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Abstract. For several Banach lattices E and F , if K(E,F ) denotes
the space of all compact operators from E to F , it is shown that a
necessary and sufficient condition for a closed subspaceM ofK(E,F ) to
have the weak Dunford–Pettis property is that all evaluation operators
ϕx : M→ F and ψy∗ : M→ E∗ are almost Dunford–Pettis operators,
where ϕx(T ) = Tx and ψy∗(T ) = T ∗y∗ for x ∈ E, y∗ ∈ F ∗ and T ∈M.
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1. Introduction

A Banach space X has the Dunford–Pettis (DP) property, if for any Banach
space Y , every weakly compact operator from X to Y is completely continuous,
that is it maps weakly compact subsets of X onto norm compact subsets of
Y . The DP property was introduced by Grothendieck who also showed that
a Banach space X has the DP property, if and only if, for every weakly null
sequences (xn) in X and (fn) in X∗, we have fn(xn)→ 0. We refer the reader
to [1] for valuable results on DP property.
Brown and Ulger (see [4, 12]) have studied the DP property for subspaces
of the compact operators on an arbitrary Hilbert space. Indeed, if M is a
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closed subspace of the compact operators in a Hilbert space H, then M has
the DP property (or equivalently M∗ has the Schur property, i.e., weak and
norm convergence of sequences in M∗ coincide), if and only if, all evaluation
operators ϕx : M→ H and ψx : M→ H are compact operators, if and only
if, all evaluation operators are completely continuous, where ϕx(T ) = Tx and
ψx(T ) = T ∗x, for all x ∈ H and T ∈ M. The same conclusion has obtained
by Saksman and Tylli in [10] for closed subspaces of the compact operators in
`p(1 < p <∞). Saksman and Tylli also showed that if M is a closed subspace
of the compact operators in a reflexive Banach space X having the DP, then
for every x ∈ X the evaluation operators are completely continuous.
Recently In [8], Moshtaghioun and Zafarani extend these conclusions to closed
subspaces of several operator ideals. They proved that for a large class of Ba-
nach spaces X and Y , the Schur property of the dual M∗ of a closed subspace
M of an arbitrary operator ideal U(X,Y ) is a sufficient condition for compact-
ness and so complete continuity of all evaluation operators ϕx and ψy∗ . On
the opposite direction, they have shown that for several Banach spaces X and
Y with Schauder decompositions, if M is a closed subspace of K(X,Y ) or
Kw∗(X∗, Y ), then the Schur property of M∗ is a necessary condition for com-
pactness of all point evaluations, where K(X,Y ) denotes all compact linear
operator from X to Y and Kw∗(X∗, Y ) is the space of all compact weak∗-weak
continuous operators from X∗ to Y .
In [3] the authors study the DP1 property, which has introduced by [6], for
closed subspaces of K(X,Y ), where X and Y admit Schauder basis and the
basis of X is shrinking; and they proved some necessary and sufficient condi-
tions for the DP1 property of suitable subspaces of K(X,Y ). Some results of
[3] has extended in [9], for a suitable class of closed subspaces of some operator
ideals.
Here, we will show that similar consequences of [9] remain valid for the weak
DP property and a suitable class of closed sublattices of compact operators,
where in this case the evaluation operators must be assumed almost DP oper-
ators. Almost DP operators are introduced by Sanchez in his thesis [11] and
used later by Wnuk in his paper [14] and define the weak DP property that is
a weaker notion than the DP property. A Banach lattice E has the weak DP
property if every weakly compact operator defined on E is almost DP.
It is evident that if E is a Banach lattice, then its dual E∗, endowed with the
dual norm and pointwise order, is also a Banach lattice. The norm ‖.‖ of a
Banach lattice E is order continuous if for each generalized net (xα) such that
xα ↓ 0 in E, (xα) converges to 0 for the norm ‖.‖, where the notation xα ↓ 0
means that the net (xα) is decreasing, its infimum exists and inf(xα) = 0. A
subset A of E is called solid if |x| 6 |y| for some y ∈ A implies that x ∈
A. Every solid subspace I of E is called an ideal (an order ideal) in E. An
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ideal B of E is called a band if sup(A) ∈ B for every subset A ⊆ B which
has a supremum in E. A band B in E that satisfies E = B ⊕ B⊥, where
B⊥ = {x ∈ E : |x| ∧ |y| = 0,∀y ∈ B} is referred to as a projection band
and so every vector x ∈ E has a unique decomposition x = x1 + x2, where
x1 ∈ B and x2 ∈ B⊥. Then it is easy to see that a projection pB : E → E is
defined via the formula pB(x) := x1. Any projection of the form pB is called
an order projection (or a band projection) and pB⊥ is the band projection
onto B⊥. Thus, the band projections are associated with the projection bands
in a one-to-one fashion. Every band projection pB is continuous and ‖pB‖ =
1. An operator T : E → F between two Riesz spaces is said to be a lattice
homomorphism, whenever it preserves the lattice operations, that is, whenever
T (x ∨ y) = T (x) ∨ T (y) holds for all x, y ∈ E. It is positive if T (x) > 0
in F, whenever x > 0 in E. Throughout this article, X and Y denote the
arbitrary Banach spaces. Also E and F denote arbitrary Banach lattices and
E+ = {x ∈ E : x > 0} refers to the positive cone of the Banach lattice E. If x
is an elemeny of a Banach lattice E, then the absolute value of x is represented
by |x|. For unexplained notation the reader is referred to [1] and [7].

2. Main Results

Recall from [11] that, a continuous operator T from a Banach lattice E to
a Banach space Y is called almost DP if ‖Txn‖ → 0 for every weakly null
sequence (xn) in E consisting of pairwise disjoint elements (a sequence (xn) is
(pairwise) disjoint, if for each i 6= j, |xi| ∧ |xj | = 0). The following Lemma,
which deals with almost DP operators and disjoint sequences in Banach lattice,
is due to the author [14] and is needed in the rest of this article.

Lemma 2.1. An operator T from a Banach lattice E into a Banach space X is
almost DP, if and only if, ‖Txn‖ → 0, for every weakly null disjoint sequence
(xn) in E+.

For the following theorem, see [14].

Theorem 2.2. For a Banach lattice E, the following are equivalent:

(a) E has the weak DP property,

(b) For every Banach lattice F , every weakly compact operator T from E
into F is an almost DP operator,

(c) For every reflexive Banach lattice F, every operator T from E into F is
an almost DP operator,

(d) Every weakly compact operator T from E into c0 is an almost DP oper-
ator.
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Proof. (a) ⇒ (b). It is just the definition of the weak DP property.
(b) ⇒ (c). Suppose that F is reflexive and T is an operator from E to F .
From [1], T is weakly compact and by the hypothesis (b), T is an almost DP
operator.
(c) ⇒ (d). If T : E → c0 is a weakly compact operator, since c0 has order
continuous norm, by [1, Theorem 5.38], T factors through a reflexive Banach
lattice. Hence by the hypothesis (c), T is an almost DP operator.
(d) ⇒ (a). From [14, Proposition 1], we show that fn(xn) → 0 for every disjoint
weakly null sequence (xn) ∈ E+ and for all weakly null sequence (fn) ∈ E∗ .
By [1, Theorem 5.26], the map T : E → c0 defined by Tx = (fn(x)) is a weakly
compact operator and by the hypothesis (d), it is almost DP and so Lemma
2.1 implies that, ‖Txn‖ → 0, that is supi|fn(xi)| → 0. Now |fn(xn)| → 0 and
therefore fn(xn) → 0. �

As immediate consequences of the preceding Theorem we have the following
Corollaries.

Corollary 2.3. Let E, F be two reflexive Banach lattices and M ⊂ L(E,F )
be a Banach lattice with the weak DP property. Then the evaluation operators
ϕx and ψy∗ are almost DP operators, for all x ∈ E and y∗ ∈ F ∗.

Proof. Since E and F are reflexive and M has the weak DP property, by
Theorem 2.2, the evaluation operators ϕx and ψy∗ are almost DP operators,
for all x ∈ E and y∗ ∈ F ∗. �

Corollary 2.4. Let M be a Banach lattice and X be a Banach space, such
that M∗ has order continuous norm. If c0 is not embeddable in X, and M has
the weak DP property, then each continuous operator T : M→ X is a almost
DP operator.

Proof. By [1, Theorem 5.27], each continuous operator T : M→ X is weakly
compact and by Theorem 2.2, the weak DP property of M implies that T is
an almost DP operator. �

From [1, Theorem 4.61], a Banach lattice E is weakly sequentially complete
(wsc), if and only if, c0 is not embeddable in E, if and only if, c0 is not lattice
embeddable in E. So we have the following Corollary.

Corollary 2.5. Let E∗ and F be wsc and M ⊂ L(E,F ) be a Banach lattice
such that M∗ has order continuous norm. If M has the weak DP property,
then for all x ∈ E and y∗ ∈ F ∗ the evaluation operators ϕx and ψy∗ are almost
DP.

Proof. Since E∗ and F are wsc, from [1, Theorem 4.61], c0 is not embeddable
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in E∗ and F . Hence by Corollary 2.4, the evaluation operators ϕx and ψy∗ are
almost DP operators for all x ∈ E and y∗ ∈ F ∗. �

From [13] a Banach lattice E has the positive Schur property if every weakly
null sequence with positive terms in E is norm null or equivalently, every weakly
null sequence of pairwise disjoint elements of E is norm null. If Banach lattice E
has the Schur property then it has the positive Schur property, but the converse
of this assertion, in general, is false. For example L1[0, 1] is a Banach lattice
with positive Schur and without Schur property and so its identity operator
IdL1[0,1] : L1[0, 1] → L1[0, 1] is almost DP, but it is not DP because L1[0, 1]
does not have the Schur property. So we have the evident Proposition.

Proposition 2.6. Let M⊂ L(X,Y ) be a Banach lattice with the positive Schur
property. Then the evaluation operators ϕx and ψy∗ are almost DP operators
for all x ∈ X and y∗ ∈ Y ∗.

Proof. Since M has the positive Schur property, then every weakly null se-
quence of pairwise disjoint elements in M is norm null and by the definition of
almost DP operators in [11], the evaluation operators ϕx and ψy∗ are almost
DP operators for all x ∈ X and y∗ ∈ Y ∗. �

As in [7] a discrete element of a Riesz space E is a nonzero element u of E
whose generating ideal Au equals that vector subspace generated by u in E and
Au is a projection band . A complete disjoint system {ei}i∈I of a Riesz space
E is a pairwise disjoint collection of element of E+ such that if u∧ei = 0 holds
for all i ∈ I, then u = 0. A discrete Riesz space is a Riesz space E having a
complete disjoint system consisting of discrete elements of E. For example, the
classical Banach lattices c0 and `p, where 1 6 p < ∞ are discrete with order
continuous norm and `∞ is discrete without order continuous norm. Now, we
have the following Proposition.

Proposition 2.7. Suppose that E∗ and F are discrete Banach lattices with
order continuous norm and M⊂ L(E,F ) is a Banach lattice with the positive
Schur property, then the evaluation operators ϕx and ψy∗ are DP operators for
all x ∈ E+ and y∗ ∈ (F ∗)+.

Proof. Since M has the positive Schur property by proposition 2.6, the evalua-
tion operators ϕx and ψy∗ are positive almost DP operators and by [2, Theorem
2.2], they are Dunford-pettis operators, for all x ∈ E+ and y∗ ∈ (F ∗)+. �

In order to prove the final Theorem, we give the following Lemma similar to
[3, Remark 2.3].

Lemma 2.8. Suppose that M ⊂ L(E,F ) is a Banach lattice and evaluation



70 H. ARDAKANI AND S. M. S. MODARRES MOSADEGH

operators ϕx and ψy∗ are almost DP, for all x ∈ E and y∗ ∈ F ∗. Then
the mappings M → K(E,F ) and M → K(F ∗, E∗) defined by T → TS and
T → T ∗K are almost DP operators, for all S ∈ K(E) and K ∈ K(F ∗).

Proof. Let (Tn) be a disjoint weakly null sequence in M+. By Lemma 2.1,
we show that ‖TnS‖ → 0 for all S ∈ K(E). Since for every x ∈ E, the
evaluation operator ϕx is almost DP, then ‖Tnx‖ → 0, that is, (Tn) converges
to 0 strongly. Since the sequence (Tn) is bounded, Tn converges uniformly to 0
on compact subsets. Hence, TnS converges in norm to 0, for every S ∈ K(E).
Similarly, T ∗nK converges uniformly to 0, for every K ∈ K(F ∗). Therefore, for
every S ∈ K(E) and K ∈ K(F ∗), the mappings M → K(E,F ) and M →
K(F ∗, E∗) defined by T → TS and T → T ∗K are almost DP operators. �

Recall from [1], the vector space of all compact operators from a Banach lattice
E to an AM -space F (whenever, its norm is M–norm, i.e., if x ∧ y = 0 in F
implies ‖x∨y‖ = max{‖x‖, ‖y‖}) is a Banach lattice and also AM -spaces with
order continuous norm are discrete (see the proof of [15, Theorem 1.4]).
Now, let E be discrete with order continuous norm and F be an AM -space
with order continuous norm such that E and F have complete disjoint systems
consisting of discrete elements {ei}i∈I and {ui}i∈I , respectively and Iei

and Iui

be ideals generated by {ei}i∈I and {ui}i∈I , respectively. If M⊂ K(E,F ) is a
closed sublattice, then for all integers m and n and every operator T, S ∈M,

‖PWTPV + PW⊥SPV ⊥‖ = max{‖PWTPV ‖, ‖PW⊥SPV ⊥‖},

where V =
∑m

i=1 Iei and W =
∑n

i=1 Iui .

Theorem 2.9. Let E be discrete with order continuous norm, F be an AM -
space with order continuous norm and assume that M ⊆ Kw∗(E∗, F ) is a
closed subslattice. If all of the evaluation operators ϕx∗ and ψy∗ are almost DP
operators, then M has the weak Dpp.

Proof. We will argue by conradiction, so we assume that M does not satisfy
the weak DP property. Therefore by [?], there are r > 0, disjoint weakly
null sequence (Kn) ⊂ M∗ and a weakly null sequence (Γn) ⊂ M∗ satisfying
|Γn(Kn)| > r, (i = 1, 2, ..., n).
Since E is discrete with order continuous norm, then it has a complete disjoint
system consisting of discrete elements (ei)i∈I , such that for a fixed m0 ∈ N ,
U =

∑m0
i=1 Iei

is a (principal) projection band and PU : E → E is a band
projection onto U . Every x ∈ E is of the form x =

∑
i ti(x)ei, where numbers

ti(x) are uniquely determined. Functionals fi defined by fi(x) = ti(x) are
homomorphisms, and so they are discrete in E∗. It is easy to see that (fi)i∈I

is a complete disjoint system in E∗. Let V =
∑m0

i=1 Ifi
, then V ia a projection
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band in E∗. Now PV : E∗ → E∗ is a band projection onto V and PV = P ∗U .
Similarly, Since F is discrete with order continuous norm, then it has a complete
disjoint system consisting of discrete elements (ui)i∈I , such that for a fixed
n0 ∈ N , W =

∑n0
i=1 Iui

is a (principal) projection band and PW : F → F
is a band projection onto W. We recall that PV and PW are continuous and
‖PV ‖ = ‖PW ‖ = 1. We use the technique of [9, Theorem 2.4].
Now let (εn) be a sequence of positive numbers such that

∑
nεn <∞. We shall

construct by induction, subsequencs (Λn) of (Γn) and (Sn) of (Kn) such that
for all n, there exist finite dimensional projection bands V ⊂ E∗ and W ⊂ F ,
satisfying the following properties:

‖SiPV ⊥‖ 6 εn+1 and ‖PW⊥Si‖ 6 εn+1 , for all i= 1,2,...,n,

|〈Si,Λn+1〉| <
r

2(n+1)
for all i= 1,2,...,n, (∗)

|〈Sn+1,Λn+1〉| > r and |〈Sn+1,Λi〉| 6
r

2(n+1)
for all i= 1,2,...,n,

‖Sn+1PV ‖ 6 εn+1 and ‖PWSn+1‖ 6 εn+1.

Suppose that Λ1 = Γ1 and S1 = K1 and inductively, suppose that Λ1, ...,Λn ∈
(Γi) and S1, ..., Sn ∈ (Ki) have been chosen. To obtain Λn+1 and Sn+1, simi-
larly, as already explained and by [9, 8], we fined finite dimensional projection
bands V ⊂ E∗ and W ⊂ F, such that

‖SiPV ⊥‖ 6 εn+1 and ‖PW⊥Si‖ 6 εn+1,

for all i = 1, 2, ..., n. By Lemma 2.8, the operators K → KPV and K → PWK
from M into Kw∗(E∗, F ) are almost DP. Thus by hypothesis on (Kn) we have

‖KnPV ‖ → 0 and ‖PWKn‖ → 0.

So there exists an integer N1 > 0 such that for all j > N1:

‖KjPV ‖ 6 εn+1, ‖PWKj‖ 6 εn+1.

By the weak nullity of the sequences (Kn) and (Γn) there exists two integers
N2, N3 such that

|〈Kj ,Λi〉| 6
r

2(n+1)
for all i= 1,2,...,n , j > N2,

|〈Si,Γj〉| 6
r

2(n+1)
for all i= 1,2,...,n , j > N3.

Now select an integer j0 bigger than N1, N2 and N3 and set Λn+1 = Γj0

and Sn+1 = Kj0 . This finishes the induction process. We have constructed a
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subsequence (Λn) of (Γn) and a subsequence (Sn) of (Kn) such that for all
integer n, there are finite dimensional projection bands W ⊂ F and V ⊂ E∗

respectively, that satisfy all conditions of (∗). These properties, as shown in [4,
8], yield the following inequalities:

‖PW

n∑
i=1

SiPV −
n∑

i=1

Si‖ 6 3nεn+1 , ‖PW⊥Sn+1PV ⊥ − Sn+1‖ 6 3εn+1.

Since F is an AM -space, we obtain:

‖
n+1∑
i=1

Si‖ 6 ‖
n∑

i=1

Si − PW

n∑
i=1

SiPV ‖+ ‖Sn+1 − PW⊥Sn+1PV ⊥‖

+ ‖PW

n∑
i=1

SiPV + PW⊥Sn+1PV ⊥‖

6 3nεn+1 + 3εn+1 + max{‖PW

n∑
i=1

SiPV ‖, ‖PW⊥Sn+1PV ⊥‖}

6 3(n+ 1)εn+1 + max{‖
n∑

i=1

Si‖, 1}.

This shows that the sequence Tn =
∑n

i=1 Si is bounded and so has a weak∗ limit
point T ∈M∗∗. For each j, choose an integer n > j such that |〈T −Tn,Λj〉| <
1/2j . Therefore,

|〈T,Λj〉| > |〈Tn,Λj〉| − |〈T − Tn,Λj〉|

> |
n∑

i=1

〈Si,Λj〉| −
r

2j

> |〈Sj ,Λj〉| −
j−1∑
i=1

|〈Si,Λj〉| −
n∑

i=j+1

|〈Si,Λj〉| −
r

2j

> r − r

2
− r

2j
>
r

3
> 0

for sufficiently large j. Hence 〈T,Λj〉 and so 〈T,Γj〉 does not tend to zero. Thus
the sequence (Γj) does not converge weakly to zero, which gives a contradiction
and hence M has the weak DP property. �
However, under the same assumptions on E and F , a similar result can be
inferred for closed sublattices of K(E,F ):

Corollary 2.10. Let E be discrete with order continuous norm, F be an AM -
space with order continuous norm and assume that M ⊂ K(E,F ) is a closed
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subslattice. If all of the evaluation operators ϕx and ψy∗ are almost DP opera-
tors, then M has the weak DP property.
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