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1 Introduction

Convergence is a fundamental concept in mathematical analysis that
plays a crucial role in comprehending the topological and geometrical
properties of the space. In recent years, some new topologies have been
produced using different types of convergence in topological spaces. Ex-
amining known concepts with these newly produced topologies and iden-
tifying differences has become one of the most interesting research areas.

In this study, especially by considering Z*-convergence, which will
be defined below, some topological concepts will be re-examined.

By ideal of N, we mean a subfamily of P(N) which is closed under
finite union and has hereditary property. Similarly, by filter, we mean a
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subfamily of P(N) which is closed under superset and finite intersection.
The set of complements of all elements of an ideal Z of N is a filter
known as a filter associated with the ideal and denoted by F(Z). If all
singleton subsets of N belongs to Z, then it is called an admissible ideal,
and if Z # ¢ and N ¢ 7 then it is called a nontrivial ideal (see more in
17, 21]).

The relatively new notion of ZX-convergence for functions was first
introduced by M. Macaj and M. Sleziak [12] in the year 2021 as a gener-
alization of Z*-convergence. In a space, this subject was first discussed
in [6]. After that, some more results relating to Z*-convergence can be
found in the papers [3, 4, 5, 16, 15, 8], etc.

In connection with these concepts, the author S.K. Pal in [20] intro-
duced the Z-sequential topological space, and later X. Zhou, L. Liv, and
S. Lin in [22] gave more results about the Z-sequential topological space
in 2020. After these studies, in the paper [9] Z*-sequential topological
space, and recently,in [10] the notion of Z®-sequential topological space
was introduced.

In the year 2000, A. Blali et al. [I] defined the concept of Z-
compactness. Later, several results about compactness in relation to
ideals were published in [7, 14, 19, 2, 13, 18].

In 2023, M. Singha and R. Sima in [!1] defined the Z-sequential
compact space and Z*-sequential compact space by taking the Z-non-
thin subsequence of a given sequence by considering an admissible ideal
7.

In this work, the ideas considered in the papers [1] and [11] will be
generalized, and Z*-connectedness and Z"-compactness are going to be
introduced for any ideals Z and K. The first section will present certain
established definitions and outcomes. The second and third sections
will focus on the concepts of ZF-compactness and Z®-connectedness in
a topological space.

Throughout this paper, (2,7) will be referred to as a topological
space and Instead of using the term ”topological space,” we shall use
the abbreviation ”space” . The collection of finite subsets of natural
numbers is an ideal, which is symbolized as Fj,.

Definition 1.1. [I]
A sequence t = (t,,) in a space (£, T) is said to be Z-convergent to a
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point ¢ € Q if the set {n € N: ¢, € w} is an element of the filter F(7)
for every neighborhood w of ¢.

The point ¢ can be described as the ideal limit of the sequence, t and
it is expressed by iS¢ (or Z —lim t, =t).

Definition 1.2. [1] Consider F' C Q. The Z-closure of a set F'is defined
as the set of all ¢t € Q for which there exists a sequence (¢,) C F that
Z-converges to t. F is considered Z-closed if its Z-closure is identical

to itself, while a subset of €2 is considered Z-open if its complement is
Z-closed.

Definition 1.3. [1] Consider a space (€2, 7) with an ideal Z. (i) A subset
F of Q is considered Z-compact if, for any Z-open cover of I, there exists
a finite subcover.

(ii) A set F' is said to be sequentially Z-compact if every sequence
(tn) in F' has a subsequence (t,, ) that Z-converges to a point of F.

Definition 1.4. [12] Consider Z and K as arbitrary ideals, and let (2, 7))
be a space. A sequence t = (t,,) C Q is Z"-convergent to a point t € Q
if there exists M € F(Z) such that the related sequence (y,,) defined by

 tn, neM,
o { t, ng M,
ZIC
is KC-convergent to t. The expression Z* —lim(t,) = t or t — t represents
the limit of the sequence t, as it approaches the value of ¢ under the
context of 7.

Definition 1.5. [10] Let Z and K be two ideals and (€2, 7) be a space.
Then, (i) A subset F' C  is considered to be Z"-closed if the Z*-limit
point of all sequences F' is a point of F.

(i) A subset V of Q is considered to be Z%-open if its complement
V¢ is TX-closed.

Remark 1.6. Define I as the set of all finite subsets of the set of natural
numbers. Then, (i) Z®-convergence is transformed into the familiar
concept of Z*-convergence.

(i) TX-open and T¥-closed are identical to Z*-open and Z*-closed,
respectively.
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Proof. The proof is provided in [10]. O

Remark 1.7. According to the reference [12], it is evident that any
KC-converges sequence is also Z%-converges. Therefore, it can be demon-
strated that any set that is Z%-open is also K-open.

Definition 1.8. Consider two ideals, Z and K, and a space (2,7).
7K
Then, Z¥-closure of A is denoted by A" and defined as

—7K K
A7 ={teQ:3(t,) CA, t, =t}

for any subset A C Q.

Remark 1.9. The following statements are true: (i) The Z*-closure
of the empty set and 2 are equal to themselves. Additionally, for any
A C Q, Ais a subset of its Z®-closure. (ii) A subset of the space € is
TF-closed if and only if its Z®-closure is equal to itself.

Proof. The proof is provided in [10]. O

Theorem 1.10. Consider a space (2,7), and let Z and K be two ideals
of N. Then,

Trx ={ACQ:clx(Q—A)=Q— A}
s a topology over the set €.

Proof. The proof can be obtained by considering definitions. Therefore,
we have excluded it from this discussion. U

Definition 1.11. [10] (£, 77«) is said to be Z®-discrete space if every
subset of Q is Z%- open set.
2 ZF-Compactness

For any ideal Z and K, the notions Z"*-compactness and Z*-connectness
will be defined.
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Definition 2.1. Consider Z and K as arbitrary ideals of N, and let
(Q,7) be a space. A set C that is a subset of Q is referred to as: (i) Z'-
compact, for any collection of ZX-open sets that covers C, there exists
a finite subcollection that also covers C.

(i) A set C is sequentially Z®-compact if, for any sequence (¢,) in
C, there exists a subsequence that is Z"-convergent and Z*-converges
to a point ¢ in C.

(iii) Locally Z*-compact if for any point ¢ € Q, there is a neighbor-
hood that is Z®-compact.

In the case where K = Fin, the concepts of Z"-compactness and
sequentially ZX-compactness are identical to Z*-compactness and se-
quentially Z*-compactness, respectively.

Every space that is ZX-compact is also locally Z*-compact.

Theorem 2.2. Consider Z and K as arbitrary ideals of N. Let (Q, )
be a space. A subset of an I*-compact space that is also T -closed, is
K -compact.

Proof. Let A be an Z%-closed subset of Q. Let {U,}aea be a collection
of Z%-open sets that covers the set A, then {U,}aen U A°} is TX-open
cover of Q. Since € is ZX-compact, then there exists a finite subcover of
(). Hence, we have

Q C U'_ Uy, U (A%

and
A=ANQ C AN (UL_1Uq U (A9)).

So, the set A is an Z®-compact set. O

Theorem 2.3. Consider T and K as arbitrary ideals of N. Let (2, 1)
denote a space. An T®-closed subset of sequentially T®-compact space
is sequentially T -compact.

Proof. Let © be a sequentially ZX-compact space. Let C be an Z%-
closed subset of 2, and (¢,,) C C be any sequence. Since (2 is sequentially
TF-compact and C' C , then there exists an ZX-convergent subsequence
(tn,) of (t,) such that ZX-converges to some point ¢ € Q. It is clear that
t is the T closure point of C. Since C' is Z*-closed, then ¢t € C. Hence,
C is sequentially Z"-compact. O
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Theorem 2.4. Consider T and K as ideals of N, and let (2,7) be a
space. If Ay and Ay are T®-compact subsets, then A1 UAs is T -compact.

Proof. Assume that 4; and As are ZX compact subsets of the space
(Q,7). Let C = {U; : i € A} be an Z"-open cover of A; U As, i.e.,

AjUAy C UieaUs.

This inclusion implies that the family C is also Z®-open cover of A; and
As. Because of the ZX-compactness of A; and As, there exists a finite
subcover C; = {U; :i=1,2,..n} and Co = {U; : j = 1,2,...m} of C that
covers A1 and As, respectively. Then, the collection C; U Cs is a finite
subcover of A1 U As. O

Theorem 2.5. Consider T and K as ideals of N, and let (2,7) be a
space. If A1 and Ao are sequentially T -compact sets, then Ay U Ay is
sequentially T -compact.

Proof. Let { = (t,) C A;jUA; be any arbitrary sequence. Then, at least
an infinite number of terms of the sequence # are in the set A; (or As).
Since A; and Ay are sequentially ZX-compact, then there exists an Z-
convergence subsequence (t,,) of # in Ay (or in Ag), which ZX-converges
to some point of A; U As. O

Corollary 2.6. The finite union of I -compact (sequentially T -compact)
sets is I -compact (sequentially I’C—compact), respectively.

Theorem 2.7. Arbitrary union of locally T -compact space is locally
K -compact.

Proof. The proof is clear from the definition of locally Z*-compactness.
O

Theorem 2.8. Consider Z and K as ideals of N, and let (2,7) be a
space. Then, (i) Every K-compact space is K -compact.
(i) Bvery sequentially K-compact space is equentially T -compact.

Proof. (i) Let Q be a K-compact space. Then, for any K-open cover of
), there exists a finite subcover. Now, consider an arbitrary family of
TF-open sets {Uy}aca as a cover of Q. Then, by Remark 1.7, it is clear
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that {Uy}aca is a K-open cover, and by the K-compactness of € there
exists a finite subcover.

(ii) Let © be a sequentially K-compact space. Let t = (t,) C
be a sequence. Then there exists a subsequence (t,,) of # such that
K-converges to somepoint ¢ € Q. And by [12] the sequence f is I
convergent to t € (). O

Remark 2.9. By (Proposition 2 in [1]), if Z is an admissible ideal, then
every open subset of space {2 is Z-open. So, every Z-compact space is
also a compact space.

The following example shows that every sequentially Z-compact space
is not sequentially Z*-compact.

Example 2.10. Let 2 = [0, 1] be equipped with the standard topology
inherited from R. Consider the set N, which may be decomposed as
the union of infinitely many subsets A;. Each A; is infinite, and the
intersection between any two different subsets A; and A; is empty. Let

Z={ACN: AN A;is finite, for all but finitely many i’s} U Fin

and K = Ky = {A C R: §(A) = 0}. Here §(A) shows the asymptotic
density of A, (see [22]). Clearly, the ideals Z and K are non-trivial and
admissible. We claim that 2 is sequentially Z-compact. Let (¢,) C
be a sequence. Then, by the Bolzano-Weierstrass theorem, it has a con-
vergent subsequence (¢, ) such that (t,,) — ¢, t € Q. As the ideal Z is

admissible by (Proposition 1 in [1]) ¢, % t. Therefore, ) is sequentially
Z-compact. But it is not a sequentially Z*-compact space. Now consider
the sequence (t,) = (). It is clear that in the decomposition of N, each
A; € Z. Let (yn) be a sequence defined as y, = t; when n € A;. The
sequence (¥, is not ZX-convergent. Assume that (y,) is Z%-convergent
to zero. Then, there exists M € F(Z) such that the following sequence

- Yn, N E M,
"0, né¢M,

is KC-convergent to 0. So, for any neighborhood U of zero, {n € N: t,, ¢
U} € K. This implies that {ne M :t, ¢ U} € K. But §({n e N : ¢, ¢
U}) # 0 because M € F(Z) implies that there exists H € Z such that

7



H.S. BEHMANUSH

M = N-—H. So there exists | € N and assume that H C AjUAsU...UA,,
and for all ¢ > [ + 1, there exist infinitely many terms of vy, that are
equal to t;.

Definition 2.11. Consider Z and K as ideals of N, and (Q,7) and
(Q',p) as spaces. A function f from the space Q to Q' is said to be

TK-continuous if it provides the inverse image of any ZX-open subset of
Q' is Z"-open in Q.

Theorem 2.12. (i) The image of T*-compact space under I -continuous
function is T -compact, (ii) The image of sequentially-T* -compact space
under T -continuous function is sequentially-I’ -compact,

Proof. (i) Let us assume that f : © — Q' be an Z®-continuous function

and Q be an Z®-compact space. Take {Ua}aca be an TX-open cover of
f(€2). Therefore, f(2) C Uyep Ua implies that

Qc |

aEA

Since € is Z"-compact and f is Z®-continuous function, then we have

n n
Qc W) =Y Va)
a=1 a=1
and this implies that f(Q) C J._; Uy holds.
(ii) Let Q be a sequentially Z®-compact space. Let (y,) C f(Q) be
an arbitrary sequence. Then, there exists a sequence (t,) C €2 such that
Yn = f(tn) for all n. Since Q is sequentially ZX-compact, then there is

K
an TX-convergence subsequence (t,, ) of (t,) such that ¢, L, 1. Since
every ZX-continuous function is a sequentially Z*-continuous function,
K
then f(tn,) EAN (f(t)) which completes the proof. [
The following theorem shows the existence of ZX-compact subset of

a space ().

Theorem 2.13. Consider Z and K as ideals of N. Let (2, 7) be a space.
Assume that a sequence (t,) C Q is I"-convergent to a point t. Then,
following set

A={t,:neN}U{t}

is sequentially T -compact.
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Proof. Let (y,) C A be a sequence. Case 1: If there are infinitely
many terms of (y,,) that are equal to ¢, we can take the subsequence
(Yn,) = t, and it is T®-convergent to € Q. Case 2: Let finitely many
terms of y, be equal to t. Then infinitely many terms of (y,,) are equal
to terms in (¢,). Take y,, = y, where y,, # t, then (y,, ) = (¢,), which
is ZX-converges to € Q. And in case (3), if the infinite number of
terms of the sequence is equal to ¢, and also equal to x, clearly there
exists ZX-convergent subsequence which is converging to some point of
set A O

Definition 2.14. Consider two Z*-sequential spaces denoted as (€2, 77x)
and (€', pzc). Then, the Z%-product topology on  x Q' is the topology
having as basis the collection

B={UxV:U¢&€r,V € prx}.

Lemma 2.15. Consider two sequential spaces denoted by (Q, m7x) and
(Q/,pI;c).Then the projection maps m; : {1 X Q - Q,j=1,2 are IF-
continuous.

Proof. The proof is evident based on the concept of function Z*-
continuity, hence it is omitted. O

Theorem 2.16. If Q) and Q' are spaces, then
(i) Qx Q" is T -compact if and only if @ and Q" are both T -compact.
(i) The Cartesian product of Q and Q s sequentially I -compact
if and only if Q and Q' are both sequentially T -compact.

Proof. (i) Let 2 x Q' be an ZF-compact space. Since the projection
maps m and m are ZX-continuous maps, Q and Q are ZX-compact
spaces.

Conversely, let 2 and Q' be TX-compact spaces. Consider an arbi-
trary Z%-open cover {U; x Vj,i,5 € A} of Q x Q' such that Q x Q' C
Us,jeaUi x Vj holds. So, for all (z,y) € 2 x Q)| there exists m,n € X such
that z € U, and y € V,,. Hence, 2 C U,ec\U, and O c Umea Vi are
satisfied. From the ZX-compactness of Q and ', we have Q C ure, U,
and Q' C UM%, Vi, So, © x Q' € Un2™ Uy, x Vi, holds.

(i7) Let Q and Q' be sequential ZX-compact spaces. Let & = ((t,yn)) C

Q x Q be a sequence, then 71 (%) = (t,,) and (%) = (y») are in Q and

9



10

H.S. BEHMANUSH

Q, respectively. Since Q and Q are sequentially ZX-compact spaces,
there exists Z®-convergent sub-sequences (t,,) of (t,) and (Yn,) of Yn,

which are Z®-converge to some point ¢ € Q and y € Q. So, there exists
My, My € F(T) such that the sequences

1 tnka ng S Mla
Yn =

t7 Nk ¢ M17
is IC-converges to t and the sequence

2 = {ym]-7 m; € Mo,
" Y, m; ¢ M27

is KC-converges to y. So, for any neighborhood U! of ¢ and for any
neighborhood U? of y
{nk € My : t,, € U'} € F(K)and{m; € My : yp, € U*} € F(K)
Let M = M N M. Define a sequence

t = (tnkvynk)a nk€M7

Let U be any Z¥-open set that contains (t,y). So, there exists By x
By € B such that By x By C U and (t,y) € By x By. Hence,

{<nk) € M: (tnk7ynk) §Z U} -

- {(nka 7m]) € M: tnkaynk) ¢ Bl X BQ}
C{(nkEMl Do, ¢B1}U{,m]‘ GMQ:ym]. ¢B2}€’C
is satisfied. Therefore, the sequence K-converges to (¢,y). This implies
that Q x Q' is sequentially Z*-compact.

The converse of the proof is clear by the Z¥-continuity of the pro-
jection mappings. O
Definition 2.17. Consider Z and K as arbitrary ideals of N. Let
(Qj,TIj;c)jeA be a family of ZX-sequential-spaces. Let Q = HjeA Q.
The ZX-product space is defined as the product set Q equipped with a
topology Tzk, having as its basis the family

B = {H 0;:0; € 7'Zj,<and O; = Q; for all but finite numbers of j}
JEA
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Proposition 2.18. Let (£, TIjzc)jeA be a family of T -sequential spaces.
Then, the projection maps ; : HjeA Q; — Q; are K -continuous maps.

Proof. The proof is self-evident based on the definition of Z*-continuous
maps and projection maps, so it is omitted. ]

Theorem 2.19. Let (Qj,’TZj,C)jeA be a family of I"-sequential spaces.

Then, the IF -product space Q is T -compacted iff the set Q; is compacted
for alli € A.

Proof. We will prove the theorem by the fact that a sequential space (2
is 7X-compact iff every family £ of T®-closed subset of  with the finite
intersection property (F.LP.) satisfy (\pce £ # ¢.

Let €; be an ZF-compact space for each i. Let £ be a family of
T closed subsets of Q with the F.I.P.; we prove that Ngee E # 0.

By using Zorn’s Lemma, it can be shown that there exists a maximal
family G subsets of Q (not necessary Z-closed) that contain £ and
have the F.I.P. We will demonstrate that ﬂGeg G # ¢, This implies the
desired result, as each E € £ is closed.

If G1,Go, ...,Gy € G, for any n € N, then the set G = G1NGaN...N
G, € G. Assuming that this is not true, we can conclude that the set
G = G U{G'} properly contains G, has the F.IP, and contains £. This
contradicts the maximality of G.

Consider S, a subset of £2,which has intersection with every element
in G. We assert that the set G U {S} possesses the F.I.LP. To see this,
let Gll, GIQ, - G;n be members of G. By previous paragraph, Gll N G; N
..NG,, € G, and by assumption, SN (G} NGy N ...NG,,) # ¢, hence
G U {S} has the F.ILP and contains £. By utilizing the properties of
G being maximum, having a F.I.P, and including &£, it becomes evident
that S belongs to G.

Fix ¢ and let P; : © — €; be the projection maps, then the family
{Pi(G;) : G € G} has the F.LP. As (€, T;) is T"-compact, geg Pi(G) #

¢. Select ; € (Ngeg Pi(G), then for each i we can find a point x; €
Ngeg Pi(G), put © =[] z; € Q. B
We shall prove that x € (g G- Let O be any X -open set con-

taining . Then O contains a basic Z"-open set about z of the form
Nics Pfl(i/VZ-), where W; € T;, x; € W;, and J is a finite subset of A. As

11



12

H.S. BEHMANUSH

z;i € PI(G), WiNP(G) # ¢, for all G € G, thus P, Y (W;) NG # ¢ for all
G € G. By observation above, this implies that P, '(W;) € G,Vi € J.
As G has F.LP, N,c, P (W) NH # ¢ for all G € G, 50 ONG # ¢ for

all G € G, hence x € ﬂGeg G, as required.

Conversely, let the product space Q be Z-compact. Since the pro-
jection maps p; are TX-continuous maps and they map I’C-compact space
into Z®-compact spaces, so §; is Z®-compact for all i € A. O

3 7TX-Connectedness

In this section, the idea of connectedness of a space has been generalized
to Z%-connectedness.

Definition 3.1. Consider Z and K as ideals of N, and let (Q,7) be a
space. The subsets U and V of Q are said to be Z"-semi separated if

e (U)NV = ¢ =UNclgxe(V)

Lemma 3.2. Consider T and K as ideals of N. Let (Q,T) be a space
and Q' be a subspace of Q. Then, any subsets U,V C Q' are T’-semi
separated in Q0 iff they are IX-semi separated in €Y.

Proof. Let U and V be Z¥-semi separated in §. Then,
cAe(U)NV =¢p=Unclx(V)
holds. So, Cy (U) NV = clzx(U) N Q' NV = ¢. Similarly, we have
Cy(V)NU =cpe(V)NQ NU = ¢.
Conversely, let U and V be Z%-semi separated in €. Then,
Cy(U)NnV=¢p=Cy(V)NU.

Therefore, clzx(U)NQ NV = ¢. Since Q' # ¢, then el (U)NV = 6.
Similarly, we can show that clze(V)NU =¢. O

Lemma 3.3. Consider T and K as ideals of N, and (Q,T) and (', T")
as spaces. Let f be a function from X toY that is T -continuous. If A
and B are T -semi separated subsets of Q', then the preimage of A and
B under f are T -semi separated subsets of §).
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Proof. Let A, B C Q' be ZF-semi separated. Then, we have
ClIIC(A) NB= ¢ =A N CZIIC (B)
and we are going to prove,

FHA) Nelge(FH(B)) = ¢ = fH(B) Nelpe(fH(A))

holds. Let x € f~1(A) Nelge(f~1(B)). Then, x € f1(A) and x €
clre (f~5(B)). So, f(x) € A and there exists a sequence (t,,) C f~1(B)
such that Z®-converges to z. Since f is an T®-continuous function,
the sequence (f(t,)) I converges to f(z) in Q. Because of f(t,) C
B, f(z) € clgx(B). Therefore, f(z) € ANclge(B). But A and B
are I"-semi separated subsets of 2, which is a contradiction. Hence
fYA) Nl (f71(B)) = ¢. Similarly, we can prove that f~1(B) N
dpe(fUA) =g D

Definition 3.4. Consider Z and K as ideals of N, and let (©2,7) be
a space. (i) A set C C Q is considered Z"-connected if it cannot be
expressed as the combination of two ZX-semi-separated sets.

(ii) The space Q is considered Z®-connected if there are no subsets
U and V of Q) that are semi-separated and satisfy Q = U U V.

Definition 3.5. Consider a space (2,7). The component Czx(t) of ¢
in Q is the union of all Z®-connected subsets of € containing t.

Definition 3.6. A space, (Q,7) is totally Z"-disconnected if the com-
ponent Czx (t), consists just of the element ¢ for all ¢ € Q.

Theorem 3.7. Consider a space (Q,T). A subset Y C Q is -
connected if and only if for every subset A of Y,

lelzc (A) N (Y — A)|U [cle (Y — A) N A] # ¢
Proof. Let Y C Q be an ZX-connected set. Let
lelzc (A) N (Y — A)]U el (Y — A)NA] = ¢

then
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This means that A and Y — A are Z%-semi separated, and Y is an ZX-
disconnected set.
Conversely, let

el (A) N (Y — A)] U [elge (Y — A) N A] # ¢

hold for any proper subset A C Y. Let Y be Z*-disconnected subset
of Q, then there exists U C Y such that U and Y — U are ZF-semi
separated. So

A (U)NY =U)=¢ A (Y -U)NU =¢
therefore,
MUY N (Y =) U el (Y) = U)NU] = ¢
it is not the case. O

Theorem 3.8. Consider a space (2,T). the following assertions are
equivalents:

(i) Q is T*-connected.

(i) The only subsets of Q that are simultaneously T -open and T'-
closed are Q2 itself and the empty set.

(iii) If the K discrete space Q" has more than one point, there isn’t
a non-constant I -continuous function that maps Q to Q" .

Proof.

(i) = (ii):Consider a space  that is Z®-connected. Consider a valid
subset D of © that is simultaneously Z%-open and Z%*-closed. There
are two possibilities: (1): D is Z®-open. Then, Q — D is T®-closed and
Q— D = clyc(Q — D). (2): D is T"-closed. Then D = clzx (D).

Given that both instance (1) and (2) occur simultaneously. So D and
Q — D are Z"-semi-separated subsets of € such that their union is €.
So Q is ZF-disconnected, which is a contradiction.

(#3) = (#ii):Consider a set Q that is an Z%-discrete space with more
than one element. Let f: Q) — Q" be a function that is ZX-continuous.
Let’s assume that f is not constant. There is a subset D of €2 such that
f(D) is equal to a in Q" and f(D°) is equal to b in Q. Given that Q"
is an ZX-discrete space, it follows that both {a} and {b} are Z%-open
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subsets of Q. Thus, D and Q — D are both TX-open sets in §, where
D is the inverse image of {a} under the function f, and Q — D is the
inverse image of {b} under the same function. Alternatively, we have
that

clyx (D) = clpe f~ ({a}) = [ (clpe({a})) = f7'({a}) = D.

this indicates that D is also Z%-closed under the operation in Q. Which
is a contradiction.

(i77) = (i): Let Q" be TX-discreet space with consisting of more than
one element. Suppose that  is an Z"-disconnected space. Then, there
exists ZX-semi-separated subsets D and E of Q such that Q = DUE. If
we consider E = Q — D, we have clzc (2 —D)ND = ¢ and also @ — DN
clze (D) = ¢. So clze (D) C D and clzx(Q — D) € Q — D. Therefore,
clzx (D) = D and clx (2 — D) = Q — D. Without loss of generality,
take Q" = {0,1} with clzx(¢) = ¢, clzc () = Q" clze({0}) = {0}
and clzx({1}) = {1}. Define a function f: Q — Q" as f(D) = {0} and
£(B) = {1}.

We argue that f is an ZX-continuous function. Let ¢ # C c Q. In
order to observe this, we have three cases as follows:

(i) If C = Q", then f~1(C) = Q holds. So, clzx(f~1(C)) = cl¥(Q) =
Q= [ (clge (C)).

(ii) If ¢ = {0}, then f~1(C) = A holds. So, clzx(f~*({0})) =
clze (D) = D = f~H(clze ({0})).

(iii) If C = {1}, then f~Y(C) = E holds. So, clzx(f~1({1})) =
e (E) = D = f~(clpe ({1})).

Thus, f is an Z"-continuous function but not constant. Hence, (2 is
an Z%-connected space. ]

Theorem 3.9. If M is an T -connected subset of a space, Q and S and
W are I -semi-separated subsets of Q. Then, either M C S or M C W.

Proof. The proof is evident based on the concept of Z*-connectedness
and the definition of Z¥-semi-separated sets. Therefore, it is excluded
in this context. ([l

Theorem 3.10. Let M be an T -connected subset of a space (2, T) and
M C N C clge(M). Then, N is T"-connected.

15
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Proof. Assume that N is not Z%-connected. Then there exists ZX-
semi-separated subsets S and W of N such that N = S U W. Since
M is Z"-connected, then either M C S or M C W. Suppose that
M C S. Then clzx (M) C S and W N elze (M) = ¢. But by hypothesis,
W C N Celge (M), and W = clgc (M)NW = ¢, which is a contradiction
since W # ¢. O

Corollary 3.11. If M is an I*-connected subset of a space (Q,T), then
clyxc (M) is T -connected.

Theorem 3.12. Let M and N are subsets of an I*-connected space,
(Q,T). If M and N are IF-connected but not I -semi-separated, then
M UN is T’ -connected.

Proof. Assume that £ = M U N is not Z¥-connected. Then there
exists T®-semi-separated subsets C' and D of Q such that E = C' U D.
M C C'UD, so by theorem 3.9 either M C C or M C D. Similarly, we
can say that either N C Cor N C D. If M C C and also N C C, then
MUN C C and D = ¢, which is not the case. Thus

(McCANCD) or (MCDANCCOC)
In the first case,
clzc(M)NN Celze(C)ND = ¢
and
cx(N)NM C e (D)NC = ¢

Likewise, in the second situation, we can have the identical outcome.
Thus, it follows that M and N are ZX-semi-separated in €2, which con-
tradicts the initial statement. Il

Theorem 3.13. If {M; : i € \} be a non-empty family of T -connected
subsets of space, such that(\;cy M; # ¢. Then, ;) M; is K -connected.

Proof. Let T'= J;c\ M;. Assume that T" is an TX disconnected subset
of Q. Then T = SUW, where S and W are Z®-semi-separated sets in
Q. Since (;c, Ai # ¢, we choose a point x € (), M;. Then 2 € T. So
either z € S or x € W. Suppose that x € S. Since x € M;, for each
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i€ Xand (M; US # ¢,Vi € N), so M; must be either in S or in W.
Since S and W are disjoint, So M; C S for all ¢ € A\. Hence, T' C S.
This means that W = ¢, which is a contradiction. (]

Theorem 3.14. I’ -continuous image of T®-connected space is T*-
connected.

Proof. Let 2 be an ZX-connected space and Q" be an Z¥-discreet space
that has more than one element. Then, any Z*-continuous function from
Q to Q" is constant.

Let g : f(2) — Q" be an T®-continuous function. Since f and g are
both Z*-continuous functions, then go f : Q@ — € is an Z"-continuous
function, and by the Z®-connectedness of Q, g o f is constant. This
implies that g is constant. Hence, f(Q) is ZX-connected. O
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