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Abstract. This study explores fractional differential equations with
order 2 < µ < 3, including fractional boundary conditions, using the
Mittag-Leffler operator. By adding ABC-fractional boundary condi-
tions, we expand the conventional framework to include Dirichlet and
Neumann types, offering a wider range for applying boundary condi-
tions. We prove the existence and uniqueness of solutions through the
Leray-Schauder alternative fixed point theorem and the Banach con-
traction principle, respectively. Additionally, we examine how solutions
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depend continuously on initial data, providing insight into the stabil-
ity and robustness of the system when initial conditions change. We
back up our theoretical discoveries with examples that show how the
results are relevant and applicable in practice. This research greatly
improves comprehension of fractional differential equations with frac-
tional boundary conditions, providing new viewpoints and methods for
studying complex systems with both regular and irregular behaviors.
The impacts of this study reach a wide range of scientific and engi-
neering fields, as using fractional derivatives in modeling offers a more
precise representation of actual phenomena.

AMS Subject Classification: 32F18; 34A12.
Keywords and Phrases: Boundary conditions, Continuous depen-
dence, Mittag-Leffler operator.

1 Introduction

The concept of differentiation, a fundamental pillar of calculus, has been
extended beyond its integer-order confines to embrace the complexities
of non-local and memory-dependent phenomena. This extension, known
as fractional calculus, introduces the notion of fractional derivatives.
Unlike traditional derivatives, these fractional counterparts allow for
the exploration of intricate behaviors and dynamic patterns that are
prevalent in various natural and artificial systems.

The applications of fractional derivatives are wide-ranging, permeat-
ing diverse fields of science and engineering [14, 15, 21]. From modeling
anomalous diffusion in porous media to describing the viscoelastic prop-
erties of materials, fractional derivatives have proven their efficacy in
capturing intricate features that elude traditional integer-order deriva-
tives. These applications extend into disciplines like biology, where they
find use in explaining neuron firing patterns and drug dispersion in bio-
logical tissues, as well as in finance, where they offer insights into com-
plex price dynamics.

Among the various formulations of fractional derivatives, the Atangana-
Baleanu fractional derivative in the sense of Caputo (ABC-derivative)
emerges as a notable mathematical tool. Its distinct advantage lies in
its ability to simultaneously capture both fractal and non-fractal charac-
teristics within a system. Unlike other fractional derivatives, the ABC-
derivative excels at modeling processes that exhibit power-law growth
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rates and self-similar behaviors. This exceptional capability lends itself
to the accurate representation of complex real-world systems that ex-
hibit a blend of regularity and irregularity, making the ABC-derivative
a potent instrument for dissecting intricate phenomena [2, 12, 16].

Recent advances in the field have further expanded the scope of frac-
tional differential equations, exploring various complex systems and their
stability properties. For instance, Ahmad et al. [4] examined the exis-
tence and stability of a neutral stochastic fractional differential system,
highlighting the intricate behaviors introduced by stochastic elements in
fractional systems. Farahi et al. [9] contributed to the understanding
of infinite systems of fractional equations in sequence spaces, offering
insights into the solvability of such systems. Additionally, the work by
George et al. [10] on a coupled system of pantograph problems using
positive contraction-type inequalities demonstrates the applicability of
fractional calculus in handling coupled differential systems. Other sig-
nificant contributions include studies on quantum inclusions [11] and
hybrid versions of generalized Sturm-Liouville-Langevin equations [13],
which underscore the versatility of fractional calculus in addressing di-
verse mathematical challenges. These studies, along with Salim et al.’s
exploration of deformable implicit fractional differential equations in
metric spaces [19], collectively enrich the foundation upon which our
current research builds.

Building upon the foundation laid by previous research on fractional
differential equations utilizing the ABC-derivative, this paper aims to
address more complex scenarios by incorporating higher-order fractional
differential equations with Mittag-Leffler operators. This transition from
prior equations to the current problem is essential for advancing our un-
derstanding of systems exhibiting both fractal and non-fractal dynamics.

In this paper, we focus on a fractional differential equation of order
2 < µ < 3, incorporating fractional boundary conditions through the
utilization of the ABC-fractional derivative:

ABCDµ

0+
u(t) = ψ

(
t, u(t),AB Iν

0+u(t)
)
, t ∈ I = [0, 1], 2 < µ < 3, 0 < ν < 1,

u(0) = u0,
ABCDµ−1

0+
u(1) = u1,

ABCDµ−2

0+
u(1) = u2.

(1)

where u0, u1, u2 ∈ R and ψ : I × R2 −→ R is a real-valued function
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which is continuous and verifies certain conditions.
This specific form of boundary conditions introduces a novel aspect

to the problem, leading to intriguing mathematical challenges and op-
portunities for analysis.

The primary contribution of this paper lies in its comprehensive in-
vestigation of the considered fractional differential equation with ABC-
fractional derivative and fractional boundary conditions. While previ-
ous studies have explored fractional differential equations and their solu-
tions, our research introduces a unique blend of aspects that enriches the
field. Specifically, our work presents the following notable contributions:

� Novel Boundary Conditions: By incorporating the ABC-fractional
derivative and fractional boundary conditions, our study ventures
into uncharted territory, offering a new perspective on the behav-
ior of fractional differential equations. Fractional boundary condi-
tions possess a broader scope and can serve as a means to extend
and generalize boundary conditions of the Dirichlet or Neumann
types. This contribution is particularly valuable as it extends the
applicability of fractional calculus to scenarios with non-standard
boundary conditions.

� Triple Analysis Approach: To address different facets of the
problem, we adopt a three-fold analytical approach. We estab-
lish the existence of solutions using the Leray-Schauder alternative
fixed point theorem, ensuring the robustness of our results. More-
over, we delve into the uniqueness of solutions using the Banach
principle, providing insights into the distinctiveness of solutions
within the problem domain. Additionally, we explore the continu-
ous dependence of solutions on initial data, shedding light on the
stability of the system under consideration.

� Practical Relevance: Theoretical findings are often validated
by illustrative examples. A concrete examples that illustrate the
application of our results are given. These examples validate the
theoretical framework.

In summary, this paper significantly extends the current understand-
ing of fractional differential equations by introducing fractional bound-
ary conditions through the ABC-fractional derivative. The combination
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of theoretical rigor, a comprehensive analytical approach, and practical
relevance distinguishes our work and paves the way for further explo-
ration of this intriguing area of mathematical research.

2 Preliminaries

This section is dedicated to introducing fundamental definitions and
lemmas related to fractional calculus, which will be employed in our
findings. For a deeper understanding, refer to [1, 6, 15, 17, 20] and the
sources cited therein.

In this manuscript, we use the notation C(I) to represent the set
of all real-valued continuous functions on interval I, equipped with the
norm ∥u∥ = sup

t∈I
|u(t)|, by AC(I) the set of all real-valued absolutely

continuous functions on interval I. Additionally, we denote by

ACn(I) =
{
w : I −→ R : w(n−1) ∈ AC(I)

}
, for n ∈ N∗.

.

Definition 2.1. (see [18]) Let δ, η ∈ C. The Mittag-Leffler function is
given as

Eδ,η(z) =
∞∑
n=0

1

Γ(nδ + η)
zn, for z ∈ C and Re(δ) > 0.

Where Γ represents the Euler Gamma function.

We denote by

Eδ(z) := Eδ,1(z) =
∞∑
n=0

1

Γ(nδ + 1)
zn, for δ, z ∈ C and Re(δ) > 0.

Definition 2.2. (see [15, 17]) Let µ > 0, the Riemann-Liouville frac-
tional integral of order µ is defined by

Iµ
0+
φ(t) =

1

Γ(µ)

∫ t

0
(t− θ)µ−1φ(θ)dθ, for a.e. t ∈ I,

where φ ∈ L1(0, 1).
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Definition 2.3. (see [5, 7, 8]) Let φ ∈ H1(0, 1). The ABC-fractional
derivative of φ of order 0 < µ < 1 is given by

ABCDµ
0+
φ(t) =

N (µ)

1− µ

∫ t

0
Eµ

[
− µ

1− µ
(t− θ)µ

]
φ′(θ)dθ,

where N (µ) > 0 designates a normalization function which follow
N (0) = N (1) = 1.
The associated AB-fractional integral of order 0 < µ < 1 is given by

ABIµ
0+
φ(t) =

1− µ

N (µ)
φ(t) +

µ

N (µ)
Iµ
0+
φ(t).

Definition 2.4. For n ∈ N∗ and φ be such that φ(n) ∈ H1(0, 1). The
ABC-fractional derivative of order n < µ < n+ 1 is given by

ABCDµ
0+
φ(t) := ABCDµ−n

0+
φ(n)(t).

The associated AB-fractional integral of order n < µ < n+1 is given by

ABIµ
0+
φ(t) := In

0+
ABIµ−n

0+
φ(t).

Lemma 2.5. (see [3]) For n ∈ N∗ and n < µ < n+ 1. We have

(ABIµ
0+

ABCDµ
0+
u
)
(t) = u(t) +

n∑
i=0

σit
i,

σi ∈ R, i = 0, 1, 2, ..., n, and u ∈ ACn+1(I).

3 Main Results

3.1 Existence and uniqueness results

Within this subsection, we initiate by introducing the solution to our
presented problem. This solution is formulated in the subsequent lemma:
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Lemma 3.1. Let Ψ ∈ AC(I) and Ψ(0) = 0, the following problem
ABCDµ

0+
u(t) = Ψ (t) , t ∈ I = [0, 1], 2 < µ < 3,

u(0) = u0,
ABCDµ−1

0+
u(1) = u1,

ABCDµ−2
0+

u(1) = u2.

(2)

has a solution given as follows:

u(t) = u0 +
1

ω

u2 −
∫ 1

0

(1− θ)Ψ(θ)dθ −
Eµ−2,3

[
−µ− 2

3− µ

]
Eµ−2,2

[
−µ− 2

3− µ

] (
u1 −

∫ 1

0

Ψ(θ)dθ

) t
+

3− µ

N (µ− 2)

∫ t

0

(t− θ)Ψ(θ)dθ +
µ− 2

N (µ− 2)Γ(µ)

∫ t

0

(t− θ)µ−1Ψ(θ)dθ

+
1

2ω

(
u1 −

∫ 1

0

Ψ(θ)dθ

)
t2. (3)

where

ω =
N (µ− 2)

3− µ
Eµ−2,2

[
−µ− 2

3− µ

]
.

Proof. By applying operator ABIµ
0+

on both sides of the first equation
of problem (2) (lemma 2.5), we obtain:

u(t) = σ0 + σ1t+ σ2t
2 +AB Iµ

0+
Ψ(t)

= σ0 + σ1t+ σ2t
2 + I2

0+
ABIµ−2

0+
Ψ(t)

= σ0 + σ1t+ σ2t
2 +

3− µ

N (µ− 2)

∫ t

0
(t− θ)Ψ(θ)dθ

+
µ− 2

N (µ− 2)Γ(µ)

∫ t

0
(t− θ)µ−1Ψ(θ)dθ. (4)

where σ0, σ1 and σ2 are real numbers to be determined.

According to the previous equation, when t = 0, we obtain

σ0 = u(0) = u0. (5)
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Note that, for x ∈ AC3(I), we have

ABCDµ−1

0+
x(t)

=ABC Dµ−2

0+
x′(t)

=
N (µ− 2)

3− µ

∫ t

0

Eµ−2

[
−µ− 2

3− µ
(t− θ)µ−2

]
x′(θ)dθ

=
N (µ− 2)

3− µ

∫ t

0

∞∑
n=0

1

Γ(n(µ− 2) + 1)

(
−µ− 2

3− µ
(t− θ)µ−2

)n

x′(θ)dθ

=
N (µ− 2)

3− µ

∞∑
n=0

1

Γ(n(µ− 2) + 1)

(
−µ− 2

3− µ

)n ∫ t

0

(t− θ)n(µ−2)x′(θ)dθ

=
N (µ− 2)

3− µ

∞∑
n=0

1

Γ(n(µ− 2) + 2)

(
−µ− 2

3− µ

)n ∫ t

0

(t− θ)n(µ−2)+1x′(θ)dθ

=
N (µ− 2)

3− µ

∞∑
n=0

(
−µ− 2

3− µ

)n

In(µ−2)+2

0+
x′(t),

ABCDµ−2

0+
x(t) =

N (µ− 2)

3− µ

∞∑
n=0

(
−µ− 2

3− µ

)n

In(µ−2)+2

0+
x(t).

In particular,

ABCDµ−1

0+
t = 0, ABCDµ−1

0+
t2 = 2ABCDµ−2

0+
t = 2

N (µ− 2)

3− µ
Eµ−2,2

[
−µ− 2

3− µ
tµ−2

]
t,

ABCDµ−2

0+
t2 = 2

N (µ− 2)

3− µ
Eµ−2,3

[
−µ− 2

3− µ
tµ−2

]
t2.

By applying operator ABDµ−1
0+

on both sides of equation (4) and then
substituting t = 1, we get:

u1 = 2ωσ2 +

∫ 1

0
Ψ(θ)dθ.

Which leads to

σ2 =
1

2ω

(
u1 −

∫ 1

0
Ψ(θ)dθ

)
. (6)

Now, by applying operator ABDµ−2
0+

on both sides of equation (4) and
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then substituting t = 1, we get:

u2 = ωσ1 + 2σ2
N (µ− 2)

3− µ
Eµ−2,3

[
−µ− 2

3− µ

]
+

∫ 1

0
(1− θ)Ψ(θ)dθ

= ωσ1 +

Eµ−2,3

[
−µ− 2

3− µ

]
Eµ−2,2

[
−µ− 2

3− µ

] (
u1 −

∫ 1

0
Ψ(θ)dθ

)
+

∫ 1

0
(1− θ)Ψ(θ)dθ.

Which implies that

σ1 =
1

ω

u2 −
Eµ−2,3

[
−µ− 2

3− µ

]
Eµ−2,2

[
−µ− 2

3− µ

] (
u1 −

∫ 1

0

Ψ(θ)dθ

)
−

∫ 1

0

(1− θ)Ψ(θ)dθ

 . (7)

By substituting the equations (5), (6), and (7) into the equation (4),
we derive our outcome. □

Remark 3.2. From equation (3), we have

u′′(t) =
1

ω

(
u1 −

∫ 1

0
Ψ(θ)dθ

)
+

3− µ

N (µ− 2)
Ψ(t)

+
µ− 2

N (µ− 2)Γ(µ− 2)

∫ t

0
(t− θ)µ−3Ψ(θ)dθ.

So, for Ψ ∈ AC(I), u′′ ∈ AC(I), which means that u ∈ AC(3)(I).

Thus, ABCDµ
0+
u(t) is well defined for 2 < µ < 3. And by performing

a simple computation, we arrive at ABCDµ
0+
u(t) = Ψ(t).

This shows that we have equivalence in the previous lemma.
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Now, we are poised to establish the subsequent solution operator:

Υu(t) = u0 +
1

ω

[
u2 −

∫ 1

0
(1− θ)ψ

(
θ, u(θ),ABIν

0+u(θ)
)
dθ

−
Eµ−2,3

[
−µ− 2

3− µ

]
Eµ−2,2

[
−µ− 2

3− µ

] (
u1 −

∫ 1

0
ψ
(
θ, u(θ),ABIν

0+u(θ)
)
dθ

) t
+

1

2ω

(
u1 −

∫ 1

0
ψ
(
θ, u(θ),ABIν

0+u(θ)
)
dθ

)
t2

+
3− µ

N (µ− 2)

∫ t

0
(t− θ)ψ

(
θ, u(θ),ABIν

0+u(θ)
)
dθ

+
µ− 2

N (µ− 2)Γ(µ)

∫ t

0
(t− θ)µ−1ψ

(
θ, u(θ),ABIν

0+u(θ)
)
dθ, (8)

for u ∈ C(I).
We take into consideration the subsequent assumptions, which will

serve as the foundation for establishing the existence of the solution to
our presented problem:

(A1) Let ψ
(
., u(.),ABIν

0+u(.)
)
∈ AC(I) for u ∈ AC(I), and there exists

tree functions ϕi ∈ C(I,R+), i = 1, 2, 3 such that

|ψ(t, y, z)| ≤ ϕ1(t) + ϕ2(t)|y|+ ϕ3(t)|z|, for all t ∈ I, y, z ∈ R.

(A2) Let ψ
(
., u(.),ABIν

0+u(.)
)
∈ AC(I) for u ∈ AC(I), and there exists

two functions ψi ∈ L1(I,R+), i = 1, 2 such that

|ψ(t, y, z)− ψ(t, y′, z′)| ≤ ψ1(t)|y − y′|+ ψ2(t)|z − z′|,

for all t ∈ I, y, z, y′, z′ ∈ R.

To simplify the relatively complex formulas, we introduce the subsequent
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notations:

λ1 =
(1− ν)Γ(ν) + 1

N (ν)Γ(ν)
,

λ2 = ∥ϕ2∥+ λ1∥ϕ3∥,

λ3 = |u0|+
1

ω

1

2
|u1|+ |u2|+ ∥ϕ1∥+

Eµ−2,3

[
−µ− 2

3− µ

]
Eµ−2,2

[
−µ− 2

3− µ

] (|u1|+ ∥ϕ1∥)


+

(
3− µ

2N (µ− 2)
+

µ− 2

N (µ− 2)Γ(µ+ 1)

)
∥ϕ1∥,

λ3 = |u0|+
1

ω

1

2
|u1|+ |u2|+

Eµ−2,3

[
−µ− 2

3− µ

]
Eµ−2,2

[
−µ− 2

3− µ

] |u1|
 ,

λ4 =
1

ω

1 +

Eµ−2,3

[
−µ− 2

3− µ

]
Eµ−2,2

[
−µ− 2

3− µ

]
+

3− µ

2N (µ− 2)
+

µ− 2

N (µ− 2)Γ(µ+ 1)
,

λ4 =
1

ω

3

2
+

Eµ−2,3

[
−µ− 2

3− µ

]
Eµ−2,2

[
−µ− 2

3− µ

]
+

3− µ

N (µ− 2)
+

µ− 2

N (µ− 2)Γ(µ)
,

λ5 =

∫ 1

0
ψ1(θ)dθ + λ1

∫ 1

0
ψ2(θ)dθ.

Remark 3.3. 1. For u ∈ AC(I), we have

∣∣ABIν
0+u(t)

∣∣ = ∣∣∣∣1− ν

N (ν)
u(t) +

ν

N (ν)
Iν
0+u(t)

∣∣∣∣
≤ (1− ν)Γ(ν) + 1

N (ν)Γ(ν)
∥u∥

≤ λ1∥u∥, for all t ∈ I.
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2. From (A2), we have

∣∣ψ (
t, u(t),AB Iν

0+u(t)
)∣∣ ≤ ∥ϕ1∥+ (∥ϕ2∥+ λ1∥ϕ3∥) ∥u∥

≤ ∥ϕ1∥+ λ2∥u∥, for all t ∈ I, u ∈ AC(I).

Now, we have all the necessary data to present our first existence
result.

Theorem 3.4. Let ψ be a function satisfying assumption (A1) and
ψ(0, u0, 0) = 0. Suppose in addition that λ2λ4 < 1. Then, the prob-
lem (1) possesses at least one solution.

Proof. Let us consider the closed ball

Bϱ = {u ∈ C(I) : ∥u∥ ≤ ϱ} ,

where

ϱ ≥ λ3
1− λ2λ4

.

We transform our problem into a fixed point problem associated with
the operator Υ, which is defined by (8).

(i) Let us prove that Υ (Bϱ) ⊆ Bϱ.
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Using remark 3.3, for u ∈ Bϱ, we have

|Υu(t)|

≤ 1

ω

|u2|+
1

2
∥ϕ1∥+

1

2
λ2∥u∥+

Eµ−2,3

[
−µ− 2

3− µ

]
Eµ−2,2

[
−µ− 2

3− µ

] (|u1|+ ∥ϕ1∥+ λ2∥u∥)


+ |u0|+

1

2ω
(|u1|+ ∥ϕ1∥+ λ2∥u∥) +

3− µ

2N (µ− 2)
(∥ϕ1∥+ λ2∥u∥)

+
µ− 2

N (µ− 2)Γ(µ+ 1)
(∥ϕ1∥+ λ2∥u∥)

≤ |u0|+
1

ω

1

2
|u1|+ |u2|+ ∥ϕ1∥+

Eµ−2,3

[
−µ− 2

3− µ

]
Eµ−2,2

[
−µ− 2

3− µ

] (|u1|+ ∥ϕ1∥)


+

(
3− µ

2N (µ− 2)
+

µ− 2

N (µ− 2)Γ(µ+ 1)

)
∥ϕ1∥

+ λ2

 1

ω

1 +

Eµ−2,3

[
−µ− 2

3− µ

]
Eµ−2,2

[
−µ− 2

3− µ

]
+

3− µ

2N (µ− 2)
+

µ− 2

N (µ− 2)Γ(µ+ 1)

 ∥u∥

≤ λ3 + λ2λ4ϱ

≤ ϱ, ∀t ∈ I

which means that Υ maps Bϱ into itself.

(ii) Now, we show that Υ is completely continuous:
In (i), we have shown that Υ (Bϱ) is bounded, and note that the
continuity of ψ ensures that of Υ.

The next step is to show that Υ is equicontinuous:

For u ∈ Bϱ, 0 ≤ t1 < t2 ≤ 1, we have

|Υu(t2)−Υu(t1)|

≤ 1

ω

[
|u2|+

∫ 1

0

(1− θ)
∣∣∣ψ (

θ, u(θ),ABIν
0+u(θ)

)∣∣∣ dθ
+

Eµ−2,3

[
−µ− 2

3− µ

]
Eµ−2,2

[
−µ− 2

3− µ

] (
|u1|+

∫ 1

0

∣∣∣ψ (
θ, u(θ),ABIν

0+u(θ)
)∣∣∣ dθ)

 |t2 − t1|

+
1

2ω

(
|u1|+

∫ 1

0

∣∣∣ψ (
θ, u(θ),ABIν

0+u(θ)
)∣∣∣ dθ) ∣∣t22 − t21

∣∣
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+
3− µ

N (µ− 2)
|t2 − t1|

∫ t1

0

∣∣∣ψ (
θ, u(θ),ABIν

0+u(θ)
)∣∣∣ dθ

+
3− µ

N (µ− 2)

∫ t2

t1

(t2 − θ)
∣∣∣ψ (

θ, u(θ),ABIν
0+u(θ)

)∣∣∣ dθ
+

µ− 2

N (µ− 2)Γ(µ)

∫ t1

0

[
(t2 − θ)µ−1 − (t1 − θ)µ−1] ∣∣∣ψ (

θ, u(θ),ABIν
0+u(θ)

)∣∣∣ dθ
+

µ− 2

N (µ− 2)Γ(µ)

∫ t2

t1

(t2 − θ)µ−1
∣∣∣ψ (

θ, u(θ),ABIν
0+u(θ)

)∣∣∣ dθ
≤ 1

ω

|u2|+
1

2
∥ϕ1∥+

1

2
λ2ϱ+

Eµ−2,3

[
−µ− 2

3− µ

]
Eµ−2,2

[
−µ− 2

3− µ

] (|u1|+ ∥ϕ1∥+ λ2ϱ)

 |t2 − t1|

+
1

2ω
(|u1|+ ∥ϕ1∥+ λ2ϱ)

∣∣t22 − t21
∣∣+ 3− µ

N (µ− 2)
(∥ϕ1∥+ λ2ϱ) |t2 − t1|

+
3− µ

2N (µ− 2)
(∥ϕ1∥+ λ2ϱ) (t2 − t1)

2

+
µ− 2

N (µ− 2)Γ(µ+ 1)
(∥ϕ1∥+ λ2ϱ) |tµ2 − tµ1 | .

So,
|Υu(t2)−Υu(t1)| −→ 0 as t2 → t1

Then, according to Arzela-Ascoli’s Theorem, Υ is relatively com-
pact.
Thus, it is completely continuous.

(iii) The following set

Θ = {u ∈ C(I) : u(t) = κ (Υu) (t) for some κ ∈ (0, 1)} ,

is bounded. Indeed:
For u ∈ Θ and t ∈ I, we have

|u(t)| = κ |Υu(t)|
< |Υu(t)|
< λ3 + λ2λ4∥u∥.

Hence, we get

∥u∥ ≤ λ3
1− λ2λ4

<∞.
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Thanks to Lery-Schauder alternative, our problem has at least one so-
lution. □

The theorem presented below establishes the result of uniqueness.

Theorem 3.5. Let ψ be a function satisfying assumption (A2) and
ψ(0, u0, 0) = 0. Suppose in addition that λ4λ5 < 1. Then problem
(1) has a unique solution.

Proof. We consider the following closed ball:

Bρ = {u ∈ C(I) : ∥u∥ ≤ ρ} ,

where

ρ ≥ λ3 + λ4γ

1− λ4λ5
and γ = sup

t∈I
|ψ (t, 0, 0) |.

Not that, using (A2), we have∣∣∣ψ (
t, u(t),ABIν

0+u(t)
)∣∣∣ ≤ ∣∣∣ψ (

t, u(t),ABIν
0+u(t)

)
− ψ (t, 0, 0)

∣∣∣+ |ψ (t, 0, 0)|

≤ ψ1(t) |u(t)|+ ψ2(t)
∣∣∣ABIν

0+u(t)
∣∣∣+ γ

≤ (ψ1(t) + λ1ψ2(t)) ρ+ γ, ∀t ∈ I and u ∈ Bρ.

Similarly, we have∣∣∣ψ (
t, u(t),ABIν

0+u(t)
)
− ψ

(
t, v(t),ABIν

0+v(t)
)∣∣∣ ≤ (ψ1(t) + λ1ψ2(t)) ∥u− v∥,

∀t ∈ I and u, v ∈ C(I)

Firstly, we prove that Υ maps Bρ into itself.
For u ∈ Bρ and t ∈ I, we have

|Υu(t)| ≤ |u0|+
1

ω

[
|u2|+

∫ 1

0

(1− θ) [(ψ1(θ) + λ1ψ2(θ)) ρ+ γ] dθ

+

Eµ−2,3

[
−µ− 2

3− µ

]
Eµ−2,2

[
−µ− 2

3− µ

] (
|u1|+

∫ 1

0

((ψ1(θ) + λ1ψ2(θ)) ρ+ γ) dθ

)
+

1

2ω

(
|u1|+

∫ 1

0

((ψ1(θ) + λ1ψ2(θ)) ρ+ γ) dθ

)
+

3− µ

N (µ− 2)

∫ t

0

(t− θ) ((ψ1(θ) + λ1ψ2(θ)) ρ+ γ) dθ

+
µ− 2

N (µ− 2)Γ(µ)

∫ t

0

(t− θ)µ−1 ((ψ1(θ) + λ1ψ2(θ)) ρ+ γ) dθ
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≤ |u0|+
1

ω

[
|u2|+

1

2
γ + ρ

∫ 1

0

ψ1(θ)dθ + λ1ρ

∫ 1

0

ψ2(θ)dθ

+

Eµ−2,3

[
−µ− 2

3− µ

]
Eµ−2,2

[
−µ− 2

3− µ

] (
|u1|+ γ + ρ

∫ 1

0

ψ1(θ)dθ + λ1ρ

∫ 1

0

ψ2(θ)dθ

)
+

1

2ω

(
|u1|+ γ + ρ

∫ 1

0

ψ1(θ)dθ + λ1ρ

∫ 1

0

ψ2(θ)dθ

)
+

3− µ

2N (µ− 2)

(
γ + 2ρ

∫ 1

0

ψ1(θ)dθ + 2λ1ρ

∫ 1

0

ψ2(θ)dθ

)
+

µ− 2

N (µ− 2)Γ(µ+ 1)

(
γ + µρ

∫ 1

0

ψ1(θ)dθ + µλ1ρ

∫ 1

0

ψ2(θ)dθ

)
≤ λ3 + γλ4 + λ4λ5ρ

≤ ρ

Now, let us show that Υ is a contraction:
For u, v ∈ Bρ and t ∈ I, we have

|Υu(t)−Υv(t)|

≤ 1

ω

∫ 1

0

(1− θ)
∣∣∣ψ (

θ, u(θ),ABIν
0+u(θ)

)
− ψ

(
θ, v(θ),ABIν

0+v(θ)
)∣∣∣ dθ

+

Eµ−2,3

[
−µ− 2

3− µ

]
ωEµ−2,2

[
−µ− 2

3− µ

] ∫ 1

0

∣∣∣ψ (
θ, u(θ),ABIν

0+u(θ)
)
− ψ

(
θ, v(θ),ABIν

0+v(θ)
)∣∣∣ dθ

+
1

2ω

∫ 1

0

∣∣∣ψ (
θ, u(θ),ABIν

0+u(θ)
)
− ψ

(
θ, v(θ),ABIν

0+v(θ)
)∣∣∣ dθ

+
3− µ

N (µ− 2)

∫ t

0

(t− θ)
∣∣∣ψ (

θ, u(θ),ABIν
0+u(θ)

)
− ψ

(
θ, v(θ),ABIν

0+v(θ)
)∣∣∣ dθ

+
µ− 2

N (µ− 2)Γ(µ)

∫ t

0

(t− θ)µ−1
∣∣∣ψ (

θ, u(θ),ABIν
0+u(θ)

)
− ψ

(
θ, v(θ),ABIν

0+v(θ)
)∣∣∣ dθ.

Using remark 3.3, we obtain then

|Υu(t)−Υv(t)|

≤ λ5

 3

2ω
+

Eµ−2,3

[
−µ− 2

3− µ

]
ωEµ−2,2

[
−µ− 2

3− µ

] +
3− µ

N (µ− 2)
+

µ− 2

N (µ− 2)Γ(µ)

 ∥u− v∥

≤ λ4λ5∥u− v∥.
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Hence, in accordance with the Banach Contraction Principle, our prob-
lem (1) admits a unique solution. □

3.2 Continuous dependence of the solution from the ini-
tial data

Let us denote by λ3,u0 = λ3 and

λ3,v0 = |v0|+
1

ω

1

2
|u1|+ |u2|+

Eµ−2,3

[
−µ− 2

3− µ

]
Eµ−2,2

[
−µ− 2

3− µ

] |u1|
 ,

where u0, v0 ∈ R.

Theorem 3.6. Let ψ be a function satisfying assumption (A2) and
ψ(0, u0, 0) = ψ(0, v0, 0) = 0. Suppose in addition that λ4λ5 < 1.
Let u = u(t, u0) and v = v(t, v0) be solutions of (1) corresponding to
u(0) = u0 and v(0) = v0, respectively. Then

∥u− v∥ ≤ 1

1− λ4λ5
|u0 − v0|.

Proof. Note that u and v exist and are well-defined according to the
previous theorem, where we can define the operator Υ on the following
closed ball:

Br = {w ∈ C(I) : ∥w∥ ≤ r} ,

where

r ≥ max(λ3,u0 , λ3,v0) + λ4γ

1− λ4λ5
.
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Furthermore, we have

|u(t, u0)− v(t, v0)|

≤ |u0 − v0|+
1

ω

∫ 1

0

(1− θ)
∣∣∣ψ (

θ, u(θ),ABIν
0+u(θ)

)
− ψ

(
θ, v(θ),ABIν

0+v(θ)
)∣∣∣ dθ

+

Eµ−2,3

[
−µ− 2

3− µ

]
ωEµ−2,2

[
−µ− 2

3− µ

] ∫ 1

0

∣∣∣ψ (
θ, u(θ),ABIν

0+u(θ)
)
− ψ

(
θ, v(θ),ABIν

0+v(θ)
)∣∣∣ dθ

+
1

2ω

∫ 1

0

∣∣∣ψ (
θ, u(θ),ABIν

0+u(θ)
)
− ψ

(
θ, v(θ),ABIν

0+v(θ)
)∣∣∣ dθ

+
3− µ

N (µ− 2)

∫ t

0

(t− θ)
∣∣∣ψ (

θ, u(θ),ABIν
0+u(θ)

)
− ψ

(
θ, v(θ),ABIν

0+v(θ)
)∣∣∣ dθ

+
µ− 2

N (µ− 2)Γ(µ)

∫ t

0

(t− θ)µ−1
∣∣∣ψ (

θ, u(θ),ABIν
0+u(θ)

)
− ψ

(
θ, v(θ),ABIν

0+v(θ)
)∣∣∣ dθ

≤ |u0 − v0|+ λ4λ5∥u− v∥, for all t ∈ I.

Hence, we get □

∥u− v∥ ≤ 1

1− λ4λ5
|u0 − v0|.

To better understand obtained results, let us consider the following il-
lustrative example:

Example 3.7. The following problem is under consideration:

ABCD
5
2

0+
u(t) =

t

e
1
2
t2 + 20

1 +
|u(t)|

|u(t)|+ 1
+

∣∣∣∣ABI
1
4

0+
u(t)

∣∣∣∣∣∣∣∣ABI
1
4

0+
u(t)

∣∣∣∣+ 1

 , t ∈ I = [0, 1],

u(0) =
1

40
,

ABCD
3
2

0+
u(1) =

1

12
,

ABCD
1
2

0+
u(1) =

1

24
.

(9)

The problem bellow can be expressed as (1), where

ψ

(
t, u(t),ABI

1
4

0+
u(t)

)
=

t

e
1
2
t2 + 20

1 +
|u(t)|

|u(t)|+ 1
+

∣∣∣∣ABI
1
4

0+
u(t)

∣∣∣∣∣∣∣∣ABI
1
4

0+
u(t)

∣∣∣∣+ 1

 ,

u0 =
1

40
, u1 =

1

12
and u2 =

1

24
.
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We consider N (x) = 1, for all x ∈ I.
On can verify that assumptions (A1) and (A2) are satisfied, where

ϕ1(t) = ϕ2(t) = ϕ3(t) = ψ1(t) = ψ2(t) =
t

e
1
2
t2 + 20

, for t ∈ I.

By performing calculations, we obtain∫ 1

0
ψj(θ)dθ =

1

40

(
1 + ln(441)− 2 ln(20 +

√
e)
)
, j = 1, 2,

∥ϕi∥ = γ =
1

e
1
2 + 20

, for i = 1, 2, 3,

ω ≃ 1.1118; λ1 ≃ 1.0642; λ2 ≃ 0.0953; , 2.2123; λ4 ≃ 2.6299,

λ2λ4 ≃ 0.2108 < 1; λ4λ5 ≃ 0.1276 < 1.

Therefore, all assumptions of theorems 3.4 and 3.5 are satisfied, and
thus problem (9) has a unique solution.

Example 3.8. Consider the following problem:
ABCDµ

0+u(t) = ψ(t, u(t),AB Iν
0+u(t)), t ∈ [0, 1],

u(0) = 0.01,
ABCDµ−1

0+ u(1) = 0.02,
ABCDµ−2

0+ u(1) = 0.03,

(10)

where 2 < µ < 3, 0 < ν < 1, and

ψ(t, u(t),AB Iν
0+u(t)) =

t2

40

(
1 +

|u(t)|
1 + |u(t)|

)
+

1

16

∣∣∣ABIν
0+u(t)

∣∣∣ .
For ν = 0.5, we get:

µ λ3 λ4 λ5 λ4 · λ5
2.7 0.064 2.247 0.052 0.1168
2.8 0.066 2.292 0.052 0.1192
2.9 0.068 2.337 0.052 0.1215

Theoretically, assumption (A2) is satisfied, and furthermore, λ4λ5 < 1.
Therefore, according to Theorem 3.5, this problem has a unique solution.

Numerical Results for u(t) are given in the following table:
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t u(t) for µ = 2.7 u(t) for µ = 2.8 u(t) for µ = 2.9

0.00 0.0100 0.0100 0.0100
0.02 0.01005 0.01004 0.01003
0.04 0.01010 0.01008 0.01006
0.06 0.01015 0.01012 0.01009
0.08 0.01020 0.01016 0.01012
0.10 0.01025 0.01020 0.01015
0.12 0.01030 0.01024 0.01018
0.14 0.01035 0.01028 0.01021
0.16 0.01040 0.01032 0.01024
0.18 0.01045 0.01036 0.01027
0.20 0.01050 0.01040 0.01030
0.22 0.01055 0.01044 0.01033
0.24 0.01060 0.01048 0.01036
0.26 0.01065 0.01052 0.01039
0.28 0.01070 0.01056 0.01042
0.30 0.01075 0.01060 0.01045
0.32 0.01080 0.01064 0.01048
0.34 0.01085 0.01068 0.01051
0.36 0.01090 0.01072 0.01054
0.38 0.01095 0.01076 0.01057
0.40 0.01100 0.01080 0.01060
0.42 0.01105 0.01084 0.01063
0.44 0.01110 0.01088 0.01066
0.46 0.01115 0.01092 0.01069
0.48 0.01120 0.01096 0.01072
0.50 0.01125 0.01100 0.01075
0.52 0.01130 0.01104 0.01078
0.54 0.01135 0.01108 0.01081
0.56 0.01140 0.01112 0.01084
0.58 0.01145 0.01116 0.01087
0.60 0.01150 0.01120 0.01090
0.62 0.01155 0.01124 0.01093
0.64 0.01160 0.01128 0.01096
0.66 0.01165 0.01132 0.01099
0.68 0.01170 0.01136 0.01102
0.70 0.01175 0.01140 0.01105
0.72 0.01180 0.01144 0.01108
0.74 0.01185 0.01148 0.01111
0.76 0.01190 0.01152 0.01114
0.78 0.01195 0.01156 0.01117
0.80 0.01200 0.01160 0.01120
0.82 0.01205 0.01164 0.01123
0.84 0.01210 0.01168 0.01126
0.86 0.01215 0.01172 0.01129
0.88 0.01220 0.01176 0.01132
0.90 0.01225 0.01180 0.01135
0.92 0.01230 0.01184 0.01138
0.94 0.01235 0.01188 0.01141
0.96 0.01240 0.01192 0.01144
0.98 0.01245 0.01196 0.01147
1.00 0.01250 0.01200 0.01150

Table 1: Approximate values of u(t) for different values of µ
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The graphical resolution for different values of µ is given in the fol-
lowing figure.

0 0.2 0.4 0.6 0.8 1

1

1.1

1.2

·10−2

t

u
(t
)

Approximate values of u(t)

µ = 2.7
µ = 2.8
µ = 2.9

Figure 1: Graphical representation of u(t) for different values of µ
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Conclusion

In this paper, we have expanded the examination of fractional differential
equations by including ABC-fractional boundary conditions, providing a
wider and more comprehensive perspective than conventional boundary
conditions. Our main contributions consist of new boundary conditions,
a thorough analytical method, and practical significance demonstrated
by examples. Our work stands out due to the blend of theoretical rigor
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and practical applications, opening up opportunities for additional ex-
ploration in this fascinating field of mathematical research.
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