The Maximal Ideal Space of $C(K, \mathcal{A})$

M. H. Shirdarreh Haghighi
Shiraz University

Abstract. Let $C(K, \mathcal{A})$ denote the space of all continuous \mathcal{A}-valued functions on the compact Hausdorff space K, where \mathcal{A} is a commutative Banach algebra. In this paper we show that the maximal ideal space of $C(K, \mathcal{A})$ can be identified with $K \times \mathcal{M}$, where \mathcal{M} denotes the maximal ideal space of \mathcal{A}.

AMS Subject Classification: Primary 46J20; Secondary 46J10.
Keywords and Phrases: Banach algebra, maximal ideal space, vector valued continuous function.

1. Introduction

The most important problem concerning commutative Banach algebras is characterizing its maximal ideal space. Though many commutative Banach algebras, including $C(X)$ for a compact Hausdorff space X and many function algebras, have a known maximal ideal space, there are many important commutative Banach algebras including H^∞ for which the topological properties of their maximal ideal spaces are not fully understood [1].
Here we show that the maximal space of the algebra of all continuous functions from a compact Hausdorff space into a Banach algebra has a simple characterization.

Let K be an arbitrary compact Hausdorff space and A be a Banach space. Denote by $C(K, A)$ the space of all continuous A-valued functions defined on K equipped with the norm

$$||f|| = \sup_{k \in K} ||f(k)||_A.$$

Then $C(K, A)$ will be a Banach space and if A is a commutative Banach algebra, then $C(K, A)$ is a commutative Banach algebra. In this case, we shall show that the maximal ideal space of $C(K, A)$ can be identified with $K \times M$, where M denotes the maximal ideal space of A equipped with the weak* topology. We remind that A need not be unital.

2. Main Results

The following representation theorem is due to Singer [4]. For a nice proof see Hensgen [3].

Theorem 1. Let A be a Banach space. The dual $C(K, A)^*$ of $C(K, A)$ can be identified with $M(K, A^*)$, the space of all regular Borel A^*-valued measures on K having finite variation. The action of an element $\Phi \in C(K, A)^*$ corresponding to $F \in M(K, A^*)$ on an element $g \in C(K, A)$
THE MAXIMAL IDEAL SPACE OF $C(K, \mathcal{A})$

is then given by

$$\Phi(g) = \int_K < g(k), dF(k) > .$$

Note that for an element $F \in M(K, \mathcal{A}^*)$ and $g \in C(K, \mathcal{A})$, $d\mu_g = < g, dF >$ defines a regular Borel measure on K.

Let $M(K)$ denote the space of all regular Borel measures on K. Obviously, each element $\mu \times \varphi \in M(K) \times \mathcal{A}^*$ is an element of $C(K, \mathcal{A})^*$ acting on an element $g \in C(K, \mathcal{A})$ as

$$\mu \times \varphi(g) = \int_K \varphi(g(k))d\mu.$$

Now if $\mu = \delta_{k_0}$ is a point mass measure at some point $k_0 \in K$, then the action of $\Phi = \mu \times \varphi$ simply becomes

$$\mu \times \varphi(g) = \varphi(g(k_0)). \quad (1)$$

In this case we say that Φ is supported at the single point k_0. Looking at (1) reveals that if $f \in C(K)$, then

$$\Phi(fg) \in \text{Im}(f), \quad (2)$$

for all $g \in C(K, \mathcal{A})$ with $\Phi(g) = 1$. In other words if $\Phi(g) = 1$, then the measure ν defined on $C(K)$ by $\nu(f) = \int_K f(k) < g(k), dF(k) >$ has the property

$$\int_K f(k)d\nu \in \text{Im}(f), \text{ for all } f \in C(K),$$

for all $g \in C(K, \mathcal{A})$ with $\Phi(g) = 1$. In other words if $\Phi(g) = 1$, then the
and such measures are supported at a single point by Lemma 2.5 of [2].

In fact, as the following lemma shows, the converse is also true, i.e. if an element \(\Phi \in C(K, \mathcal{A})^* \) satisfies (2) for all \(g \in C(K, \mathcal{A}) \) with \(\Phi(g) = 1 \), then \(\Phi \) is supported at a single point.

Lemma 2. Let \(\Phi \in C(K, \mathcal{A})^* \) satisfy

\[
\Phi(fg) \in \text{Im } f
\]

for every \(f \in C(K) \) and \(g \in C(K, \mathcal{A}) \) with \(\Phi(g) = 1 \). Then \(\Phi \) is supported by a single point.

Proof. There exists \(F \in M(K, \mathcal{A}^*) \) such that for all \(g \in C(K, \mathcal{A}) \),

\[
\Phi(g) = \int_K < g(k), dF(k) >.
\]

Choose \(g_0 \in C(K, \mathcal{A}) \) with \(\Phi(g_0) = 1 \). Then for every \(f \in C(K) \) we have

\[
\int_K f(k) < g_0(k), dF(k) > \in \text{Im } f.
\]

By Lemma 2.5 of [2], the measure \(< g_0, dF > \) is supported by a single point say \(k_{g_0} = k_0 \) in \(K \). Thus the relation

\[
\int_K f(k) < g_0(k), dF(k) > = f(k_0)
\]

holds for all \(f \in C(K) \). To show that \(k_0 \) is independent of \(g_0 \) let \(g_1 \in \mathcal{A} \) with \(\Phi(g_1) = 1 \). Hence \(\Phi(g_2) = 1 \), where \(g_2 = (g_0 + g_1)/2 \). Suppose
the measures $< g_1, dF >$ and $< g_2, dF >$ are supported by k_1 and k_2, respectively. Therefore (3) implies that $f(k_2) = \frac{f(k_0) + f(k_1)}{2}$ for all $f \in C(K)$. Consequently $k_0 = k_1 = k_2$. In general we have

$$\Phi(g) = < g(k_0), F(k_0) > = F(k_0)(g(k_0))$$

(4) for every $g \in C(K, \mathcal{A})$ and for some $k_0 \in K$. □

Theorem 3. Let K be a compact Hausdorff space and let \mathcal{A} be a commutative Banach algebra with maximal ideal space \mathcal{M}. Then the maximal ideal space $\mathcal{M}_{C(K, \mathcal{A})}$ of $C(K, \mathcal{A})$ can be identified with the space $K \times \mathcal{M}$. The action of an element $(k, \varphi) \in K \times \mathcal{M}$ on an element $g \in C(K, \mathcal{A})$ is given by $g \mapsto \varphi(g(k))$.

Proof. Let Φ be a nonzero multiplicative linear functional on $C(K, \mathcal{A})$. Fix $g \in C(K, \mathcal{A})$ with $\Phi(g) = 1$. Then $\Phi(f_1 f_2 g) = \Phi(f_1 g) \Phi(f_2 g)$ for every $f_1, f_2 \in C(K)$. In this way Φ defines a multiplicative linear functional on $C(K)$, and because the maximal ideal space of $C(K)$ is K we have $\Phi(f g) \in \text{Im}(f)$, $f \in C(K)$. By Lemma 2 we see that Φ is supported by a single point k_0. Now if Φ is represented by $F \in M(K, \mathcal{A}^*)$, then by relation (4),

$$\Phi(g) = F(k_0)(g(k_0)), \text{ for all } g \in C(K, \mathcal{A}).$$

Since Φ is not identically zero, $F(k_0)$ would also be nonzero and by letting g vary in constant functions, it follows that $F(k_0) \in \mathcal{M}$. Therefore,
we have the identification $\Lambda : \Phi \mapsto (k_0, F(k_0))$ from $\mathcal{M}_{C(K,A)} \to K \times \mathcal{M}$.

We now prove that this identification is unique. If $\Phi \in \mathcal{M}_{C(K,A)}$ corresponds to two elements (k_1, φ_1) and (k_2, φ_2) in $K \times \mathcal{M}$, then for all $f \in C(K,A)$ we have $\Phi(f) = \varphi_1(f(k_1)) = \varphi_2(f(k_2))$. Letting f be a constant function we have $\varphi_1 = \varphi_2$. Choose $x \in A$ such that $\varphi_1(x) \neq 0$ and if $k_1 \neq k_2$ choose $f \in C(K)$ such that $f(k_1) = 0$ and $f(k_2) = 1$. Then $\Phi(f x) = \varphi_1(f(k_1)x) = 0$ and $\Phi(f x) = \varphi_2(f(k_2)x) \neq 0$. This contradiction shows that $k_1 = k_2$. Hence the identification Λ is well-defined.

It is clear that Λ is one to one. On the other hand each $(k, \varphi) \in K \times \mathcal{M}$ induces an element $\Phi \in \mathcal{M}_{C(K,A)}$ acting as $\Phi(f) = \varphi(f(k))$ and as above Φ is identified with (k, φ). Hence the identification Λ is onto.

Now we prove that Λ and Λ^{-1} are continuous. If \mathcal{A} is assumed to be unital, the continuity of Λ implies that of Λ^{-1}, since $\mathcal{M}_{C(K,A)}$ is compact in this case.

Let $\Phi_\alpha \to \Phi$ weak * in the space $\mathcal{M}_{C(K,A)}$ and let Φ_α correspond to $F_\alpha \in M(K,A^*)$ and Φ to $F \in M(K,A^*)$. Then there are $k_0, k_\alpha \in K$ such that $\Lambda \Phi_\alpha = (k_\alpha, F_\alpha(k_\alpha))$ and $\Lambda \Phi = (k_0, F(k_0))$. Thus, for all $g \in C(K,A)$, $F(k_\alpha)(g(k_\alpha)) \to F(k_0)(g(k_0))$. Again letting g vary in constant functions implies that $F_\alpha(k_\alpha) \to F(k)$ weak * in \mathcal{M}. Now for
an element $g_0 \in C(K, A)$ with $\Phi(g_0) = 1$ and for all $f \in C(K)$,
\[
\int_K f(k) < g_0(k), dF_\alpha(k) \longrightarrow \int_K f(k) < g_0(k_0), dF(k) > .
\]
This shows that the measures $< g_0, dF_\alpha >$ converge weak * in $M(K)$
to the measure $< g_0, dF >$ which is just the point mass at k_0. Also for
each α the measure $< g_0, dF_\alpha >$ is zero or is supported at the point k_α.
In each case there exists a complex number a_α such that $< g_0, dF_\alpha > =
a_\alpha d\delta_{k_\alpha}$. Thus for all $f \in C(K)$ we have $a_\alpha f(k_\alpha) \to f(k_0)$ from which we
easily conclude that $k_\alpha \to k_0$ in K. Therefore $(k_\alpha, F(k_\alpha)) \to (k_0, F(k_0))$
in $K \times M$ and this implies the continuity of Λ.

Conversely, let $(k_\alpha, \varphi_\alpha) \to (k, \varphi)$ in $K \times M$ and $\Phi_\alpha = \Lambda^{-1}(k_\alpha, \varphi_\alpha)$,
$\Phi = \Lambda^{-1}(k, \varphi)$. Then for a fixed $f \in C(K, A)$,
\[
|\Phi_\alpha(f) - \Phi(f)| = |\varphi_\alpha(f(k_\alpha)) - \varphi(f(k))| \\
\leq |\varphi_\alpha(f(k_\alpha)) - \varphi_\alpha(f(k))| + |\varphi_\alpha(f(k)) - \varphi(f(k))| \\
\leq ||f(k_\alpha) - f(k)|| + |\varphi_\alpha(f(k)) - \varphi(f(k))|
\]
The right hand side of the above inequality converges to zero by noting
that f is continuous, $k_\alpha \to k$ and $\varphi_\alpha \to \varphi$ weak * in M. This shows that
$\Phi_\alpha \to \Phi$ weak * in $M_{C(K, A)}$ and this implies the continuity of Λ^{-1}. □

References

Mohammad Hassan Shirdarreh Haghighi
Department of Mathematics
College of Sciences
Shiraz University
Shiraz 71454, IRAN
E-mail: shirdareh@susc.ac.ir