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Abstract. In this work, we examine the idea of exact sequences on
the hypermodule category and derive some fundamental properties of
them. Specifically, we demonstrate the Snake Lemma, also called the
ker-coker Lemma, for hypermodules, which has numerous applications
in homological algebra.
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1 Introduction

In 1934, Marty presented the theory of hyperstructures at the 8th congress
of the Scandinavian Mathematicians [15]. Since Marty first proposed
the idea of a hypergroup, other scholars have developed and worked on
this novel area of contemporary algebra. Following Krasner [11], several
authors examined the concepts of hyerfields and hyperrings.

One type of hypergroup is the canonical hypergroup. They were ini-
tially acquired from the hyperring and hyerfield’s additive section. The
word “canonical” was coined and J. Mittas was the first mathematician
to study them in depth (see [18]). Additionally, some authors studied
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hypermodules whose additive structure is just a canonical hypergroup
in the context of canonical hypergroups (see, for instance, [16], [13], [17],
and [10]).

Hyperstructures have many applications in several branches of both
pure and applied sciences. The hyperstructures book [2] describes how
they are used in binary relations, graphs, lattices, probability, codes,
automata, and hypergraphs.

The concepts of Hv-structures in which the axioms are replaced by
the weak ones, that is, instead of the equality on sets one has non-empty
intersections, were introduced first by T. Vougioklis in the Forth AHA
Congress (1990) [20]. These concepts have been further investigated by
many authors in [3, 4, 5, 12, 14], and [22]. A comprehensive review of the
theory of Hv-structures appears in [21]. For example, in [6] Davvaz and
Ghadiri defined the notion of exact sequences in Hv-modules and inves-
tigated some properties of these sequences concerning to fundamental
relations on Hv-modules (see also, [8, 9]). A recent book [7] is devoted
exclusively to the study of hyperring theory; it introduces and analyzes
various types of hyperrings and concludes with an overview of applica-
tions in physics and chemistry, analyzing various special types of hy-
perstructures, such as transposition hypergroups and e-hyperstructures.
In essence, hyperrings are rings with slightly altered axioms that treat
addition as a hyperoperation, that is, a+ b is a set. Numerous authors
have examined this idea.

Consider the category Hmod whose objects are hypermodules over
a fixed hyperring R. Define MorHmod(M,N) to be the set of all homo-
morphisms h : M → N . In this paper, we examine the idea of exact
sequences on the hypermodule category and derive some fundamental
properties of them. Specifically, we demonstrate the Snake Lemma, also
called the ker-coker Lemma, for hypermodules, which has numerous ap-
plications in homological algebra.

2 Preliminaries and �Basic Results

In this section, we fix our notations and compile a few fundamental
definitions from the theory of hyperstructures. The reader may refer to
[1] in this regard.
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We start with the definition of canonical hypergroup.

Definition 2.1. (See also [16, 17].) A set M equipped with a hyper-
operation + is said to be a canonical hypergroup if the following axioms
hold:
(i) (x+ y) + z = x+ (y + z), for all x, y, z ∈ M ;
(ii) x+ y = y + x, for all x, y ∈ M ;
(iii) there exists an element 0 ∈ M such that for every x ∈ M,x + 0 =
{x};
(iv) for every x ∈ M there exists a unique element x′ ∈ M such that
0 ∈ x+ x′. From now on, we denote x′ by −x and call it the opposite of
x; instead of x+ (−y) we shall write x− y.
(iv) z ∈ x+ y implies that x ∈ z − y, for all x, y, z ∈ M .

Remark 2.2. i) In general, for a hyperoperation + on the set M and

N,K ⊆ M , we shall writeN+K to denote the setN+K =
⋃

x∈N,y∈K
x+y.

ii) It can be easily seen that the element 0 is unique with the property
given by (iii).

We direct the reader to [18] for research on canonical hypergroups.
A well-known type of a hyperring is called the Krasner hyperring.

Definition 2.3. ([11]) A non-empty set R equipped with a hyperopera-
tion (+) and an operation (·) is called a Krasner hyperring (hyperring
for short) if:
(i) the pair (R,+) is a canonical hypergroup;
(ii) the pair (R, ·) is a multiplicative semigroup with an element 0 such
that x · 0 = 0 · x = 0 for every x ∈ R.
(iii) The distributivity laws hold in R. That is,

z · (x+ y) = z · x+ z · y, and (x+ y) · z = x · z + y · z,

for all x, y, z ∈ R.

According to [1], by a (left) hypermodule over a fixed hyperring R
we shall mean a canonical hypergroup (M,+) equipped with a function
· : R×M → M which associates to each pair (r, x) ∈ R×M, an element
rx ∈ M such that for all x, y ∈ M, and r, s ∈ R:
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(i) r(x+ y) = rx+ ry;
(ii) (r + s)x = rx+ sx;
(iii) (rs)x = r(sx);
(iv) 0x = x.

For any a, b ∈ R, let S be a subgroup of the multiplicative semigroup
of R, satisfying the formula aSbS = abS. Let M be an R-module,
where R is a unitary ring. Keep in mind that this requirement equals
the normality of S only in the division ring scenario, when R \ {0} is a
group. We now establish an equivalence relation ∼ on M , which has the
following definition:

x ∼ y ⇔ ∃t ∈ S, x = ty.

The set of all the equivalence classes of M modulo ∼ is denoted by M .
Afterwards, x̄ ⊕ ȳ = {w̄ ∈ M | w̄ ⊆ x̄ + ȳ} defines a hyperoperation ⊕
in M . That is, x̄⊕ ȳ consists of all classes w̄ ∈ M which are contained
in the set-wise sum of x̄ and ȳ. After that, (M,⊕) is established as a
canonical hypergroup. Let R be the quotient hyperring of R by S and
consider the function · : R×M−→M described as follows;

āx̄ = ax for every r̄ ∈ R, x̄ ∈ M.

Since this composition fits the requirements of the hypermodule defini-
tion, M over R becomes a hypermodule. Massouros has shown in [16]
that how closely this hypermodule relates to both the Euclidean spher-
ical geometries and the analytic projective geometries.

Below, all the hypermodules that are taken into consideration are
left hypermodules.

Definition 2.4. Given a fixed hyperring R, let M and N be two hyper-
modules over it. A mapping f : M−→N is called a homomorphism if
f(x + y) = f(x) + f(y), and f(rx) = rf(x) for all r ∈ R and for all
x, y ∈ M .

As usual, we define the kernel of a homomorphism f : M−→N be-
tween two hypermodules M and N over a hyperring R in the usual
manner, i.e.,

ker f = {a ∈ M | f(a) = 0}.

Then we have
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Proposition 2.5. Let f : M−→N be a homomorphism of hypermodules
over a hyperring R. Then f is one to one if and only if ker f = {0}.

Proof. It is straightforward (see also [1]). □

3 Main Results

Throughout this section, we will be concerned almost exclusively with
hypermodules. Consider a fixed hyperring R. The class of all hyper-
modules over the hyperring R along with all homomorphisms creates a
category denoted by Hmod, as we have already established in the intro-
duction. Let M be a hypermodule over the hyperring R, C(M) the class
of M ’s subobjects in Hmod, and C0(M) the set of M ’s subhypermod-
ules. Let us examine the mapping φ : C0(M) → C(M), which is defined
as follows: φ(X) = [X, iX ], where iX : X → M is the inclusion homo-
morphism. After that, it is evident that φ is a bijection (see [13] for fur-
ther information). It is easily checked that [f(M), if(M)] ∈ C(N) for any
homomorphism f : M−→N of hypermodules, where if(M) : f(M) → N
is the inclusion. It is worth to mention that if f : M → N is a monomor-
phism in the category of hupermodules, then Imf = [M,f ] (see also
remark 3.2 below).

We begin with the following:

Definition 3.1. A sequence of homomorphisms of hypermodules

· · · //Mi−1
fi //Mi

fi+1 //Mi+1
//// · · · (1)

is said to be exact at Mi if Imfi = ker fi+1 (as subobjects of Mi in
Hmod). The sequence is said to be exact if it is exact at each Mi.

Remark 3.2. It is easy to see that a sequence:

1. 0−→M1
f−→ M2 is an exact sequence if and only if f is a homo-

morphism that is one to one.

2. M1
f−→ M2−→0 is an exact sequence if and only if f is a homo-

morphism that is onto.
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3. 0−→M1
f−→ M2

g−→ M3−→0 is an exact sequence if and only if f
is a one to one homomorphism, g is an onto homomorphism, and
ker g = [M1, f ].

Theorem 3.3. (Five Lemma) Let the following diagram of hypermod-
ules and homomorphisms over the hyperring R be given

M1
f1 //

h1

��

M2
f2 //

h2

��

M3
f3 //

h3

��

M4
f4 //

h4

��

M5

h5

��
N1 g1

// N2 g2
// N3 g3

// N4 g4
// N5.

Assume that the diagram is commutative and that the rows in it are
exact sequences. Then

1. if h1 is an epimorphism, h2 and h4 are monomorphisms, then h3
is a monomorphism;

2. if h5 is a monomorphism, h2 and h4 are epimorphisms, then h3 is
an epimorphism;

3. if h1 is an epimorphism, h2 and h4 are isomorphisms, and h5 is a
monomorphism, then h3 is an isomorphism.

Proof. 1) This is straightforward.
2) Suppose b3 ∈ N3; since h4 is surjective, there exists a4 ∈ M4 such
that h4(a4) = g3(b3); it follows

(h5 ◦ f4)(a4) = (g4 ◦ h4)(a4) = (g4 ◦ g3)(b3) = 0,

and as h5 is injective, f4(a4) = 0; the top row in the diagram being an
exact sequence, there exists a3 ∈ M3 such that f3(a3) = a4; we have

g3(b3) = h4(a4) = (h4 ◦ f3)(a3) = g3(h3(a3)),

and so 0 ∈ g3(b3−h3(a3)). This means that there exists a′3 ∈ b3−h3(a3)
such that g3(a

′
3) = 0, hence there exists b2 ∈ N2 such that a′3 = g2(b2).

Since, h2 is surjective, it guarantees that there exists a2 ∈ M2 such that
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b2 = h2(a2), hence g2(b2) ∈ b3−h3(a3). But the diagram is commutative,
so

g2(b2) = (g2 ◦ h2)(a2) = (h3 ◦ f2)(a2).
It follows that h3(f2(a2)) ∈ b3−h3(a3) or equivalently, b3 ∈ h3(f2(a2))+
h3(a3). Since h3 is a homomorphism, there exists x ∈ f2(a2) + a3 such
that b3 = h3(x), i.e, h3 is surjective.
3) follows from 1) and 2). □

Corollary 3.4. (Short Five Lemma) Let the following commutative di-
agram of hypermodules and homomorphisms over the hyperring R be
given:

0 //M1
f1 //

h1

��

M2
f2 //

h2

��

M3
//

h3

��

0

0 // N1 g1
// N2 g2

// N3
// 0

The following assertions are then true:

1. If h1, h3 are monomorphisms then so is h2;

2. If h1, h3 are epimorphisms then so is h2;

3. If h1, h3 are isomorphisms then so is h2.

Proof. It is straightforward. □

Theorem 3.5. Let the following commutative diagram of hypermodules
and homomorphisms over the hyperring R be given:

0

��

0

��

0

��
0 // E′ u′

//

f ′

��

E

f
��

u // E′′

f ′′

��

// 0

0 // F ′ v′ //

g′

��

F
v //

g

��

F ′′

g′′

��

// 0

0 // G′ w′
//

��

G
w //

��

G′′ //

��

0

0 0 0
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If the columns and the two bottom rows in this diagram are exact se-
quences, then the top row is also an exact sequence.

Proof. We must show that:
1) u′ is injective: This is trivial (see [19]).
2) Imu′ = keru :
This is analogous to the classical case. For the sake of completeness, we
give here more details. We have f ′′ ◦ u ◦ u′ = v ◦ f ◦ u′ = v ◦ v′ ◦ f ′ = 0
and since f ′′ is a monomorphism, it follows that u◦u′ = 0, hence Imu′ ⊆
keru. Conversely, if x ∈ keru, then

v(f(x)) = f ′′(u(x)) = 0,

and there exists y′ ∈ F ′ such that f(x) = v′(y′). We have

w′(g′(y′)) = g(v′(y′)) = g(f(x)) = 0,

and as w′ is injective, g′(y′) = 0. Consequently, there exists x′ ∈ E′ such
that y′ = f ′(x′); but then

f(x) = v′(y′) = v′(f ′(x′)) = f(u′(x′)).

As f is injective, it follows that u′(x′) = x. Hence, x ∈ Imu′.
3) u is surjective:
Let x′′ ∈ E′′. Being v surjective implies that there exists y ∈ F such
that v(y) = f ′′(x′′). We have

w(g(y)) = g′′(v(y)) = g′′(f ′′(x′′)) = 0,

hence there exists z′ ∈ G′ such that g(y) = w′(z′). As g′ is surjective,
there exists y′ ∈ F ′ such that z′ = g′(y′). We have g(y) = w′(g′(y′)) =
g(v′(y′)). Hence, since 0 ∈ g(y − v′(y′)), there exists t ∈ y − v′(y′) such
that g(t) = 0. Also, there exists x ∈ F such that f(x) = t. But, then
f(x) ∈ y− v′(y′) and so v(f(x)) ∈ v(y)− v(v′(y′)). Since v ◦ v′ = 0, this
is equivalent to v(f(x)) = v(y) and so f ′′(u(x)) = f ′′(x′′). Since f ′′ is
injective, we get u(x) = x′′, as desired. □

Let us now assume that M is a hypermodule over the hyperring
R and N a subhypermodule of M . There is only one hypermodule
hyperstructure on M/N = {a + N | a ∈ M}, which makes it easy to
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see that the mapping π : M−→M/N, given by π(a) = a + N , is a
homomorphism. This is given by the hyperoperation

(x+N) + (y +N) = {z +N | z ∈ x+ y}

and the operation

r(x+N) = rx+N.

The homomorphism π is onto. We call it the canonical projection (for
more details, see [1]). In particular, if f : M−→K is a homomorphism
of hypermodules then

Imf = {b ∈ K | f(a) = b for some a ∈ M}

is a subhypermodule of K and we can construct the quotient hyper-
module K/Imf that we denote it by cokerf . Now, we can prove the
following.

Theorem 3.6. (Ker-Coker Lemma) Let the following commutative di-
agram of hypermodules and homomorphisms over the hyperring R be
given in which the rows are exact:

M ′ f ′
//

α′

��

M
f //

α
��

M ′′ //

α′′

��

0

0 // N ′
g′
// N g

// N ′′

Then one may canonically construct a homomorphism of hypermodules
over the hyperring R such that the following is an exact sequence:

kerα′ f ′∗
−→ kerα

f∗
−→ kerα′′ δ−→ cokerα′ ḡ′−→ cokerα

ḡ−→ cokerα′′. (2)

Proof. The construction of δ is as follows:
Let x′′ ∈ kerα′′. �Being f surjective implies that there exists x ∈ M such
that x′′ = f(x). We have g(α(x)) = α′′(f(x)) = α′′(x′′) = 0, hence, from
the exactness of the bottom row in the above diagram we get an element
y′ ∈ N ′ such that g′(y′) = α(x). We claim that the image of y′ under
the canonical projection π : N ′−→N ′/Imα′ = cokerα′ does not depend
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on the chosen element x: indeed, let x1 ∈ M be such that f(x1) = x′′;
from f(x) = f(x1) it follows that 0 ∈ f(x) + (−f(x1)) = f(x − x1),
hence there exists t ∈ x−x1 such that 0 = f(t). But then, since the top
row of the diagram is exact, there exists an element a′ ∈ M ′ such that
f ′(a′) = t. If y′1 ∈ N ′ has the property g′(y′1) = α(x1), then

g′α′(a′) = αf ′(a′) ∈ α(x− x1) = g′(y′ − y′1),

so there exists b′ ∈ y′ − y′1 such that g′(b′) = g′(α′(a′)). As g′ is a
monomorphism, we have α′(a′) = b′ ∈ y′− y′1; and therefore y′+Imα′ =
y′1 + Imα′; hence the mapping δ defined by

δ(x′′) = y′ + Imα′,

is well defined. It is easily seen that δ is a homomorphism.
Next, we must show that the sequence (2) is exact. First of all, note
that it is routine to check that the induced sequences

kerα′ f ′∗
−→ kerα

f∗
−→ kerα′′′ (3)

and

cokerα′ ḡ′−→ cokerα
ḡ−→ cokerα′′ (4)

are exact.
To complete the proof, it remains to prove the following two parts.
1) ker δ = Imf∗:
First, by the definition of δ we have δf∗ = 0 and so Imf∗ ⊆ ker δ.
Conversely, let δ(x′′) = y′ + Imα′ = 0, where f(x) = x′′, g′(y′) = α(x)
for some x ∈ M . It follows that y′ = α′(x′) for some x′ ∈ M ′, but then
α(x) = g′(y′) = g′(α′(x′)) = α(f ′(x′)) and so we have 0 ∈ α(x− f ′(x′)).
Therefore, there exists t ∈ x− f ′(x′) such that 0 = α(t). Next, we have

f∗(t) = f(t) ∈ f(x− f ′(x′)) = f(x)− f(f ′(x′)) = f(x).

Because the upper row is exact f(f ′(x′)) = 0. It implies that f∗(t) =
f(x) = x′′. Thus x′′ ∈ Imf∗ and we have the other-side inclusion.
2) Imδ = ker ḡ′:
The proof is similar to the classical case. □
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