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Abstract. Let B(H) be the algebra of all bounded linear operators
on an infinite dimensional complex Hilbert space H. In this paper, we
characterize all bijective maps φ on B(H) satisfying

σϵ(T1 •∗ T2 ◦∗ T3) = σϵ(φ(T1) •∗ φ(T2) ◦∗ φ(T3)),

for all T1, T2, T3 ∈ B(H), where T1 •∗ T2 = T1T2 + T2T
∗
1 and T1 ◦∗ T2 =

T1T2 − T2T
∗
1 , and σε(T ) denote the ϵ-pseudo spectrum of T ∈ B(H).

We also describe bijective maps φ on B(H) that satisfy

σϵ(T1♢T2 ⋄∗ T3) = σϵ(φ(T1)♢φ(T2) ⋄∗ φ(T3)),

for all T1, T2, T3 ∈ B(H), where T1♢T2 = T1T
∗
2 + T ∗

2 T1 and T1 ⋄∗ T2 =
T1T

∗
2 − T2T1.
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1 Introduction and Preliminaries

Throughout the paper, suppose B(H) is the space of all bounded linear
operators on an infinite dimensional complex Hilbert space H and I be
the identity operator. Let Bs(H), Ba(H) and P (H) be the set of all self-
adjoint operators, the set of anti-self-adjoint operators and the set of all
projection operators in B(H), respectively. The trace of a finite rank
operator T will be denoted by TrT and we write Z(B(H)) for the center
of B(H). For an operator T ∈ B(H), the spectrum, the adjoint and the
transpose of T relative to an arbitrary but fixed orthogonal basis of H
are denoted by σ(T ), T ∗ and T t, respectively. For T, S ∈ B(H) denote
by T •∗ S = TS + ST ∗ and T ◦∗ S = TS − ST ∗ the Jordan ∗-product
and the skew Lie product of T and S, respectively. For a fixed positive
real number ϵ > 0, the ϵ-pseudo spectrum of T , σϵ(T ), is the set

{λ ∈ C : ∥(λI − T )−1∥ ≥ ϵ−1}

with the convention that ∥(λI−T )−1∥ = ∞ if λ ∈ σ(T ). The upper-semi
continuity of the spectrum implies that,

σ(T ) =
⋂
ϵ>0

σϵ(T ).

For more information about these notions, one can see [11].

Several authors described maps on matrices or operators that pre-
serve the ε-pseudo spectral radius and the ϵ-pseudo spectrum of different
kinds of products; see for instance [1, 4, 5, 6, 7, 8, 9] and the references
therein. Recently, nonlinear maps preserving the products of a mixture
of the (skew) Lie product and the Jordan ∗-product have receiveed a
fair a moount of attention, see [2] and its references.

In this paper, we will investigate the structure of the nonlinear maps
preserving the ϵ-pseudo spectrum of different kinds of mixture product
of operators on B(H).

In the first lemma, we collect some preliminary results of the ϵ-
pseudo spectrum which will be used to prove of the main results. For
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each z ∈ C and δ > 0, suppose Dδ(z) is the open disk of the complex
plane C centered at z and of radius δ.

Lemma 1.1. (See [8, 11]) For an operator T ∈ B(H) and ϵ > 0, the
following statements hold.
(i) σ(T ) +Dϵ(0) ⊆ σϵ(T ).
(ii) If T is normal, then σϵ(T ) = σ(T ) +Dϵ(0).
(iii) For every z ∈ C, σϵ(T + zI) = z + σϵ(T ).
(iv) For every nonzero z ∈ C, σϵ(zT ) = zσ ϵ

|z|
(T ).

(v) For every z ∈ C, we have σϵ(T ) = Dϵ(z) if and only if T = zI.
(vi) σϵ(T

t) = σϵ(T ), where T
t is the transpose of T relative to a fixed

orthonormal basis of H.
(vii) For every unitary operator U ∈ B(H), we have σε(UTU

∗) = σε(T ).
(viii) For every conjugate unitary operator U , we have σε(UTU

∗) =
σε(T

∗).

For two nonzero vectors x, y ∈ H, let x ⊗ y stands for the operator
of rank at most one defined by

(x⊗ y)z = ⟨z, y⟩x, ∀ z ∈ H.

The following lemma discusse the spectrum of the skew Lie product
(y ⊗ y) •∗ S for every nonzero vector y ∈ H and S ∈ B(H).

Lemma 1.2. (See [3, Corollary 2.1]) Let S ∈ B(H) and y ∈ H be a
nonzero vector. Then

σ(S(y ⊗ y) + (y ⊗ y)S) = {0, ⟨Sy, y⟩ ±
√
⟨S2y, y⟩ }.

The third lemma gives necessary and sufficient conditions for two
operators to be equal in term of the spectrum.

Lemma 1.3. (See [3, Lemma 2.2]) Let T and S be in B(H). Then the
following statements are equivalent.
(i) T = S.
(ii) σ(AT − TA∗) = σ(AS − SA∗) for each operator A ∈ B(H).
(iii) σ(AT − TA∗) = σ(AS − SA∗) for each operator A ∈ Ba(H).

We will use of the following theorem in the proof of Theorem 2.2.
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Theorem 1.4. (See [8, Theorem 3.3]) A surjective map φ from Bs(H)
into itself satisfies

σϵ(TS + ST ) = σϵ(φ(T )φ(S) + φ(S)φ(T )) (T, S ∈ Bs(H))

if and only if there exists a unitary operator U ∈ B(H) such that either
φ(T ) = µUTU∗ or φ(T ) = µUT tU∗ for all T ∈ Bs(H), where µ ∈
{−1, 1}.

2 Main Results

The following theorem is one of the purposes of the paper.

Theorem 2.1. Let φ be a bijective map on B(H) satisfying

σϵ(T1 •∗ T2 ◦∗ T3) = σϵ(φ(T1) •∗ φ(T2) ◦∗ φ(T3)), (T1, T2, T3 ∈ B(H)).

Then there exist an invertible operator S ∈ B(H) and a unitary
operator U ∈ B(H) such that φ(T ) = SUTU∗ or φ(T ) = SUT tU∗ for
every T ∈ B(H).

Proof. We break the proof into several claims.

Claim 1. φ(iI)∗ = −φ(iI) ∈ Z(B(H)).

By the surjectivity of φ there exists S ∈ B(H) such that φ(S) = iI
2 .

Then

Dϵ(0) = σϵ((iφ
−1(

iI

2
)− iφ−1(

iI

2
)) ◦∗ S) = σϵ(iI •∗ φ−1(

iI

2
) ◦∗ S)

= σϵ(φ(iI) •∗
iI

2
◦∗
iI

2
) = σε(

−1

2
(φ(iI) + φ(iI)∗)).

Lemma 1.1 implies that, φ(iI)∗ = −φ(iI).

Now let T ∈ B(H) is arbitrary. Then

Dϵ(0) = σϵ((iT − iT ) ◦∗ S) = (iI •∗ T ◦∗ S) = σϵ(φ(iI) •∗ φ(T ) ◦∗ φ(S))

= σϵ((φ(iI)φ(T ) + φ(T )φ(iI)∗) ◦∗
iI

2
)

= σϵ(
iI

2
(φ(iI)(φ(T )− φ(T )∗)− (φ(T )− φ(T )∗)φ(iI))).
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By Lemma 1.1(v), we have φ(iI)(φ(T )−φ(T )∗)−(φ(T )−φ(T )∗)φ(iI) =
0. The surjectivity of φ implies that, φ(iI)B = Bφ(iI) for every
B ∈ Ba(H) and hence φ(iI)B = Bφ(iI) for every B ∈ Bs(H). Since
for every A ∈ B(H), we have A = A1 + iA2, where A1 and A2 are self-
adjoint elements. Hence φ(iI)A = Aφ(iI) holds true for all A ∈ B(H),
then φ(iI) ∈ Z(B(H)).

Claim 2. φ preserves the self-adjoint and anti-self-adjoint elements
in both direction.

Let T = T ∗ and φ(S) = I
2 for some S ∈ B(H). We have

Dϵ(0) = σϵ(S •∗ T ◦∗ φ−1(iI)) = σϵ(
I

2
•∗ φ(T ) ◦∗ iI)

= σϵ(i(φ(T )− φ(T )∗)).

It follows from Lemma 1.1 that, φ(T )−φ(T )∗ = 0, and so φ(T ) = φ(T )∗.
Similarly, if φ(T ) = φ(T )∗, then

Dϵ(0) = σϵ(φ(
I

2
) •∗ φ(T ) ◦∗ φ(iI)) = σϵ(

I

2
•∗ T ◦∗ iI)

= σϵ(i(T − T ∗)),

so T = T ∗. For the second part of this claim, let T ∈ Ba(H) and
φ(S) = I for some S ∈ B(H), we have

Dϵ(0) = σϵ(T •∗ φ−1(iI) ◦∗ S) = σϵ(φ(T ) •∗ iI ◦∗ φ(S))
= σϵ(2i(φ(T ) + φ(T )∗)).

Again by Lemma 1.1, we see that φ(T )∗ = −φ(T ) for every T ∈ Ba(H).
Conversely, let φ(T )∗ = −φ(T ), then

Dϵ(0) = σϵ(φ(T ) •∗ φ(iI) ◦∗ φ(I)) = σϵ(T •∗ iI ◦∗ I)
= σϵ(2i(T + T ∗)),

so T ∗ + T = 0 and T ∈ Ba(H).
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Claim 3. φ2(I)φ(iI) = iI and φ2(iI)φ(I) = −I. Hence φ(I) and
φ(iI) are invertible.

We have

Dϵ(4i) = σϵ(4iI) = σϵ(I •∗ iI ◦∗ I) = σϵ(φ(I) •∗ φ(iI) ◦∗ φ(I))
= σε((φ(I)φ(iI) + φ(iI)φ(I)∗) ◦∗ φ(I)) = σϵ(4φ

2(I)φ(iI)).

By Lemma 1.1, φ2(I)φ(iI) = iI. Similarly, we have

Dϵ(−4) = σϵ(−4I) = σϵ(I •∗ iI ◦∗ iI) = σε(φ(I) •∗ φ(iI) ◦∗ φ(iI))
= σε((φ(I)φ(iI) + φ(iI)φ(I)∗) ◦∗ φ(iI)) = σϵ(4φ

2(iI)φ(I)).

It follows that, again by lemma 1.1 φ2(iI)φ(I) = −I.

Now, we define the map ψ ofB(H) into itself with ψ(T ) = −iφ(I)φ(iI)φ(T )
for any T ∈ B(H). It is clear that ψ is a bijective map which ψ(I) = I
and ψ(iI) = iI, and also satisfies σϵ(T1•∗T2◦∗T3) = σϵ(ψ(T1)•∗ψ(T2)◦∗
ψ(T3)) for all T1, T2, T3 ∈ B(H). Furthermore, it is clear that ψ pre-
serves the self-adjoint elements in both direction.

Claim 4. We have the following statments:
(i) σ ϵ

2
(T ◦∗ S) = σ ϵ

2
(ψ(T ) ◦∗ ψ(S)) for every T, S ∈ B(H).

(ii) ψ( iI2 ) =
iI
2 .

(iii) σ ϵ
2
(T ) = σ ϵ

2
(ψ(T )) for every T ∈ B(H).

(iv) ψ(iT ) = iψ(T ) for all T ∈ Bs(H).

(i) For every T, S ∈ B(H), we have

σϵ(2(TS − ST ∗)) = σϵ(I •∗ T ◦∗ S) = σϵ(ψ(I) •∗ ψ(T ) ◦∗ ψ(S))
= σϵ(2(ψ(T )ψ(S)− ψ(S)ψ(T )∗)).

It follows that σ ϵ
2
(T ◦∗ S) = σ ϵ

2
(ψ(T ) ◦∗ ψ(S)) for every T, S ∈ B(H).

(ii) We have

Dϵ(−2) = σϵ(−2I) = σϵ(I •∗ iI ◦∗
iI

2
)

= σϵ(ψ(I) •∗ ψ(iI) ◦∗ ψ(
iI

2
))) = σϵ(4iψ(

iI

2
)).
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It follows that, by lemma 1.1 ψ( iI2 ) =
iI
2 .

(iii) For all T ∈ B(H), by (ii) we have

σ ϵ
2
(iT ) = σ ϵ

2
(
iI

2
T + T

iI

2
) = σ ϵ

2
(
iI

2
T − T (

iI

2
)∗)

= σ ϵ
2
(ψ(

iI

2
)ψ(T )− ψ(T )ψ(

iI

2
)∗)

= σ ϵ
2
(ψ(

iI

2
)ψ(T ) + ψ(T )ψ(

iI

2
))

= σ ϵ
2
(
iI

2
ψ(T ) + ψ(T )

iI

2
) = σ ϵ

2
(iψ(T )).

this implies that, σ ϵ
2
(T ) = σ ϵ

2
(ψ(T )) for every T ∈ B(H).

(iv) Note that S(iT ) − (iT )S∗ is normal, where T ∈ Bs(H) and
S ∈ B(H), so from this and Lemma 1.1(ii) we get

σ(ψ(S)ψ(iT )− ψ(iT )ψ(S)∗) = σ(S(iT )− (iT )S∗) = iσ(ST − TS∗)

= iσ(ψ(S)ψ(T )− ψ(T )ψ(S)∗)

= σ(ψ(S)(iψ(T ))− (iψ(T ))ψ(S)∗).

By surjectivity of ψ and lemma 1.3, we have ψ(iT ) = iψ(T ) for every
T ∈ Bs(H).

Claim 5. There exists a unitary operator U on H such that ψ(T ) =
UTU∗ or ψ(T ) = UT tU∗ for every T ∈ Bs(H).

Since ψ preserves the self-adjoint operators in both direction, Claim
4(iii) together Lemma 1.1(ii), implies that σ(ψ(P )) = σ(P ), for every
P ∈ P (H). On the other hand, a self adjoint operator is a projection if
and only if its spectrum is a subset of {0, 1}. This implies that P ∈ P (H)
if and only if ψ(P ) ∈ P (H). Let P,Q ∈ P (H) such that PQ = QP = 0.
It follows from claim 4(iv) that

D ϵ
2
(0) = σ ϵ

2
(iP ◦∗ Q) = σ ϵ

2
(ψ(iP ) ◦∗ ψ(Q))

= σ ε
2
(i(ψ(P )ψ(Q) + ψ(Q)ψ(P ))),
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and consequently, ψ(P )ψ(Q) + ψ(Q)ψ(P ) = 0. Since ψ(P ) and ψ(Q)
are projection, then ψ(P )ψ(Q) = ψ(Q)ψ(P ) = 0. Conversely, if ψ(P )
and ψ(Q) are projections such that ψ(P )ψ(Q) = ψ(Q)ψ(P ) = 0, then
a similar discussion implies that PQ = QP = 0. So, by [10, Corollary
1.5], there exists a unitary or conjugate unitary operator U on H such
that ψ(P ) = UPU∗ for every P ∈ P (H).
Now let T ∈ Bs(H) and y be an unit vector in H. First assume that U
is unitary. It follows from Lemma 1.1(ii) and claim 4(iv) that

D ϵ
2
(0) + σ(iT (y ⊗ y) + (y ⊗ y)iT ) = σ ϵ

2
(iT (y ⊗ y) + (y ⊗ y)iT )

= σ ϵ
2
(iT (y ⊗ y)− (y ⊗ y)(iT )∗)

= σ ϵ
2
(ψ(iT )ψ(y ⊗ y)− ψ(y ⊗ y)ψ(iT )∗)

= σ ϵ
2
(iψ(T )U(y ⊗ y)U∗ + U(y ⊗ y)U∗iψ(T ))

= D ϵ
2
(0) + σ(iψ(T )U(y ⊗ y)U∗ + U(y ⊗ y)U∗iψ(T )).

So σ(T (y ⊗ y) + (y ⊗ y)T ) = σ(ψ(T )U(y ⊗ y)U∗ + U(y ⊗ y)U∗ψ(T )).
Since Tr(T (y ⊗ y)) = ⟨Ty, y⟩ and the trace is a linear functional over
the space of trace-class operators, we get

2 ⟨Ty, y⟩ = Tr(T (y ⊗ y) + (y ⊗ y)T )

= Tr(ψ(T )U(y ⊗ y)U∗ + U(y ⊗ y)U∗ψ(T ))

= 2 ⟨U∗ψ(T )U, y⟩ .

It follows that ψ(T ) = UTU∗ for every T ∈ Bs(H).

Now assume that U is conjugate unitary. We define the map J :
H → H by J(

∑
i∈Λ λiei) =

∑
i∈Λ λiei, where {ei}i∈Λ is an orthonormal

basis of H. It is easy to see that J is conjugate unitary and JT ∗J = T t.
Let U = V J , then V is unitary, and ψ(T ) = V JTJV ∗ = V T tV ∗ for
every T ∈ B(H).

It is easy to see that maps T → T t and T → U∗TU preserve the
ϵ-pseudo spectrum of skew Lie product, so we might as well assume that
ψ(T ) = T for every T ∈ Bs(H).
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Claim 6. ψ(iT ) = iT for every T ∈ Bs(H).

Let y ∈ H be an arbitrary nonzero vector and S = iT , where T ∈
Bs(H). Lemma 1.1(ii) implies that

D ϵ
2
(0) + σ(S(y ⊗ y) + (y ⊗ y)S) = σ ϵ

2
(S(y ⊗ y) + (y ⊗ y)S)

= σ ϵ
2
(S(y ⊗ y)− (y ⊗ y)S∗)

= σ ϵ
2
(ψ(S)ψ(y ⊗ y)− ψ(y ⊗ y)ψ(S)∗)

= σ ϵ
2
(ψ(S)(y ⊗ y) + (y ⊗ y)ψ(S))

= D ϵ
2
(0) + σ(ψ(S)(y ⊗ y) + (y ⊗ y)ψ(S)).

Hence σ(S(y⊗y)+(y⊗y)S) = σ(ψ(S)(y⊗y)+(y⊗y)ψ(S)). By Lemma
1.2,

{0, ⟨Sy, y⟩ ±
√

⟨S2y, y⟩} = {0, ⟨ψ(S)y, y⟩ ±
√
⟨ψ(S)2y, y⟩}.

Therefore, either

⟨Sy, y⟩+
√
⟨S2y, y⟩ = ⟨ψ(S)y, y⟩+

√
⟨ψ(S)2y, y⟩

and

⟨Sy, y⟩ −
√
⟨S2y, y⟩ = ⟨ψ(S)y, y⟩ −

√
⟨ψ(S)2y, y⟩,

or

⟨Sy, y⟩+
√
⟨S2y, y⟩ = ⟨ψ(S)y, y⟩ −

√
⟨ψ(S)2y, y⟩

and

⟨Sy, y⟩ −
√
⟨S2y, y⟩ = ⟨ψ(S)y, y⟩+

√
⟨ψ(S)2y, y⟩.

We easily get that ⟨Sy, y⟩ = ⟨ψ(S)y, y⟩ and so ψ(iT ) = iT for every
T ∈ Bs(H).

Claim 7. φ takes the desired form.
Let T ∈ B(H) be arbitrary. For any nonzero vector y ∈ H and α > 0,
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we have

iασ δ
α
((y ⊗ y)T + T (y ⊗ y)) = σδ((iαy ⊗ y)T − T (iαy ⊗ y)∗)

= σδ(ψ(iαy ⊗ y)ψ(T )− ψ(T )ψ(iαy ⊗ y)∗)

= σδ((iαx⊗ x)ψ(T ) + ψ(T )(iαy ⊗ y))

= iασ δ
α
((y ⊗ y)ψ(T ) + ψ(T )(y ⊗ y)),

where δ = ϵ
2 . On the other hand

σ((y ⊗ y)T + T (y ⊗ y)) =
⋂
α>0

σ δ
α
((y ⊗ y)T + T (y ⊗ y))

=
⋂
α>0

σ δ
α
((y ⊗ y)ψ(T ) + ψ(T )(y ⊗ y))

= σ((y ⊗ y)ψ(T ) + ψ(T )(y ⊗ y)).

Thus σ((y⊗y)T +T (y⊗y)) = σ((y⊗y)ψ(T )+ψ(T )(y⊗y)). Therefore,
following the same argument as the one in the proof of Claim 6, one
concludes that ⟨Ty, y⟩ = ⟨ψ(T )y, y⟩ for any nonzero vector y ∈ H. Hence
ψ(T ) = T , and therefore φ(T ) = SUTU∗ or φ(T ) = SUT tU∗ for every
T ∈ B(H), where S = φ(I).
□

We closed this paper with the following theorem which characterizes
bijective maps that satisfy

σϵ(T1♢T2 ⋄∗ T3) = σϵ(φ(T1)♢φ(T2) ⋄∗ φ(T3)), (T1, T2, T3 ∈ B(H)),

where T1♢T2 = T1T
∗
2 + T ∗

2 T1 and T1 ⋄∗ T2 = T1T
∗
2 − T2T1.

Theorem 2.2. Let φ is a bijective map on B(H) satisfying

σϵ(T1♢T2 ⋄∗ T3) = σϵ(φ(T1)♢φ(T2) ⋄∗ φ(T3)), (T1, T2, T3 ∈ B(H)).

If φ(iI) be anti-selfadjoint, then φ2(I) is invertible and there exist a
unitary operator U ∈ B(H) such that φ(T ) = λ(φ2(I))−1UTU∗ or
φ(T ) = λ(φ2(I))−1UT tU∗ for every T ∈ B(H), where λ ∈ {−1, 1}.

Proof. We shall prove this theorem in five steps .
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Step 1. φ(I)∗ = φ(I) ∈ Z(B(H)).

By the surjectivity of φ, there exist S ∈ B(H) such that φ(S) = I.
For every T ∈ B(H), we have

Dϵ(0) = σϵ(T♢S ⋄∗ I) = σϵ(φ(T )♢φ(S) ⋄∗ φ(I))
= σϵ(2φ(T )φ(I)

∗ − 2φ(I)φ(T )).

Let T = S, by Lemma 1.1 we can conclude that φ(I)∗ = φ(I). The
surjectivity of φ implies that φ(I) ∈ Z(B(H)).

Step 2. φ preserves the self-adjoint elements in both direction.
Let T = T ∗. We have

Dϵ(0) = σϵ(I♢I ⋄∗ T ) = σϵ(φ(I)♢φ(I) ⋄∗ φ(T ))
= σϵ(2φ(I)

2(φ(T )∗ − φ(T ))).

This implies that φ(T ) = φ(T )∗. Similarly, if φ(T ) = φ(T )∗, then
T = T ∗.

Step 3. φ2(I)φ(iI) = iI, that is φ2(I) is invertible.

We have

Dϵ(−4i) = σϵ(−4iI) = σϵ(I♢I ⋄∗ iI) = σϵ(φ(I)♢φ(I) ⋄∗ φ(iI))
= σϵ(−4φ2(I)φ(iI)).

It follows that, by lemma 1.1 φ2(I)φ(iI) = iI.

Now, defining a map ψ on B(H) by ψ(T ) = φ2(I)φ(T ) for any
T ∈ B(H). It is clear to show that ψ is a bijection with ψ(iI) = iI, and
satisfies σϵ(T1♢T2 ⋄∗ T3) = σϵ(ψ(T1)♢ψ(T2) ⋄∗ ψ(T3)) for all T1, T2, T3 ∈
B(H). Furthermore, for every T, S ∈ B(H), we have

σϵ(−2i(TS∗ + S∗T )) = σϵ(T♢S ⋄∗ iI) = σϵ(ψ(T )♢ψ(S) ⋄∗ ψ(iI))
= σϵ(−2i(ψ(T )ψ(S)∗ + ψ(S)∗ψ(T ))).
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It follows that, σ ϵ
2
(TS∗+S∗T ) = σ ϵ

2
(ψ(T )ψ(S)∗+ψ(S)∗ψ(T )) for every

T, S ∈ B(H).

Step 4. There exists a unitary operator U on H such that ψ(T ) =
λUTU∗ or ψ(T ) = λUT tU∗ for every T ∈ Bs(H), where λ ∈ {−1, 1}.

It is clear that ψ preserves the self-adjoint elements in both direc-
tion, so ψ|Bs(H) : Bs(H) → Bs(H) is a bijective map which satisfies
σ ϵ

2
(TS + ST ) = σ ϵ

2
(ψ(T )ψ(S) + ψ(S)ψ(T )) for every T, S ∈ Bs(H).

So, by Theorem 1.4, there exists a unitary operator U on H such that
ψ(T ) = λUTU∗ or ψ(T ) = λUT tU∗ for every T ∈ Bs(H), where
λ ∈ {−1, 1}.

Since the maps T → T t and T → U∗TU preserve the pseudo spec-
trum of TS∗ + S∗T , we might as well assume that ψ(T ) = T for all
T ∈ Bs(H).

Step 5. ψ(T ) = T for all T ∈ B(H).

Let T ∈ B(H) be arbitrary. For any vector y ∈ H and α > 0, we
have

ασ δ
α
(T (y ⊗ y) + (y ⊗ y)T ) = σδ(T (αy ⊗ y) + (αy ⊗ y)T )

= σδ(ψ(T )ψ(αy ⊗ y) + ψ(αy ⊗ y)ψ(T ))

= σδ(ψ(T )(αy ⊗ y) + (αy ⊗ y)ψ(T ))

= ασ δ
α
(ψ(T )(y ⊗ y) + (y ⊗ y)ψ(T )),

where δ = ϵ
2 . On the other hand

σ(T (y ⊗ y) + (y ⊗ y)T ) =
⋂
α>0

σ δ
α
(T (y ⊗ y) + (y ⊗ y)T )

=
⋂
α>0

σ δ
α
(ψ(T )(y ⊗ y) + (y ⊗ y)ψ(T ))

= σ(ψ(T )(y ⊗ y) + (y ⊗ y)ψ(T )).

Thus σ(T (y ⊗ y) + (y ⊗ y)T ) = σ(ψ(T )(y ⊗ y) + (y ⊗ y)ψ(T )). By
the same argument of proof Claim 6 in Theorem 2.1, we conclude that
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⟨Ty, y⟩ = ⟨ψ(T )y, y⟩ for any nonzero vector y ∈ H. As a result, ψ(T ) =
T , and therefore φ(T ) = λ(φ2(I))−1UTU∗ or φ(T ) = λ(φ2(I))−1UT tU∗

for every T ∈ B(H). □

3 Conclusion

In this paper, we will investigate the structure of the nonlinear maps
preserving the ϵ-pseudo spectrum of different kinds of mixture product
of operators on B(H).
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