A1) Let E be uniformly smooth and 2 - uniformly convex real Banach
space and C be nonempty, closed and convex subset of E.

(A2) A : E −→ E∗ is pseudomonotone, L - Lipschitz continuous and
weakly sequentially continuous on E.

(A3) For each i ∈ {1, 2, ...,M}, {Ti} be a finite family of generic (α, β, γ, δ, ε, ξ)
- generalized nonspreading mapping of E into itself such that
F̂ (Ti) = F (Ti).Assume Ω = F (TM◦TM−1◦, ..., ◦T1) =

⋂M
i=1 F (Ti) ̸=

∅.

(A4) The solution set Γ = V I(C,A)
⋂⋂M

i=1 F (Ti) ̸= ∅.

Assumption B, we assume that the control sequences satisfy:

(B1) {τn} is a positive sequence such that lim
n→∞

τn
αn

= 0.

(B2) {αn} ⊂ (0, 1) satisfies lim
n→∞

αn = 0 and
∑∞

n=1 αn = ∞.

(B3) βn ∈ (a, b), where 0 < a < b < 1.

Algorithm J
Initialization: Take λ1 > 0, µ, θ ∈ (0, 1). Select initial data x0, x1 ∈ E.
Given xn−1, xn and θn for each n ≥ 1, choose θn such that θn ∈ [0, θ̂n].
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Iterative steps: Calculate xn+1 and λn+1 as follows:

un = J−1(Jxn + θn(Jxn−1 − Jxn)),

yn = ΠCJ
−1(Jun − λnA(un)),

Sn = {z ∈ E : ⟨Jun − λnA(un)− Jyn, z − yn⟩ ≤ 0},
zn = ΠSnJ

−1(Jun − λnA(yn)),

wn = J−1(αnJx0 + (1− αn)Jzn),

xn+1 = J−1(βnJzn + (1− βn)J(Twn)), ∀ n ≥ 1,

(27)

where T = TM ◦ TM−1◦, ..., ◦T1, θ̂n and λn+1 are updated by (28) and
(29) respectively.

θ̂n =

{
min{ τn

||xn−xn−1|| , θ}, if xn ̸= xn−1,

θ, otherwise
(28)

λn+1 =

{
min{µ(||un−yn||2+||yn−zn||2)

2⟨A(un)−A(yn),zn−yn⟩ , λn}, if ⟨A(un)−A(yn), zn − yn⟩ > 0,

λn, otherwise

(29)
In order to prove the strong convergence result of algorithm (27), we
first prove the following lemma which plays an important role in the
proof of the main result.

Lemma 3.1. Suppose that {un}, {yn}, {zn}, {λn} are sequences gener-
ated by algorithm (27) and assumptions (A1) - (A4) hold, then

1. If un = yn for some n ≥ 1, then un ∈ V I(C,A).

2. The sequence {λn} generated by (29) is a nonincreasing sequence
and lim

n→∞
λn = λ ≥ µ

L .

Proof. (1) Suppose that un = yn for some n ≥ 1. Then from algorithm
(27), we have

un = ΠCJ
−1(Jun − λnA(un)).

Thus, un ∈ C. Using the definition of {yn} in algorithm (27) and the
property of generalized projection ΠC onto C in equation (19) of Lemma
2.4, we have

⟨Jun − λnA(un)− Jun, un − y⟩ ≥ 0, ∀ y ∈ C.
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Thus,

⟨−λnA(un), un − y⟩ = λn⟨A(un), y − un⟩ ≥ 0, ∀ y ∈ C.

Since λn ≥ 0, we obtain that ⟨A(un), y−un⟩ ≥ 0. Hence, un ∈ V I(C,A).
(2) It follows from (29) that λn+1 ≤ λn, for all n ∈ N. Furthermore,
Since A is a Lipschitz continuous mapping with positive constant L, in
a case where ⟨A(un)−A(yn), zn − yn⟩ > 0, we obtain

λn+1 =
µ(||un − yn||2 + ||yn − zn||2)
2⟨A(un)−A(yn), zn − yn⟩

≥ 2µ||un − yn||||yn − zn||
2||A(un)−A(yn)||||zn − yn||

≥ µ||un − yn||
L||un − yn||

=
µ

L
.

Since {λn} is a nonincreasing sequence which is bounded below by min{ µ
L , λ1},

we conclude that

lim
n→∞

λn = λ ≥ µ

L
.

Remark 3.2. From definition (28), we have that

lim
n→∞

θn(ϕ(x
∗, xn−1)− ϕ(x∗, xn)) = 0.

Proof. We have that θn||xn − xn−1|| ≤ τn for each n ≥ 1, which
together with lim

n→∞
τn
αn

= 0 implies

lim
n→∞

θn
αn

||xn − xn−1|| ≤ lim
n→∞

τn
αn

= 0. (30)

Hence,

ϕ(x∗, xn−1)− ϕ(x∗, xn) = ||x∗||2 − 2⟨x∗, Jxn−1⟩+ ||xn−1||2

−(||x∗||2 − 2⟨x∗, Jxn⟩+ ||xn||2)
= ||xn−1||2 − ||xn||2 + 2⟨x∗, Jxn − Jxn−1⟩
≤ ||xn−1 − xn||(||xn||+ ||xn−1||)

+2||x∗||||Jxn−1 − Jxn||. (31)
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Since E is uniformly smooth, then J is norm to norm uniformly contin-
uous on bounded subset of E, we obtain from (30) that

lim
n→∞

αn.
θn
αn

||Jxn − Jxn−1|| = 0. (32)

Thus,

lim
n→∞

αn(
θn
αn

||xn−1−xn||(||xn||+||xn−1||)+2
θn
αn

||x∗||||Jxn−1−Jxn||) = 0.

Hence,
lim
n→∞

θn(ϕ(x
∗, xn−1)− ϕ(x∗, xn)) = 0. (33)

Theorem 3.3. Suppose that assumptions (A1) − (A4) hold, and the
sequence {αn} ⊂ (0, 1) satisfy βn ∈ (a, b), where 0 < a < b < 1,
lim
n→∞

αn = 0 and
∑∞

n=1 αn = ∞. Let {xn} be the sequence generated

by algorithm (27). Then {xn} converges strongly to a solution x̄ =
ΠV I(C,A)

⋂ ⋂M
i=1 F (Ti)

x0.

Proof. The proof is divided into two steps.
Step 1: Let {xn} be the sequence generated by (27). Then {xn} is
bounded.
Let x∗ ∈ V I(C,A) ∩

⋂M
i=1 F (Ti). Now, Observe that yn ∈ C, then we

have ⟨A(x∗), yn − x∗⟩ ≥ 0, for all n ∈ N.
Since A is pseudomonotone, we have ⟨A(yn), yn−x∗⟩ ≥ 0, for all n ∈ N.
Then

0 ≤ ⟨A(yn), yn − x∗ + zn − zn⟩ = ⟨A(yn), yn − zn⟩ − ⟨A(yn), x∗ − zn⟩

which implies that

⟨A(yn), yn − zn⟩ ≥ ⟨A(yn), x∗ − zn⟩, ∀ n ∈ N. (34)

From the definition of Sn in algorithm (27) and the fact that zn ∈ Sn,
we have that

⟨Jun − λnA(un)− Jyn, zn − yn⟩ ≤ 0.

Thus,

⟨Jun − λnA(yn)− Jyn, zn − yn⟩
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= ⟨Jun − λnA(un)− Jyn, zn − yn⟩+ λn⟨A(un)−A(yn), zn − yn⟩
≤ λn⟨A(un)−A(yn), zn − yn⟩ (35)

Applying Lemma 2.4, we have

ϕ(x∗, zn) = ϕ(x∗,ΠSnJ
−1(Jun − λnA(yn)))

≤ ϕ(x∗, J−1(Jun − λnA(yn)))− ϕ(zn, J
−1(Jun − λnA(yn)))

= ||x∗||2 − 2⟨x∗, J(J−1(Jun − λnA(yn)))⟩
+||J−1(Jun − λnA(yn))||2 − ||zn||2

+2⟨zn, J(J−1(Jun − λnA(yn)))⟩ − ||J−1(Jun − λnA(yn))||2

= ||x∗||2 − 2⟨x∗, Jun⟩+ ||un||2 − (||zn||2 − 2⟨zn, Jun⟩+ ||un||2)
+2λn⟨A(yn), x∗ − zn⟩

= ϕ(x∗, un)− ϕ(zn, un) + 2λn⟨A(yn), x∗ − zn⟩

Thus, from (12), (34), (35) and (29), we obtain

ϕ(x∗, zn) ≤ ϕ(x∗, un)− ϕ(zn, un) + 2λn⟨A(yn), yn − zn⟩
= ϕ(x∗, un)− [ϕ(un, yn) + ϕ(yn, zn) + 2⟨Jun − Jyn, yn − zn⟩]

+2λn⟨A(yn), yn − zn⟩
= ϕ(x∗, un)− ϕ(un, yn)− ϕ(yn, zn)

−2⟨Jun − λnA(yn)− Jyn, yn − zn⟩
≤ ϕ(x∗, un)− ϕ(un, yn)− ϕ(yn, zn)

+2λn⟨A(un)−A(yn), zn − yn⟩
≤ ϕ(x∗, un)− ϕ(un, yn)− ϕ(yn, zn)

+
λnµ

λn+1
(||un − yn||2 + ||yn − zn||2) (36)

From (36) and by Lemma 3.1 (2) and Lemma 2.7, we have

ϕ(x∗, zn) ≤ ϕ(x∗, un)− ϕ(un, yn)− ϕ(yn, zn)

+
λnµ

λn+1
(τϕ(un, yn) + τϕ(yn, zn))

= ϕ(x∗, un)− [(1− λnµτ

λn+1
)((ϕ(un, yn) + ϕ(yn, zn))]

≤ ϕ(x∗, un)− (1− µτ)(ϕ(un, yn) + ϕ(yn, zn)) (37)

≤ ϕ(x∗, un) (38)
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Using the definition of {un} in algorithm (27), we obtain

ϕ(x∗, un) = ϕ(x∗, J−1((1− θn)Jxn + θnJxn−1))

= ||x∗||2 − 2⟨x∗, J(J−1((1− θn)Jxn + θnJxn−1))⟩
+||J−1((1− θn)Jxn + θnJxn−1)||2

≤ (1− θn)ϕ(x
∗, xn) + θnϕ(x

∗, xn−1) (39)

Applying the definition of {wn} in algorithm (27), we have

ϕ(x∗, wn) = ϕ(x∗, J−1(αnJx0 + (1− αn)Jzn))

= ||x∗||2 − 2⟨x∗, J(J−1αnJx0 + (1− αn)Jzn)⟩
+||J−1(αnJx0 + (1− αn)Jzn)||2

≤ αnϕ(x
∗, x0) + (1− αn)ϕ(x

∗, zn) (40)

Thus, using the definition of {xn+1} in algorithm (27) and Lemma 2.18,
we have

ϕ(x∗, xn+1) = ϕ(x∗, J−1(βnJzn + (1− βn)J(Twn)))

= ||x∗||2 − 2⟨x∗, J(J−1βnJzn + (1− βn)J(Twn))⟩
+||J−1(βnJzn + (1− βn)J(Twn))||2

≤ ||x∗||2 − 2βn⟨x∗, Jzn⟩ − 2(1− βn)⟨x∗, J(Twn)⟩
+βn||Jzn||2 + (1− βn)||J(Twn)||2

≤ βnϕ(x
∗, zn) + (1− βn)ϕ(x

∗, Twn)

= βnϕ(x
∗, zn) + (1− βn)ϕ(x

∗, TM ◦ TM−1◦, ..., ◦T1(wn))

≤ βnϕ(x
∗, zn) + (1− βn)ϕ(x

∗, TM−1◦, ..., ◦T1(wn))

≤ βnϕ(x
∗, zn) + (1− βn)ϕ(x

∗, wn) (41)

Substituting (40) and (39) into (41), we have

ϕ(x∗, xn+1) ≤ βnϕ(x
∗, zn) + (1− βn)[αnϕ(x

∗, x0) + (1− αn)ϕ(x
∗, zn)]

= βnϕ(x
∗, zn) + αn(1− βn)ϕ(x

∗, x0)

+(1− βn)(1− αn)ϕ(x
∗, zn)

= (βn + (1− βn)(1− αn))ϕ(x
∗, zn) + αn(1− βn)ϕ(x

∗, x0)

= (1− (1− βn)αn)ϕ(x
∗, zn) + (1− βn)αnϕ(x

∗, x0)

= (1− (1− βn)αn)ϕ(x
∗, un) + (1− βn)αnϕ(x

∗, x0)
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ϕ(x∗, xn+1) ≤ (1− (1− βn)αn)[(1− θn)ϕ(x
∗, xn) + θnϕ(x

∗, xn−1)]

+(1− βn)αnϕ(x
∗, x0)

≤ max{ϕ(x∗, x0),max{ϕ(x∗, xn), ϕ(x∗, xn−1)}}
...

≤ max{ϕ(x∗, x0),max{ϕ(x∗, x1), ϕ(x∗, x0)}} (42)

Hence, {ϕ(x∗, xn)} is bounded. Since 1
τ ||xn − x∗||2 ≤ ϕ(x∗, xn), we have

that {xn} is bounded. Consequently, {un}, {yn}, {zn} and {wn} are
also bounded. □
Step 2
We now prove that the sequence {xn} generated by algorithm (27) con-
verges strongly to a point x̄ = ΠV I(C,A)

⋂ ⋂M
i=1 F (Ti)

x0.

Proof. Let x̄ = ΠV I(C,A)
⋂ ⋂M

i=1 F (Ti)
x0. From equation (19) of Lemma

2.4, we have

⟨Jx0 − Jx̄, z − x̄⟩ ≤ 0, ∀ z ∈ V I(C,A).

From step 1, we have that, there exists N0 ≥ 0, such that for all n ≥ N0,

ϕ(x∗, zn) ≤ ϕ(x∗, un) and ϕ(x∗, un) ≤ (1−θn)ϕ(x∗, xn)+θnϕ(x∗, xn−1),

and the following sequences {xn}, {un}, {yn}, {zn} and {wn} are bounded.
Furthermore, we estimate ϕ(x∗, xn+1) using inequality (37) and Lemma
2.18 for every n ≥ N0.

ϕ(x∗, xn+1) = ϕ(x∗, J−1(βnJzn + (1− βn)J(Twn)))

≤ βnϕ(x
∗, zn) + (1− βn)ϕ(x

∗, Twn)

= βnϕ(x
∗, zn) + (1− βn)ϕ(x

∗, TM ◦ TM−1◦, ..., ◦T1(wn))

≤ βnϕ(x
∗, zn) + (1− βn)ϕ(x

∗, TM−1◦, ..., ◦T1(wn))

≤ βnϕ(x
∗, zn) + (1− βn)ϕ(x

∗, wn)

≤ βnϕ(x
∗, zn) + (1− βn)[αnϕ(x

∗, x0) + (1− αn)ϕ(x
∗, zn)]

= βnϕ(x
∗, zn) + (1− βn)(1− αn)ϕ(x

∗, zn)

+αn(1− βn)ϕ(x
∗, x0)

= (βn + (1− βn)(1− αn))ϕ(x
∗, zn) + αn(1− βn)ϕ(x

∗, x0)
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ϕ(x∗, xn+1) ≤ (βn + (1− βn)(1− αn))(ϕ(x
∗, un)

−(1− µτ)(ϕ(un, yn) + ϕ(yn, zn))) + αn(1− βn)ϕ(x
∗, x0)

= (1− (1− βn)αn)(ϕ(x
∗, un)

−(1− µτ)(ϕ(un, yn) + ϕ(yn, zn)) + αn(1− βn)ϕ(x
∗, x0)

= ϕ(x∗, un)− (1− µτ)(ϕ(un, yn)

+ϕ(yn, zn)) + αn(1− βn)ϕ(x
∗, x0)− (1− βn)αn(ϕ(x

∗, un)

−(1− µτ)(ϕ(un, yn) + ϕ(yn, zn))

= ϕ(x∗, un)− (1− µτ)(ϕ(un, yn)

+ϕ(yn, zn)) + αn(1− βn)ϕ(x
∗, x0)− (1− βn)αnϕ(x

∗, un)

+(1− βn)αn(1− µτ)(ϕ(un, yn) + ϕ(yn, zn))

= (1− (1− βn)αn)ϕ(x
∗, un)

−(1− µτ)(ϕ(un, yn) + ϕ(yn, zn)) + αn(1− βn)ϕ(x
∗, x0)

+αn(1− βn)(1− µτ)(ϕ(un, yn) + ϕ(yn, zn))

= (1− (1− βn)αn)ϕ(x
∗, un)

−(1− µτ)(ϕ(un, yn) + ϕ(yn, zn)) + αn(1− βn)ϕ(x
∗, x0)

+αnσn(ϕ(un, yn) + ϕ(yn, zn))

= (1− (1− βn)αn)[(1− θn)ϕ(x
∗, xn) + θnϕ(x

∗, xn−1)]

−(1− µτ)(ϕ(un, yn) + ϕ(yn, zn))

+αn(1− βn)ϕ(x
∗, x0) + αnσn(ϕ(un, yn) + ϕ(yn, zn))

= (1− θn)ϕ(x
∗, xn) + θnϕ(x

∗, xn−1)

−(1− βn)αn[(1− θn)ϕ(x
∗, xn) + θnϕ(x

∗, xn−1)]

−(1− µτ)(ϕ(un, yn) + ϕ(yn, zn)) + αn(1− βn)ϕ(x
∗, x0)

+αnσn(ϕ(un, yn) + ϕ(yn, zn))

≤ (1− θn)ϕ(x
∗, xn) + θnϕ(x

∗, xn−1)

−(1− µτ)(ϕ(un, yn) + ϕ(yn, zn)) + αn(1− βn)ϕ(x
∗, x0)

+αnσn(ϕ(un, yn) + ϕ(yn, zn)) (43)

where σn = (1− βn)(1− µτ).
The remaining part of the proof will be divided into two cases.
Case I. Suppose that there existsN1 ∈ N (N1 ≥ N0) such that{ϕ(x∗, xn)}∞n=N1

is nonincreasing. Since the sequence {ϕ(x∗, xn)}∞n=1 is bounded then it
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converges for all n > N1 ≥ N0. That is,

lim
n→∞

(ϕ(x∗, xn)− ϕ(x∗, xn+1)) = 0. (44)

This implies from (43) that

(1− µτ)(ϕ(un, yn) + ϕ(yn, zn))

≤ θn(ϕ(x
∗, xn−1)− ϕ(x∗, xn)) + ϕ(x∗, xn)− ϕ(x∗, xn+1)

+αnσn(ϕ(un, yn) + ϕ(yn, zn)) + αn(1− βn)ϕ(x
∗, x0). (45)

Using (44), equation (33) of Remark 3.2 and condition (B2) together
with the boundedness of {un}, {yn} and {zn}, we have from (45) that

(1− µτ)(ϕ(un, yn) + ϕ(yn, zn))

≤ θn(ϕ(x
∗, xn−1)− ϕ(x∗, xn)) + ϕ(x∗, xn)− ϕ(x∗, xn+1)

+αnσn(ϕ(un, yn) + ϕ(yn, zn))

+αn(1− βn)ϕ(x
∗, x0) −→ 0, as n −→ ∞.

Hence,

lim
n→∞

ϕ(un, yn) = lim
n→∞

ϕ(yn, zn) = 0.

Thus, from Lemma 2.6, we have that

lim
n→∞

||un − yn|| = lim
n→∞

||yn − zn|| = 0. (46)

Using Lemma 2.5, Lemma 2.18 and the definitions of {xn+1}, {un}, {wn},
we obtain

ϕ(x∗, xn+1) = ϕ(x∗, J−1(βnJzn + (1− βn)J(Twn)))

≤ βnϕ(x
∗, zn) + (1− βn)ϕ(x

∗, Twn)

−βn(1− βn)g(||Jzn − JTwn||)
= βnϕ(x

∗, zn) + (1− βn)ϕ(x
∗, TM ◦ TM−1◦, ..., ◦T1(wn))

−βn(1− βn)g(||Jzn − JTwn||)
≤ βnϕ(x

∗, zn) + (1− βn)ϕ(x
∗, TM−1◦, ..., ◦T1(wn))

−βn(1− βn)g(||Jzn − JTwn||)
≤ βnϕ(x

∗, zn) + (1− βn)ϕ(x
∗, wn)

−βn(1− βn)g(||Jzn − JTwn||)
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ϕ(x∗, xn+1) ≤ βnϕ(x
∗, zn) + (1− βn)[αnϕ(x

∗, x0) + (1− αn)ϕ(x
∗, zn)]

−βn(1− βn)g(||Jzn − JTwn||)
= (βn + (1− βn)(1− αn))ϕ(x

∗, zn) + (1− βn)αnϕ(x
∗, x0)

−βn(1− βn)g(||Jzn − JTwn||)
= (1− (1− βn)αn)ϕ(x

∗, zn) + (1− βn)αnϕ(x
∗, x0)

−βn(1− βn)g(||Jzn − JTwn||)
≤ (1− (1− βn)αn)ϕ(x

∗, un) + (1− βn)αnϕ(x
∗, x0)

−βn(1− βn)g(||Jzn − JTwn||)
= (1− (1− βn)αn)[(1− θn)ϕ(x

∗, xn) + θnϕ(x
∗, xn−1)]

+(1− βn)αnϕ(x
∗, x0)− βn(1− βn)g(||Jzn − JTwn||)

= (1− θn)ϕ(x
∗, xn) + θnϕ(x

∗, xn−1)

−(1− βn)αn[(1− θn)ϕ(x
∗, xn) + θnϕ(x

∗, xn−1)]

+(1− βn)αnϕ(x
∗, x0)− βn(1− βn)g(||Jzn − JTwn||)

≤ (1− θn)ϕ(x
∗, xn) + θnϕ(x

∗, xn−1) + (1− βn)αnϕ(x
∗, x0)

−βn(1− βn)g(||Jzn − JTwn||). (47)

This implies from (47) that

0 ≤ βn(1− βn)g(||Jzn − JTwn||) ≤ ϕ(x∗, xn)− ϕ(x∗, xn+1)

+θn(ϕ(x
∗, xn−1)− ϕ(x∗, xn)) + (1− βn)αnϕ(x

∗, x0). (48)

From (44), equation (33) of Remark 3.2 together with condition (B2),
we have from (48) that

βn(1− βn)g(||Jzn − JTwn||)
≤ ϕ(x∗, xn)− ϕ(x∗, xn+1) + θn(ϕ(x

∗, xn−1)− ϕ(x∗, xn))

+(1− βn)αnϕ(x
∗, x0) −→ 0, as n −→ ∞.

Thus, using the property of g in Lemma 2.5,we have

lim
n→∞

||Jzn − JTwn|| = 0. (49)

Since E∗ is uniformly smooth, then J−1 is uniformly norm to norm
continuous on bounded subsets. Hence, we have from (49) that

lim
n→∞

||zn − Twn|| = 0. (50)
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Using the definition of {xn+1} in algorithm (27), we have

Jxn+1 = βnJzn + (1− βn)J(Twn)

Jxn+1 − Jzn = (βnJzn + (1− βn)J(Twn))− Jzn

||Jxn+1 − Jzn|| = ||βnJzn + (1− βn)J(Twn)

−[βnJzn + (1− βn)Jzn]||
= ||(1− βn)(J(Twn)− Jzn)||
= (1− βn)||J(Twn)− Jzn||.

Thus from this and (49), we have

lim
n→∞

||Jxn+1 − Jzn|| = 0. (51)

Since E∗ is uniformly smooth, we have from (51) that

lim
n→∞

||xn+1 − zn|| = 0. (52)

From the definition of {wn} in algorithm (27), we have

Jwn − Jzn = (αnJx0 + (1− αn)Jzn)− Jzn

||Jwn − Jzn|| = αn||Jx0 − Jzn||

Using condition (B2), we obtain

lim
n→∞

||Jwn − Jzn|| = 0. (53)

Since E∗ is uniformly smooth, we have from (53) that

lim
n→∞

||wn − zn|| = 0. (54)

Thus, we have from (54) and (50) that

||Twn − wn|| = ||Twn − zn + zn − wn||
≤ ||Twn − zn||+ ||zn − wn|| −→ 0, as n −→ ∞.
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Hence,

lim
n→∞

||Twn − wn|| = 0. (55)

From the definition of {un} in algorithm (27) and equation (32) of Re-
mark 3.2, we obtain

||Jun − Jxn|| = ||θn(Jxn−1 − Jxn)||

= αn.
θn
αn

||Jxn−1 − Jxn|| −→ 0, as n −→ ∞.

Hence,

lim
n→∞

||Jun − Jxn|| = 0. (56)

Since E∗ is uniformly smooth, then J−1 is uniformly norm to norm
continuous on bounded subsets of E∗, we have

lim
n→∞

||un − xn|| = 0. (57)

Furthermore, we have from (57) and (46) that

||yn − xn|| = ||yn − un + un − xn||
≤ ||yn − un||+ ||un − xn|| −→ 0, as n −→ ∞.

Thus,

lim
n→∞

||yn − xn|| = 0. (58)

From (58), (52) and (46), we obtain

||xn+1 − xn|| = ||xn+1 − zn + zn − yn + yn − xn||
≤ ||xn+1 − zn||+ ||zn − yn||+ ||yn − xn|| −→ 0,

as n −→ ∞. Hence,

lim
n→∞

||xn+1 − xn|| = 0. (59)
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Furthermore, from (59), (52) and (54), we have

||xn − wn|| = ||xn − xn+1 + xn+1 − zn + zn − wn||
≤ ||xn − xn+1||+ ||xn+1 − zn||+ ||zn − wn|| −→ 0,

as n −→ ∞. Thus,

lim
n→∞

||xn − wn|| = 0. (60)

Since {xn} is bounded, there exists a subsequence {xnk
} ⊂ {xn} such

that xnk
⇀ u∗, which implies that wnk

⇀ u∗ as k −→ ∞. Since
lim
k→∞

||Twnk
−wnk

|| = 0, by Lemma 2.16 it follows that u∗ ∈
⋂M

i=1 F (Ti).

Next, we show that u∗ ∈ V I(C,A).
We have {unk

} converges weakly to u∗ ∈ C since ||xnk
− unk

|| −→
0 as k −→ ∞, then ynk

⇀ u∗ since ||ynk
− unk

|| −→ 0 as k −→ ∞.
From the definition of ynk

= ΠCJ
−1(Junk

− λnk
A(unk

)), we have from
equation (19) of Lemma 2.4 that for all z ∈ C,

⟨Junk
− λnk

A(unk
)− Jynk

, z − ynk
⟩ ≤ 0.

This implies that

⟨Junk
− Jynk

, z − ynk
⟩ ≤ λnk

⟨A(unk
), z − ynk

⟩.

Then for all z ∈ C, we have

1

λnk

⟨Junk
− Jynk

, z − ynk
⟩+ ⟨A(unk

), ynk
− unk

⟩ ≤ ⟨A(unk
), z − unk

⟩(61)

Fixing z ∈ C and letting k −→ +∞ in (61) also remembering that
||ynk

−unk
|| −→ 0 as k −→ ∞ together with the fact that lim inf

n→∞
λnk

> 0,

we have

lim inf
n→∞

⟨A(unk
), z − unk

⟩ ≥ 0. (62)

Let {εk} be a decreasing nonnegative sequence such that lim
n→∞

εk = 0.

For each εk, we denote the smallest positive integer Nk such that for all
k ≥ Nk,

⟨A(unk
), z − unk

⟩+ εk ≥ 0 (63)
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Furthermore, as {εk} is decreasing, it is easy to see that the sequence
{Nk} is increasing. Thus, if there exists a subsequence {unkj

} ⊂ {unk
},

such that for each j ≥ 1, A(unkj
) ̸= 0, and setting

snkj
=

A(unkj
)

||A(unkj
)||2

,

we have ⟨A(unkj
), snkj

⟩ = 1 for each j ≥ 1. It follows from (63) that for

each j ≥ 1

⟨A(unkj
), z + εksnkj

− unkj
⟩ ≥ 0. (64)

Thus, since A is pseudomonotone, we obtain from (64) that

⟨A(z + εksnkj
), z + εksnkj

− unkj
⟩ ≥ 0. (65)

Since {unk
} converges weakly to u∗ ∈ C, and A is weakly sequentially

continuous, we have that A(unk
) converges weakly to A(u∗). If A(u∗) =

0, then u∗ ∈ V I(C,A). Suppose that A(u∗) ̸= 0. Then, by sequential
weak lower semicontinuity of the norm, we have the following

0 < ||A(u∗)|| ≤ lim inf
k→∞

||A(unk
)||.

Since {unki
} ⊂ {unk

} and εk −→ 0 as k −→ ∞, we obtain

0 ≤ lim sup
k→∞

||εksnk
|| = lim sup

k→∞
(

εk
||A(unk

)||
) ≤

lim sup
k→∞

εk

lim inf
k→∞

||A(unk
)||

≤ 0

||A(u∗)||
= 0

Taking limit as j −→ ∞ in (65), we obtain

⟨A(z), z − u∗⟩ ≥ 0.

Thus, it follows from Lemma 2.13 that u∗ ∈ V I(C,A). Furthermore,
from (55) and (60) we have that u∗ ∈ F (Ti) for all i ∈ {1, 2, ...,M}, thus
u∗ ∈

⋂M
i=1 F (Ti). Hence, u

∗ ∈ Γ.
Next, we show that {xn} converges strongly to a point x̄ = ΠΓx0. Since
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{xn} is bounded, then, there exists a subsequence {xnk
} ⊂ {xn} such

that xnk
⇀ u∗ and

lim sup
n→∞

⟨xn − x̄, Jx0 − Jx̄⟩ = lim
k→∞

⟨xnk
− x̄, Jx0 − Jx̄⟩

= ⟨u∗ − x̄, Jx0 − Jx̄⟩. (66)

Thus, from equation (19) of Lemma 2.4 and (66), we have

lim sup
n→∞

⟨xn − x̄, Jx0 − Jx̄⟩ = ⟨u∗ − x̄, Jx0 − Jx̄⟩ ≤ 0 (67)

Hence, it follows from (67) that

lim sup
n→∞

⟨wn − x̄, Jx0 − Jx̄⟩ ≤ 0 (68)

Furthermore, from the definition of ϕ(x̄, xn+1) in algorithm (27), Lemma
2.18 and Lemma 2.3, we obtain

ϕ(x̄, xn+1) = ϕ(x̄, J−1(βnJzn + (1− βn)J(Twn)))

≤ βnϕ(x̄, zn) + (1− βn)ϕ(x̄, Twn)

≤ βnϕ(x̄, zn) + (1− βn)ϕ(x̄, TM ◦ TM−1◦, ..., ◦T1(wn))

≤ βnϕ(x̄, zn) + (1− βn)ϕ(x̄, TM−1◦, ..., ◦T1(wn))

≤ βnϕ(x̄, zn) + (1− βn)ϕ(x̄, wn)

≤ βnϕ(x̄, zn) + (1− βn)[ϕ(x̄, J
−1(αnJx0 + (1− αn)Jzn))]

= βnϕ(x̄, zn) + (1− βn)[V (x̄, αnJx0 + (1− αn)Jzn)]

≤ βnϕ(x̄, zn)

+(1− βn)[V (x̄, αnJx0 + (1− αn)Jzn − αn(Jx0 − Jx̄))

−2⟨J−1(αnJx0 + (1− αn)Jzn))− x̄,−αn(Jx0 − Jx̄)⟩]
= βnϕ(x̄, zn) + (1− βn)[V (x̄, αnJx̄+ (1− αn)Jzn)

+2αn⟨wn − x̄, Jx0 − Jx̄⟩]
= βnϕ(x̄, zn) + (1− βn)[αnϕ(x̄, x̄) + (1− αn)ϕ(x̄, zn)

+2αn⟨wn − x̄, Jx0 − Jx̄⟩]
≤ βnϕ(x̄, zn) + (1− βn)[(1− αn)ϕ(x̄, zn)

+2αn⟨wn − x̄, Jx0 − Jx̄⟩]
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ϕ(x̄, xn+1) ≤ (βn + (1− βn)(1− αn))ϕ(x̄, zn)

+2(1− βn)αn⟨wn − x̄, Jx0 − Jx̄⟩
≤ (βn + (1− βn)(1− αn))ϕ(x̄, un)

+2(1− βn)αn⟨wn − x̄, Jx0 − Jx̄⟩
= (1− (1− βn)αn)[(1− θn)ϕ(x̄, xn) + θnϕ(x̄, xn−1)]

+2(1− βn)αn⟨wn − x̄, Jx0 − Jx̄⟩
= (1− θn)ϕ(x̄, xn) + θnϕ(x̄, xn−1)

+2(1− βn)αn⟨wn − x̄, Jx0 − Jx̄⟩
−(1− βn)αn[(1− θn)ϕ(x̄, xn) + θnϕ(x̄, xn−1)]

= ϕ(x̄, xn) + θn(ϕ(x̄, xn−1)− ϕ(x̄, xn))

−αn[(1− θn)ϕ(x̄, xn) + θnϕ(x̄, xn−1)]

+2(1− βn)αn⟨wn − x̄, Jx0 − Jx̄⟩
+αnβn[(1− θn)ϕ(x̄, xn) + θnϕ(x̄, xn−1)]

= (1− (1− βn)αn)ϕ(x̄, xn) + θn(ϕ(x̄, xn−1)− ϕ(x̄, xn))

−αn(1− βn)[θn(ϕ(x̄, xn−1)− ϕ(x̄, xn))]

+2(1− βn)αn⟨wn − x̄, Jx0 − Jx̄⟩. (69)

Setting ψn = (1−βn)αn, σn = 2⟨wn− x̄, Jx0−Jx̄⟩ and γn = [1−αn(1−
βn)]θn(ϕ(x̄, xn−1)− ϕ(x̄, xn)).
Now, applying Lemma 2.14, (68), (69), equation (33) of Remark 3.2 and
from condition (B2), we obtain

lim
n→∞

ϕ(x̄, xn) = 0.

Thus, from Lemma 2.6, we have

lim
n→∞

||x̄− xn|| = 0. (70)

Hence, xn −→ x̄ where x̄ = ΠΓx0.
Case II. Suppose that the sequence {ϕ(p, xn)}∞n=1 is not a nonincreasing
sequence. Then, let {xnk

} be a subsequence of {xn} such that

ϕ(p, xnk
) < ϕ(p, xnk+1), for all k ∈ N.



AN INERTIAL TYPE SUBGRADIENT EXTRAGRADIENT... 31

Then, using Lemma 2.15, there exists a nondecreasing sequence {ms} ⊆
N such that ms −→ ∞ as s −→ ∞, and,

ϕ(p, xms) ≤ ϕ(p, xms+1) and ϕ(p, xs) ≤ ϕ(p, xms+1).

Since {ϕ(p, xms)} is bounded, then lims→∞ ϕ(p, xms) exist.
Therefore, using the same approach as in case (I), we have the following

(i) lim
s→∞

||xms−wms || = 0, (ii) lim
s→∞

||ums−yms || = 0, (iii) lim
s→∞

||zms−yms || = 0

(iv) lim
s→∞

||xms+1 − xms || = 0.

Now, following the same steps as in the proof of case (I), we obtain

lim sup
s→∞

⟨wms+1 − x̄, Jx0 − Jx̄⟩ = lim sup
s→∞

⟨wms − x̄, Jx0 − Jx̄⟩ ≤ 0. (71)

Furthermore, from (69) for all ms ≥ N0, we have

ϕ(x̄, xms+1) ≤ (1− (1− βms)αms)ϕ(x̄, xms)

+θms(ϕ(x̄, xms−1)− ϕ(x̄, xms))

−αms(1− βms)[θms(ϕ(x̄, xms−1)− ϕ(x̄, xms))]

+2(1− βms)αms⟨wms − x̄, Jx0 − Jx̄⟩
< (1− (1− βms)αms)ϕ(x̄, xms+1)

+θms(ϕ(x̄, xms−1)− ϕ(x̄, xms))

−αms(1− βms)[θms(ϕ(x̄, xms−1)− ϕ(x̄, xms))]

+2(1− βms)αms⟨wms − x̄, Jx0 − Jx̄⟩

Hence,

(1− βms)αmsϕ(x̄, xms+1)

< [1− (1− βms)αms ]θms(ϕ(x̄, xms−1)− ϕ(x̄, xms))

+2(1− βms)αms⟨wms − x̄, Jx0 − Jx̄⟩

Thus,

(1− βms)αmsϕ(x̄, xms+1)

< 2(1− βms)αms⟨wms − x̄, Jx0 − Jx̄⟩ (72)
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Since 0 < (1 − βms)αms < 1 for all s ≥ 0 and ϕ(x̄, xms) ≤ ϕ(x̄, xms+1),
we have

ϕ(x̄, xms) < ϕ(x̄, xms+1) < 2⟨wms − x̄, Jx0 − Jx̄⟩.

This implies

lim sup
s→∞

ϕ(x̄, xms) < lim sup
s→∞

2 ⟨wms − x̄, Jx0 − Jx̄⟩ ≤ 0.

Thus,
lim sup
s→∞

ϕ(x̄, xms) = 0,

which by Lemma 2.6, we have

lim
s→∞

||x̄− xms || = 0.

However, we know that ϕ(x̄, xs) ≤ ϕ(x̄, xms+1) for all s ∈ N, hence,
lim
s→∞

ϕ(x̄, xs) = 0, which by Lemma 2.6, we have

lim
s→∞

||x̄− xs|| = 0.

Hence, xs −→ x̄ where x̄ = ΠΓx0. □

Corollary 3.4. Let E be uniformly smooth and 2 - uniformly convex
Banach space, A : E −→ E∗ be a monotone and Lipschitz continuous
operator and {Ti}Mi=1 be a finite family of generic (α, β, γ, δ, ε, ξ) - gener-
alized nonspreading mappings of E into itself. Let {un}, {yn}, {wn} and
{zn} be sequences generated by algorithm (27) and {αn} ⊂ (0, 1) satisfy
βn ∈ (a, b) where 0 < a < b < 1, lim

n→∞
αn = 0 and

∑∞
n=1 αn = ∞ be se-

quences satisfying assumptions (A1)− (A4) of algorithm (27). Suppose
Γ = V I(C,A) ∩

⋂M
i=1 F (Ti) ̸= ∅. Then, the sequence {xn} generated by

algorithm (27) converges strongly to a solution x̄ = ΠΓx0.
Proof. Observe that in this case the weak sequential continuity of A in
assumption (A2) of algorithm (27) has to be droped since it follows from
the monotonicity of A and (61) that

1

λnk

⟨Junk
− Jynk

, z − ynk
⟩+ ⟨A(unk

), ynk
− unk

⟩

≤ ⟨A(unk
), z − unk

⟩
≤ ⟨A(z), z − unk

⟩. (73)
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Furthermore, passing limit as k −→ ∞ in inequality (73) and applying
the fact that ||unk

− ynk
|| −→ 0, as k −→ ∞, we obtain

⟨A(z), z − u∗⟩ ≥ 0, ∀ z ∈ C.

Hence, it follows from Theorem (3.3) that the sequence {xn} converges
strongly to a solution x̄ = ΠΓx0.

Corollary 3.5. Let H be a real Hilbert space, A : H −→ H be pseu-
domonotone and Lipschitz continuous operator, and {Ti}Mi=1 be a finite
family of normally generalized hybrid mappings of H into itself. Let
{un}, {yn}, {wn} and {zn} be sequences generated by algorithm (27)
and βn ∈ (a, b) where 0 < a < b < 1, {αn} ⊂ (0, 1) satisfy lim

n→∞
αn = 0

and
∑∞

n=1 αn = ∞ be sequences satisfying assumptions (A1) − (A4) of

algorithm (27). Suppose Γ = V I(C,A)
⋂ ⋂M

i=1 F (Ti) ̸= ∅. Then, the
sequence {xn} generated by algorithm (27) converges strongly to a solu-
tion x̄ = PΓx0.
Proof. By Remark 2.10, the generic (α, β, γ, δ, ε, ξ) - generalized non-
spreading mappings reduces to normally generalized hybrid mapping in
Hilbert space i.e, there exists α1, β1, γ1, δ1 ∈ R such that

α1||Tx−Ty||2+β1, ||x−Ty||2+γ1||Tx−y||2+δ1||x−y||2 ≤ 0, ∀ x, y ∈ C,

where α1 = α − ϵ, β1 = β + ϵ, γ1 = γ − ζ and δ1 = δ + ζ satisfying
α1 + β1 = α+ β > 0 and α1 + β1 + γ1 + δ1 = α+ β + γ + δ ≥ 0. Thus
by Theorem (3.3), we have that the sequence {xn} converges strongly to
a solution x̄ = PΓx0.

4 Numerical Examples

In this section, we intend to demonstrate the efficiency of our Algorithm
3.1 with the aid of numerical experiments. Furthermore, we compare
our iterative method with the methods of Ma [32] (Alg. A), Chidume
et al. [13] (Alg. (6)) and Kraikaew and Saejung [27] (Alg. (5)).

Example 4.1. Let E = L2[0, 1] and C = {x ∈ L2[0, 1] : ⟨a, x⟩ ≤ b},
where a = t2 + 1 and b = 1, with norm ||x|| =

√∫ 1
0 |x(t)|2dt and inner
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product ⟨x, y⟩ =
∫ t
0 x(t)y(t)dt, for all x, y ∈ L2([0, 1]), t ∈ [0, 1]. Define

metric projection PC as follows:

PC(x) =


x, if x ∈ C

b−⟨a,x⟩
||a||L2

a+ x, otherwise.
(74)

Let A : L2[0, 1] → L2[0, 1] be defined by A(x(t)) = e−||x|| ∫ t
0 x(s)ds,

for all x ∈ L2[0, 1], t, s ∈ [0, 1], then, A is pseudomonotone and uni-
formly continuous mapping (see [49]) and let T (x(t)) =

∫ t
0 x(s)ds, for all

x ∈ L2[0, 1], t ∈ [0, 1], then T is nonexpansive mapping which is also gen-
eralized nonspreading mapping. For the control parameters, we choose
as follows: Algorithm 27: αn = 1

n25 , βn = n
2(n+1)(1− αn), τn = αn

n1.1 and

θn = θ̂n; Algorithm A: αn = 1
100n ; Algorithm (6): αn = 1

2n , λ = 0.5;
Algorithm (5): αn = 1

n+1 , βn = 1
3(1 − αn). We define the sequence

TOLn := ||xn+1 − xn||2 and apply the stopping criterion TOLn < ε for
the iterative processes because the solution to the problem is unknown.
ε is the predetermined error. Here, the terminating condition is set to
ε = 10−5. For the numerical experiments illustrated in Figure 1 and
Table 1 below, we take into consideration the resulting cases.

Case 1: x0 = 2t and x1 = t2.

Case 2: x0 = t3 + 3t and x1 = 4t5 + 2t3 + t.

Case 3: x0 = 6t6 + 3t3 + t and x1 = t.

Case 4: x0 = 8t4 + 2t2 and x1 = 1/3t3 + t2.
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Table 1: Comparison of Alg. 27, Alg. A, Alg. (6) and Alg. (5).

Cases Alg.
27

Alg.
A

Alg.
(6)

Alg.
(5)

1 Iter.
CPU
(time)

30
12.6322

76
13.1864

67
17.5749

54
17.2129

2 Iter.
CPU
(time)

26
6.6802

105
11.8637

68
10.7646

103
26.2987

3 Iter.
CPU
(time)

30
7.5148

130
17.2607

68
10.3812

126
41.8932

4 Iter.
CPU
(time)

29
7.2560

135
18.4226

69
10.6401

136
53.3921
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Figure 1: (Top Left): Case 1; (Top Right): Case 2; (Bottom
Left):Case 3; (Bottom Right): Case 4, the error plotting of com-
parison of Alg. 27, Alg. A, ALg. (6) and Alg. (5) for Example 4.1.

Example 4.2. Let E = RN . Define A : RN → RN by A(x) =Mx+ q,
where the matrix M is formed as: M = V

∑
V ′, where V = I − 2vv′

∥v∥2
and

∑
= diag(σ11, σ12, · · · , σ1N ) are the householder and the diagonal

matrix, and

σ1j = cos
jπ

N + 1
+ 1 +

cos π
N+1 + 1− Ĉ(cos Nπ

N+1 + 1)

Ĉ − 1
, j = 1, 2, · · · , N,

with Ĉ been the present condition number of M ([19], Example 5.2). In
the numerical computation, we choose Ĉ = 104, q = 0 and uniformly
take the vector v ∈ RN in (−1, 1). Thus, A is pseudomonotone and
Lipschitz continuous with K = ||M || (see [19]). By setting C = {x ∈
RN : ||x|| ≤ 1}, Matlab is used to efficiently compute the projection onto
C. Moreover, we examine various instances of the problems dimension.
That is, N = 20, 30, 40, 60, with starting points x1 = (1, 1, . . . , 1)′ and
x0 = (0, 0, . . . , 0)′. In this example, we take the stopping criterion to be
ε = 10−5 and obtain the numerical results shown in Table 2 and Figure
2.

Table 2: Numerical results for Example 4.2 with ε = 10−5.

N Alg.
27

Alg.
A

Alg.
(6)

Alg.
(5)

5 Iter.
CPU

832
0.2196

8125
0.9656

12053
4.1120

1188
0.3920

7 Iter.
CPU

1436
0.2188

15696
1.3669

10807
3.3585

1532
0.3680

11 Iter.
CPU

1860
0.1195

17377
0.9919

32919
10.2074

1964
0.5366

13 Iter.
CPU

2152
0.2483

25691
2.1576

22295
8.2650

2903
0.9547
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Figure 2: The behavior of TOLn with ε = 10−5 for Example 4.2: (Top
Left): N = 20; (Top Right): N = 30; (Bottom Left): N = 40;
(Bottom Right): N = 60.

5 Conclusion

This paper introduced a new inertial subgradient extragradient algo-
rithm with self adaptive step size for approximating common element
of the set of solutions of pseudomonotone variational inequality prob-
lem and common fixed point of a finite family of generic generalized
nonspreading mappings in uniformly smooth and 2 - uniformly convex
Banach space. Furthermore, we proved a strong convergence theorem of
our algorithm to a solution of the stated problem without prior knowl-
edge of the Lipschitz constant of the operator under some mild assump-
tions. We presented some numerical examples in order to illustrates the
performance of our proposed algorithm. Our result generalize and im-
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prove many existing results in the literature. For instance, our result is
presented in a more general setting of Banach space than Hilbert space,
there by extending the recent results such as those in [27, 41, 42, 43],
again the operators considered here, family of generic generalized non-
spreading mappings are more general than those considered in many
recent results such as those in [13, 41]. It is going to be of interest
for further studies in this direction to consider dropping the condition
of Uniform smoothness and 2-uniform convexity of the space also for a
more general operators than those considered here.
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