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Abstract. The purpose of this manuscript is to present an effective nu-
merical technique for solving nonlinear fractional differential equations.
The proposed approach, known as the fractional Legendre-Picard itera-
tion method, utilizes the shifted Legendre polynomial and the Picard it-
eration method. The Picard method is a recursive algorithm commonly
used to solve initial value problems. However, the main challenge of this
method is computing the integral of the complex and nonlinear function.
In this study, we aim to approximate the function within the integral
using Legendre polynomials, thereby resolving this issue. Furthermore,
the fractional integrals of the shifted Legendre polynomials are easily
calculated at each step. Additionally, we provide a detailed explanation
of the proposed method in the form of a vector matrix, which reduces
CPU time. The convergence analysis of the method is conducted, and
numerical simulations are performed to demonstrate the effectiveness
and accuracy of the proposed approach.
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1 Introduction

Fractional differential equations (FDEs) have become an essential tool
for modeling and analyzing natural phenomena in various fields of sci-
ences, including mathematics, physics, chemistry, and engineering [9, 16,
21, 26, 28]. Many physical processes exhibit fractional order behavior
that may vary with time or space, and FDEs provide an accurate de-
scription of such behavior. These equations arise as mathematical mod-
els for physical problems, particularly those that exhibit memory effects
and weak singularities [13, 27]. However, finding analytical solutions to
FDEs is challenging due to the complexity of fractional derivatives and
integral operators. Therefore, the development of numerical methods
for solving FDEs has become an important issue. Efficient numerical
techniques for approximating solutions of FDEs have been developed
and studied in the last few decades.

A significant category of numerical methods for solving fractional dif-
ferential equations are semi-analytical methods. Examples of such meth-
ods include: the Adomian decomposition method (ADM) and it’s im-
provements [12, 32], variational iteration method (VIM) [19, 35], homo-
topy analysis method (HAM) [1, 11, 20], homotopy perturbation method
(HPM) [2, 24], differential transformation method (DTM) [4, 25], and
collocation methods using orthogonal polynomials such as Legendre,
Chebyshev and Jacobi polynomials [3, 7, 8, 29]. These methods have
been proven to be effective in solving FDEs in different scenarios, with
varying degrees of accuracy and computational efficiency.

The Picard’s successive method is a simple and efficient semi-analytical
technique that can be used to solve a wide range of fractional differential
equations [15, 23, 30]. In fact, this method is an iterative approach by
generating a sequence of functions that converge to the exact solution.
Each iteration involves approximating the solution with a function that
depends on the previous approximation. However, this method can be-
come complicated or unsolvable when dealing with nonlinear cases due
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to the calculation of corresponding integrals. In [30], the author in-
troduces a new method for solving fractional differential equations that
combines controlled Picard’s method with Simpson’s rule to improve
convergence and handle higher order differential equations with strong
terms. In 1957, Clenshaw [10] came up with a technique that combined
Chebyshev polynomials and the Picard iteration approach. This method
is used to solve linear first-order ordinary differential equations. In 2010,
Bai [6] modified the Chebyshev-Picard iteration method to make it even
more effective for solving initial value problems (IVPs) and various types
of boundary value problems (BVPs) commonly encountered in aerospace
engineering. Tafakkori-Bafghi et al. in [34] introduced a method, which
is based on the Picard iteration technique, to handle two-point nonlinear
boundary value problems. This approach offers an effective numerical
solution to such problems. Additionally, in another work [33], the au-
thors proposed this method for solving nonlinear initial value problems.
Overall, these iterative numerical methods have proved to be valuable
tools in the field of (classical) numerical analysis, providing efficient so-
lutions to various types of differential equations in different domains of
application.

To the best of our knowledge, the application of orthogonal polyno-
mials to calculate the fractional integral of nonlinear terms within the
Picard’s method has not been previously used to solve fractional differ-
ential equations (FDEs). In this paper, we introduce a new method
called the fractional Legendre-Picard iteration method, which builds
upon previous research in this area. Our proposed approach involves
utilizing shifted Legendre polynomials to solve the nonlinear integral
equation at each iteration of the Picard successive iteration. By doing
so, we aim to provide a novel and effective numerical solution for FDEs
that has not been explored before.

The purpose of this proposed method is to simplify dealing with
the complexity of nonlinear terms in fractional integral in each itera-
tion of Picard’s method. It does not require specialized mathemati-
cal techniques, instead approximating the function through a recursive
formula. In addition, the use of orthogonal polynomials to iteratively
solve the resulting nonlinear fractional integral equation at each step
of Picard’s method effectively provides an exact approximation. This
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approach uses orthogonal polynomials in the Picard iteration scheme to
efficiently solve fractional integral equations directly, without the need
for complex analytical techniques. The recursive nature and the use
of orthogonal functions allow decent approximations to be computed
at reasonable computational costs. As we mentioned in the article, the
Legendre-Picard iteration method has advantages over the classic Picard
iteration method. The advantage of our method compared to the Picard
method is that in the classical Picard method, the number of terms per
iteration may be significantly increased (even assuming that the integral
is easily computed). However, in our method, we estimate the solution
terms using Legendre polynomials and can control the number of terms.
Also, the introduction of the matrix-vector form of the proposed method
increases its computational speed, which can be seen in our numerical
examples.

2 Preliminaries

This section presents various premises, theorems, and formulas utilized
in this paper. We begin by reviewing some important concepts of frac-
tional calculus, followed by a discussion of the properties of shifted Leg-
endre polynomials.

Fractional calculus

Definition 2.1. [22] The fractional integral (or the Riemann-Liouville
fractional integral) with order q > 0, of the given function u(t), t ∈ (a, b)
is defined as

Iqau(t) =
1

Γ(q)

∫ t

a
(t− s)q−1u(s))ds, (1)

I0au(t) = u(t).

Here, we need to recall the following property

Iqa(t− a)k =
Γ(k + 1)

Γ(q + k + 1)
(t− a)q+k. (2)
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The Riemann-Liouville fractional derivative of order q is represented as
Dq and defined as follows:

Dqu(t) =
dn

dtn
(In−q

a u(t)),

where n− 1 < q ≤ n, n ∈ N.

Definition 2.2. [22]The Caputo derivatives with order q > 0 of the
given function u(t), t ∈ (a, b) are defined as

cDqu(t) =
1

Γ(n− q)

∫ t

a
(t− s)n−q−1u(n)(s)ds, n− 1 ≤ q ≤ n,

= In−q
a u(n)(t).

Lemma 2.3. [22] Let q > 0 and u ∈ Cn[a, b], then

IqacDqu(t) = u(t)−
n−1∑
k=0

u(k)(a)

k!
(t− a)k, t > 0,

cDqIqau(t) = u(t).

Shifted Legendre polynomials

The Legendre polynomials, denoted as Ln(t) for n = 0, 1, 2, . . ., form
a complete set of polynomials that serve as solutions to the associated
Sturm-Liouville problem [31]

(1− t2)L′′n(t)− 2tL′n(t) + n(n+ 1)Ln(t) = 0, n = 0, 1, 2, · · · .

The Legendre polynomials Ln(t) of degree n are expressed analytically
as follows:

Ln(t) =
1

Γ(n+ 1)

n∑
k=0

(
n

k

)
Γ(n+ k + 1)

Γ(k + 1)
(
t− 1

2
)k.

where L0(t) = 1 and L1(t) = t. The set of Legendre polynomials is a
complete and orthogonal system on L2(I) = L2([−1, 1]) with property∫

I
Ln(t)Lm(t)ω(t)dt = hnδnm,
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where ω(t) = 1, hn = 2
2n+1 and δnm is the Kronecker delta function.

Now, let Λ = [0, L]. By using the change of variable t = 2
L t− 1, the

analytic form of the shifted Legendre polynomial is defined as:

L∗n(t) =
n∑

k=0

(−1)n−kΓ(n+ k + 1)

Γ(k + 1)(n− k)!k!Lk
tk, (3)

where L∗n(0) = (−1)n and L∗n(L) = 1. Hence, the orthogonality condi-
tion is ∫

Λ
L∗j (t)L∗k(t)dt = (

L

2k + 1
)δjk.

A square integrable function f(t) defined in the interval (0, L) can be
represented in terms of shifted Legendre polynomials as follows:

f(t) =

∞∑
i=0

fiL∗i (t),

where the cofficients fi are given by

fi =
2i+ 1

L

∫ L

0
f(t)L∗i (t)dt, i = 0, 1, 2, · · · . (4)

In practical applications, we typically consider only the first (N + 1)
terms of the shifted Legendre polynomials. Consequently, the function
f(t) can be conveniently expressed in the following form:

fN (t) ≃
N∑
i=0

fiL∗i (t) = BTψ(t),

The expressions for the shifted Legendre coefficient vector B and the
shifted Legendre vector ψ(t) are as follows:

BT = [f0, f1, · · · , fN ],

ψ(t) = [L∗0(t),L∗1(t), · · · ,L∗N (t)]T

The integral in (4) can be approximated using the shifted Legendre-
Gauss quadrature rule as

fi ≃ (
2i+ 1

2
)

N∑
j=0

f(tj)L∗i (tj)ωj , i = 0, 1, · · · , N.
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where

tj =
L

2
(τj + 1), j = 0, 1, · · · , N, (5)

and {τj}Nj=0 are the roots of LN+1(t) and {ωj}Nj=0 are corresponding
weights introduced in [31] as

ωj =
2

(1− τ2j )(L′N+1(τj))
2

=
(2N + 2)

(N + 1)2LN (τj)L′N+1(τj)
, j = 0, 1, · · · , N.

In the continuation of the article, we need to calculate the fractional
integral of shifted Legendre polynomials. Given that writing the deriva-
tive of fractional polynomials in terms of themselves is importance in
the method presented in this study, we will establish this essential rela-
tionship in the following theorem.

Theorem 2.4. Let L∗n(t) be the shifted Legendre polynomials of degree
n. Then we have

Iq0L
∗
i (t) =

N∑
j=0

ϱ(i, j)L∗j (t), i = 0, 1, · · · , N, (6)

where

ϱ(i, j) =
i∑

k=0

ηijk,

and

ηijk =
(−1)i−kΓ(i+ k + 1)

Γ(k + 1)Γ(k + q + 1)(i− k)!
(7)

×
j∑

h=0

(−1)j−hΓ(j + h+ 1)Γ(h+ k + q + 1)(2j + 1)j!

Γ(j + 1)Γ(h+ 1)Γ(h+ q + k + 2)(j − h)!h!
Lq.

Proof. The shifted Legendre polynomials L∗n(t) of degree n are repre-
sented analytically as given in (3). Since fractional integration is a linear
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operation, combining (1) and (2) leads to the following outcome:

Iq0L
∗
j (t) =

j∑
k=0

(−1)j−kΓ(j + k + 1)

Γ(k + 1)(j − k)!k!Lk
Iqtk,

=

j∑
k=0

(−1)j−kΓ(j + k + 1)

Γ(k + 1)Γ(q + k + 1)(j − k)!k!Lk
tk+q, j = 0, 1, · · ·N.

(8)

In this step, approximate tk+q by shifted Legendre series with N + 1
terms, yields

tk+q =
N∑
j=0

fkjL∗j (t), (9)

where fkj is given from (4) with f(t) = tk+q, that is

fkj = (2j + 1)Lk+q ×
j∑

h=0

(−1)j−hΓ(j + h+ 1)Γ(h+ k + q + 1)

Γ(h+ 1)Γ(h+ q + k + 2)(j − h)!h!
,

j = 0, 1, · · · , N . In virtue of (8) and (9), we get

Iq0L
∗
i (t) =

N∑
j=0

ϱ(i, j)L∗j (t), i = 0, 1, · · · , N, (10)

where

ϱ(i, j) =
i∑

k=0

ηijk,

and

ηijk =
(−1)i−kΓ(i+ k + 1)

Γ(k + 1)Γ(k + q + 1)(i− k)!

×
j∑

h=0

(−1)j−hΓ(j + h+ 1)Γ(h+ k + q + 1)(2j + 1)j!

Γ(j + 1)Γ(h+ 1)Γ(h+ q + k + 2)(j − h)!h!
Lq.

Therefore, the desired result is obtained from Equation (7). □

Remark 2.5. Based on Theorem 2.4, in the vector form we have [8]:

Iq0L
∗
i (t) ≃ [ϱ(i, 0), ϱ(i, 1), · · · , ϱ(i,N)]ψ(t), i = 0, 1, · · · , N.
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3 Fractional Legendre-Picard’s iteration method

In this section, our proposed method named as the fractional Legendre-
Picard’s iteration method (FLPIM) provides an iterative algorithm for
solving fractional ordinary differential equations (FODEs) of the form

cDqu(t) = f(t, u(t)), 0 < t < L, n− 1 ≤ q ≤ n, n ∈ N, (11)

u(l)(0) = u
(l)
0 , l = 0, 1, · · ·n− 1, (12)

where cDqu(t) is the Caputo fractional differential operator of order
q > 0. By applying fractional integration to both sides of equation
(11) and utilizing Lemma 2.3, we can equivalently express the fractional
problem (11) with initial conditions (12) as a fractional integral equation
equation:

u(t) =
n−1∑
l=0

tlu
(l)
0

l!
+

1

Γ(q)

∫ t

0
(t− s)q−1f(s, u(s))ds. (13)

In accordance with (13), the sequence of Picard’s iterations is generated
as follows:

ui(t) =
n−1∑
l=0

tlu
(l)
0

l!
+

1

Γ(q)

∫ t

0
(t− s)q−1f(s, ui−1(s))ds, (14)

where u0(t) represents an appropriate initial function that fulfils the
given initial condition. During the first step of the FLPIM, we approxi-
mate the function f(s, ui−1(s)) on the right side of equation (14) using
the set {L∗n(s)}Nn=0.Therefore,

f(s, ui−1(s)) ≃
N∑
j=0

f̃ i−1
j L∗j (s), (15)

where the coefficients {f̃ i−1
j }Nj=0 can be obtained as

f̃ i−1
j =

(2j + 1

2

) N∑
k=0

f(tk, u
i−1(tk))L∗j (tk)ωk, j = 0, 1, . . . , N. (16)
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Substituting (15) in (14),we have

ui(t) =

n−1∑
l=0

tlu
(l)
0

l!
+ Iq(f(t, u(t))) ≃

n−1∑
l=0

tlu
(l)
0

l!
+ Iq

( N∑
j=0

f̃ i−1
j L∗j (t)

)

=
n−1∑
l=0

tlu
(l)
0

l!
+

N∑
j=0

f̃ i−1
j Iq

(
L∗j (t)

)
.

According to (9) and (10), we have

ui(t) =

n−1∑
l=0

u
(l)
0

l!

N∑
j=0

CljL∗j (t) +
N∑
k=0

f̃ i−1
k

N∑
j=0

ϱ(k, j)L∗j (t)

=
N∑
j=0

L∗j (t)
n−1∑
l=0

u
(l)
0

l!
Clj +

N∑
k=0

f̃ i−1
k

N∑
j=0

ϱ(k, j)L∗j (t)

=

N∑
j=0

L∗j (t)
( n−1∑

l=0

u
(l)
0

l!
Clj +

N∑
k=0

f̃ i−1
k ϱ(k, j)

)
. (17)

where

Clj = (2j + 1)Ll ×
j∑

f=0

(−1)j−fΓ(j + f + 1)Γ(f + l + 1)

Γ(f + 1)Γ(f + l + 2)(j − f)!f !
.

Now, we consider the approximation of ui(t) as follows

ui(t) ≃
N∑
j=0

aijL∗j (t). (18)

Using (17) and (18), we obtain

ai0L∗0(t) + ai1L∗1(t) + · · ·+ aiNL∗N (t) ≃ L∗0(t)
( n−1∑

l=0

u
(l)
0

l!
Cl0 +

N∑
k=0

f̃ i−1
k ϱ(k, 0)

)
+ · · ·+ L∗N (t)

( n−1∑
l=0

u
(l)
0

l!
ClN +

N∑
k=0

f̃ i−1
k ϱ(k,N)

)
.

(19)
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The coefficients {aij}Nj=0 are determined by equating the coefficients of

the shifted Legendre polynomials from the first to the N th order on both
sides of equation (19), which ultimately results in the value

aij =
n−1∑
l=0

u
(l)
0

l!
Clj +

N∑
k=0

f̃ i−1
k ϱ(k, j), j = 0, 1, · · ·N. (20)

Therefore, by determining the values of aij , we can make an approxima-

tion of ui(t). The updated coefficients allow us to refine the approxi-
mation of the integrand in equation (14) for each subsequent iteration.
This iterative process will continue until the desired level of accuracy is
achieved. The FLPIM algorithm will keep iterating until the stopping
criterion is met, which is defined as:

∥ui(t)− ui−1(t)∥ = max
t∈[0,L]

|ui(t)− ui−1(t)| < ϵ,

where ϵ is a predefined tolerance.
We summarize the FLPI method in the following algorithm.

Input:

� Fractional order q

� Number of initial conditions n

� Number of Legendre polynomials N

� Domain length L

� Tolerance ϵ

� Initial function u0(t) that satisfies the given initial conditions

Output: Approximate solution u(t) to the fractional ODE
Algorithm:

1. Initialize u0(t)← u0(t)

2. Calculate the coefficients Clj using the Legendre weights and Leg-
endre polynomials.
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3. Perform Picard iterations until the stopping criterion is met:

� For each j = 0, 1, . . . , N do:

– Calculate the coefficients f̃ i−1
j using the formula (16)

– Calculate the coefficients aij using the formula (20)

– Update the approximation ui(t) using the formula:

ui(t)←
N∑
j=0

aij · L∗j (t)

� Check if the stopping criterion is met:

max
t∈[0,L]

|ui(t)− ui−1(t)| < ϵ

� If the criterion is met, stop the iterations.

� Otherwise, update the previous approximation for the next
iteration: ui−1 ← ui

4. Return the final approximation u(t).

Vector-Matrix form of the FLPIM

To improve the speed and efficiency of the FLPIM, we introduce a com-
pact vector-matrix representation. In order to approximate the solution
ui(t), we determine the coefficients {aij}Nj=0 of the shifted Legendre poly-
nomials using the expression (18). For ease of computation, we represent
the coefficients of the approximate solution ui(t) in vector format as:

ai = [a0, a1, · · · , aN ]T ,

Additionally, we consider the solution ui(t) evaluated at the shifted
Legendre-Gauss nodes (5) in a vector form.

ui = [ui(t0), u
i(t1), · · · , ui(tN )]T . (21)

substituting (18) in (21), the vector ui can be obtained as

ui = Lua
i.
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where

Lu =


L∗0(t0) L∗1(t0) · · · L∗N (t0)
L∗0(t1) L∗1(t1) · L∗N (t1)

...
...

. . . · · ·
L∗0(tN ) L∗1(tN ) · · · L∗N (tN )

 ,

is a constant matrix. Now, by using (20), the vector ai can be calculated
in the new form

ai =


ai0
ai1
...
aiN

 =



n−1∑
l=0

u
(l)
0

l!
Cl0 +

N∑
k=0

f̃ i−1
k ϱ(k, 0)

n−1∑
l=0

u
(l)
0

l!
Cl1 +

N∑
k=0

f̃ i−1
k ϱ(k, 1)

...
n−1∑
l=0

u
(l)
0

l!
ClN +

N∑
k=0

f̃ i−1
k ϱ(k,N)


(22)

= ua +


f̃ i−1
0 ϱ(0, 0) + f̃ i−1

1 ϱ(1, 0) + · · ·+ f̃ i−1
N ϱ(N, 0)

f̃ i−1
0 ϱ(0, 1) + f̃ i−1

1 ϱ(1, 1) + · · ·+ f̃ i−1
N ϱ(N, 1)

...

f̃ i−1
0 ϱ(0, N) + f̃ i−1

1 ϱ(1, N) + · · ·+ f̃ i−1
N ϱ(N,N)



= ua +


ϱ(0, 0) ϱ(1, 0) · · · ϱ(N, 0)
ϱ(0, 1) ϱ(1, 1) · · · ϱ(N, 1)

...
ϱ(0, N) ϱ(1, N) · · · ϱ(N,N)



f̃ i−1
0

f̃ i−1
1
...

f̃ i−1
N

 = ua +Mf i−1,

where

ua =

(
n−1∑
l=0

ul0
l!
Cl0,

n−1∑
l=0

ul0
l!
Cl1, · · · ,

n−1∑
l=0

ul0
l!
ClN

)T

,

f i−1 =
(
f̃ i−1
0 , f̃ i−1

1 , · · · , f̃ i−1
N

)T
, (23)
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In this context, ua represents a fixed vector, andM is a constant matrix.
Now, applying (16) in (23), we obtain the following:

f i−1 =


f̃ i−1
0

f̃ i−1
1
...

f̃ i−1
N



=


1
2

(
f(t0, u

i−1(t0))L∗0(t0)ω0 + · · ·+ f(tN , u
i−1(tN ))L∗0(tN )ωN

)
3
2

(
f(t0, u

i−1(t0))L∗1(t0)ω0 + · · ·+ f(tN , u
i−1(tN ))L∗1(tN )ωN

)
...

2N+1
2

(
f(t0, u

i−1(t0))L∗N (t0)ω0 + · · ·+ f(tN , u
i−1(tN ))L∗N (tN )ωN

)


= ELT

uWF i−1 (24)

where

W = diag
(
ω0, ω1, · · · , ωN

)
N+1

,

E = diag
(
1
2 ,

3
2 , · · · ,

2N+1
2

)
N+1

,

F i−1 =
(
f(t0, u

i−1(t0)), f(t1, u
i−1(t1)), · · · , f(tN , ui−1(tN ))

)T
,

Thus, from (22) and (24), one can get

ai = ua +Mf i−1 = ua +MELT
uWF i−1 = ua + LT

aF
i−1,

where La = MELT
uW is a constant matrix. In the FLPI method ai will

be updated until until the desired level of accuracy is achieved. Here,
we consider the following stopping condition for V-MF (vector-matrix
form)

∥ui − ui−1∥ = max
0≤j≤N

|ui(tj)− ui−1(tj)| < ϵ,

where ϵ is a given tolerance.

Because the coefficient matrices LT
u and La remain unchanged through-

out all iterations, we can compute them once before the loop and reuse
them thereafter. As a result, the V-MF of the FLPI method is compu-
tationally more efficient compared to the standard iterative form (IF).
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4 Convergence Analysis of the FLPI method

When introducing a numerical method for solving differential equations,
a crucial aspect of investigation revolves around the method’s conver-
gence characteristics and determining its convergence domain. In the
case of the FLPI method, a modification of the Chebyschev-Picard and
Jacobi-Picard methods [6, 33], its convergence domain differs from the
classical Picard iteration method [34]. The observed difference can be
attributed to the accumulation of round-off error and approximation
error arising from the truncated shifted Legendre series of order N em-
ployed during the iterations. In this context, drawing upon the concepts
discussed in [6, 33], we demonstrate that the convergence of the FLPI
method is not guaranteed globally. However, we can establish a specific
condition that ensures its convergence. For achieve this objective, let us
consider fractional ordinary differential equations (11) with initial con-
dition (12). We present the convergency condition of the FLPIM in the
following theorem.

Theorem 4.1. Suppose in fractional ordinary differential equations (11)
with initial condition (12), the function f satisfied in the Lipschitz con-
dition with respect to the second variable, i.e.

|f(t, u)− f(t, v)| ≤ K|u− v|.

The FLPI method is convergence if and only if ∥LuLa∥ < 1
K .

Proof. We work with V-MF of the our method. Therefore, from (3) we
have

ui − ui−1 = Lua
i − Lua

i−1 = Lu

(
ai − ai−1

)
= Lu

(
ua + LaF

i−1 − ua − LaF
i−2
)

= LuLa

(
F i−1 − F i−2

)
∥ui − ui−1∥ = ∥LuLa

(
F i−1 − F i−2

)
∥

≤ ∥LuLa∥∥F i−1 − F i−2∥
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≤ ∥LuLa∥ max
0≤j≤N

|f(tj , ui−1(tj))− f(tj , ui−2(tj))|

≤ ∥LuLa∥ max
0≤j≤N

K|ui−1(tj)− ui−2(tj)|

= K∥LuLa∥ max
0≤j≤N

K|ui−1 − ui−2|

= K∥LuLa∥∥ui−1 − ui−2∥.

Then

∥ui − ui−1∥ ≤ K∥LuLa∥∥ui−1 − ui−2∥
≤ (K∥LuLa∥)2∥ui−2 − ui−3∥
≤ (K∥LuLa∥)3∥ui−3 − ui−4∥
...

≤ (K∥LuLa∥)i−1∥u1 − u0∥.

Accordingly, we will have

∥ui − ui−1∥ ≤ (K∥LuLa∥)i−1∥u1 − u0∥.

Hence, it is clear that if, ∥LuLa∥ < 1
K we will obtain

lim
i→∞
∥ui − ui−1∥ = 0,

which completes the proof. □

5 Numerical Examples

In this section, we demonstrate the effectiveness and precision of the
FLPI method through various examples. Our comparison of results
obtained from other methods highlights the high accuracy and efficiency
of the FLPI method.

Example 5.1. The following initial value problem is considered:[30],

cDqu(t) = t8 exp(t) +
Γ(5)

Γ(5− q)
t4−q − exp(t)u2(t), 2 ≤ q ≤ 3,

u(0) = u′(0) = u′′(0) = 0, 0 ≤ t ≤ 1,
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(a) the comparison of approximate so-
lutions for q = 2.5 with exact solution.

(b) the comparison of approximate so-
lutions for q = 3 with exact solution.

Figure 1: The exact and approximate solutions for q = 2.5 and q = 3
in Example 5.1.

and has the exact solution u(t) = t4. Figure 1 illustrates a comparison
between the exact and approximate solutions for various q orders.

The exact and approximate solutions exhibit a close match, indicat-
ing that the approximate method effectively addresses the given problem
with significant reductions in computational time and resources com-
pared to the exact method. The approximate solution follows similar
trends and shapes as the exact one.

To demonstrate our new approach, we approximated the absolute
errors of the scheme at different q orders and combined the results with
those from [30], using the controlled Picard’s method with Simpson rule.
Figures 2(a) and 2(b) present the visualized results.

Comparing the absolute errors shown in Figures 2(a) and 2(b), it’s
evident that our new method has reduced the error by 103 times com-
pared to the controlled Picard’s method with Simpson rule [30]. Thus,
the our new FLPI method proves highly accurate for solving equations
when compared to the controlled Picard’s method with Simpson rule.
For N=30, Table 1 displays the maximum absolute error and CPU time
obtained by the proposed method.
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(a) Absolute error of solution by the
method presented in [30].

(b) Absolute error of solution by the
FLPI method of Example 5.1.

Figure 2: Comparison of solution by our FLPI method and controlled
Picard’s method with Simpson rule of [30].

Table 1: The maximum absolute error and iteration numbers (IN)
achieved by the FLPI method, employing a stopping criterion of ϵ =
10−30 for Example 5.1.

q L∞ IN CPU time, s

2.5 3.513600e− 08 10 1.156
2.9 1.547222e− 07 9 1.297
3 2.057261e− 36 8 0.89

The primary focus of many scientists has always been on modeling
and solving real-world problems. One such problem is Bratu’s problem,
which originated as a simplification of the solid fuel ignition model in
thermal combustion theory. Recently, researchers have extended Bratu’s
problem to include fractional derivatives in some papers, such as the one
by Ghomanjani et al [18]. In this study, we tackle this extended problem
using the FLPI method, as demonstrated in the following example.

Example 5.2. The fractional Bratu’s initial value problem (FBIVP) is
considered [18]

cDqu(t) = 2 exp(u(t)), 1 < q ≤ 2,

u(0) = u′(0) = 0, 0 < t < 1,

The exact solution by q = 2 is u(t) = −2 ln(cos(t)). In Figure 3, we
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illustrate the exact solution and approximate solutions of FBIVP for
q = 2.

Figure 3: The exact and approximate solutions for q = 2 in Example
5.2.

The exact and approximate solutions exhibit a remarkable agree-
ment, signifying that the approximate method provides a robust solu-
tion to the given problem while significantly reducing the computational
time and resource requirements compared to the exact method. The ap-
proximate solution closely matches with the general trends and shapes
observed in the exact solution.

To efficiently demonstrate our novel approach (FLPI method), we
computed the maximum absolute errors of the scheme at q = 2 and
q = 1.9. These results were then combined with the findings from
[18] and [17], alongside the maximum absolute errors obtained from
the Bezier curve method (BCM) [18], compact finite difference scheme
(CFDS) [17], and the proposed reproducing kernel method (RKM) [5].
The visualized outcomes are presented in Table 2.

Example 5.3. Consider the following fractional initial value problem

cDqu(t) =
Γ(9)

Γ(9− q)
t8−q + t8 +

9

4
tq +

9

4
Γ(q + 1)− u(t), 0 < q < 1,

u(0) = 0, t ∈ [0, L],
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Table 2: The maximum absolute error of solution by our method with
RKM, CFDS and BCM for q = 2, 1.9, of Example 5.2.

q proposed method error of RKM [5] error of CFDS [17] error of BCM [18]
2 1.42e − 19 2.12e − 4 8.32e − 5 3.47e − 3
1.9 2.01e − 01 1.43 1.46 1.23

(a) Comparison of the exact and ap-
proximate solutions of Example 5.3.

(b) Absolute error of solution by pro-
posed method of Example 5.3.

Figure 4: Solution of proposed method for q = 0.9.

whose exact solution is given by u(t) = 9
4 t

q + t8.
The graph of the exact and approximate solutions are illustrated in
Figure 4(a) and absolute error of solution by proposed FLPI method
is presented in Figure 4(b). We observe a close alignment between the
exact and approximation solutions, as demonstrated in Table 3, which
presents the maximum absolute error and CPU time for the iterative
form (IF) and V-MF of the FLPIM with a stopping criterion of ϵ =
10−30. Observing across all modes, it is evident that the V-MF exhibits
notably faster performance. Table 4 presents the maximum error of
the FLPIM for various values of N , along with the stopping criterion
ϵ = 10−30 and the corresponding IN. As we increase the value of N, we
observe a notable exponential decrease in errors.

Example 5.4. Consider the following fractional Riccati differential equa-
tion (FRDE) [14],

cDqu(t) = 1 + u2(t), 0 < q ≤ 1,

u(0) = 0, t ∈ [0, 1],
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Table 3: A comparative analysis of CPU time (in seconds) between the
IF and V-MF of the FLPIM with a stopping criterion of ϵ = 10−30 for
Example 5.3.

q N 4 8 16 32

0.5 IF 6.281 13.156 39.719 416.032
V-MF 1.312 1.344 1.266 2.125

0.9 IF 4.063 7.813 24.641 185.016
V-MF 1.063 1.141 1.125 1.547

1 IF 2.625 4.328 13.172 109.406
V-MF 1.469 1.031 1.344 1.687

Table 4: The maximum errors obtained by the FLPIM for different
values of N and a stopping criterion of ϵ = 10−30, along with the corre-
sponding IN for Example 5.3.

N 32 16 8 4
q

Error IN Error IN Error IN Error IN
0.9 4.210158e − 04 32 1.394541e − 03 32 4.429987e − 03 36 4.593985e − 02 40
1 8.482475e − 33 29 8.482163e − 33 29 2.730550e − 32 32 3.314523e − 02 38

The exact solution for q = 1 is given by u(t) = tan(t).
Figure 5(a) presents the exact and approximate solutions, while figure
5(b) shows the absolute error of the solution obtained by the FLPI
method. Figure 6 illustrates the approximate and exact solutions at
different q orders and N = 20 for the FRDE. To demonstrate the effec-
tiveness of our new approach, we first calculated the maximum absolute
errors of the scheme at q = 1. Next, we integrated these results with the
findings from [14], which also included the maximum absolute errors ob-
tained by a decomposition algorithm using spectral methods [14]. The
combined results are presented in Table 5 for visualization.

Example 5.5. Consider the nonlinear fractional differential equation
[25],

cDqu(t) = sin(t) cos2(t)− 2u(t) + u3(t), 1 < q ≤ 2,

u(0) = 0, u′(0) = 1, 0 ≤ t ≤ 1,

In the case of q = 2, the exact solution is given by u(t) = sin(t).
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(a) The approximate and exact solu-
tions of Example 5.4.

(b) Absolute error of solution by pro-
posed method of Example 5.4.

Figure 5: Solution of proposed method for q = 1.

Figure 6: The approximate and exact solutions at different q orders
and N = 20 for Example 5.4.

Table 5: Absolute errors of u(t) using the proposed method versus the
spectral methods [14] with q = 1 for Example 5.4.

N proposed method spectral methods [14]

4 4.0219e− 03 6.9682e− 3
8 1.9667e− 05 2.0857e− 5
12 8.8374e− 08 7.3355e− 8
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(a) The exact and approximate solu-
tions of Example 5.5 for q = 2 and
N = 10.

(b) Absolute error of solution by the
FLPI method in Example 5.5 for q = 2
and N = 10.

Figure 7: The solution and absolute error corresponding to Example
5.5.

Table 6: Maximum of the absolute error of the FLPIM with stopping
criterion ϵ = 10−30 Example 5.5 for q = 2.

N 4 8 12 16 32
L∞ 2.933034e − 05 5.008585e − 11 1.361912e − 17 1.061507e − 24 4.033158e − 34
IN 5 16 14 14 14

Figure 7(a) shows the graph of the exact solution and approximate so-
lutions, and figure 7(b) displays the absolute error of the solution com-
puted by the FLPI method. The excellent agreement between the ex-
act and approximate solutions signifies that the proposed approximate
method offers a commendable solution to the problem, all the while
significantly reducing computational time and resource requirements in
comparison to the exact method. Moreover, the approximate solution
closely adheres to the trends and shapes observed in the exact solution.
Table 6 presents a comparison of the maximum absolute error for various
values of N alongside its corresponding IN. The results highlight that
increasing the value of N leads to improved accuracy in the proposed
method. To showcase the efficiency of the FLPIM, Table 7 provides a
comparative analysis of the maximum absolute error with other methods
mentioned in the study. This comparison underscores the competitive-
ness and efficacy of the FLPIM in delivering accurate results.
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Table 7: Comparison of maximum errors between the FLPIM (N =
5, 10, ϵ = 10−30) and several methods for Example 5.5 for q = 2.

N proposed method modified HAM [25] HAM [25] FDE12

5 7.627515e− 07 1.2e− 5 5e− 3 6.076221e− 4
10 3.134866e− 14 1.5e− 9 2.5e− 6 6.076221e− 4

By increasing the value of N , we observe a significant exponential de-
crease in errors, highlighting the enhanced accuracy of our approach. To
effectively demonstrate the merits of our new method, we first computed
the maximum absolute errors of the scheme at q = 2. Subsequently,
we integrated these results with the findings of [25], which included the
maximum absolute errors obtained using the homotopy analysis method
(HAM) [25] and its modified algorithm. The combined outcomes are
presented in Table 7 for comprehensive visualization and analysis.

6 Conclusion

In this work, we introduced the FLPIM as a powerful numerical tool for
solving nonlinear fractional differential equations. By combining the Pi-
card iteration method, orthogonal shifted Legendre polynomials, and the
shifted Legendre-Gauss quadrature formula, we developed the FLPIM,
which stands out for its simplicity and efficiency.

The FLPIM eliminates the need for derivative or integral computa-
tions, making it easy to implement without Taylor series approximations,
Adomian decomposition, or solving systems of algebraic equations. In-
stead, the integration of shifted Legendre polynomials is analytically
computed using an iterative formula, as stated in Theorem 2.4. We
further introduced a V-MF variant of the FLPIM to enhance its com-
putational speed.

To assess the method’s performance, we applied it to well-known
and practical problems in fractional differential equations, such as the
fractional Riccati and fractional Bratu’s problems. The accuracy of the
FLPIM’s results was verified by comparing them with solutions obtained
from various established numerical methods in the literature, showcasing
the method’s reliability and effectiveness.
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We also conducted a convergence analysis of the proposed method
and determined the conditions for its convergence.

In conclusion, the FLPIM provides a robust and efficient approach
for solving nonlinear fractional differential equations, delivering accurate
results while offering notable computational advantages. This work con-
tributes to the field of fractional calculus and provides valuable insights
for future advancements and applications in this domain.
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