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1 Introduction

Convergence is a fundamental concept in mathematical analysis that
plays a crucial role in comprehending the topological and geometrical
properties of the space. In recent years, some new topologies have been
produced using different types of convergence in topological spaces. Ex-
amining known concepts with these newly produced topologies and iden-
tifying differences has become one of the most interesting research areas.

In this study, especially by considering IK-convergence, which will
be defined below, some topological concepts will be re-examined.

By ideal of N, we mean a subfamily of P(N) which is closed under
finite union and has hereditary property. Similarly, by filter, we mean a
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subfamily of P(N) which is closed under superset and finite intersection.
The set of complements of all elements of an ideal I of N is a filter
known as a filter associated with the ideal and denoted by F(I). If all
singleton subsets of N belongs to I, then it is called an admissible ideal,
and if I ≠ ϕ and N /∈ I then it is called a nontrivial ideal (see more in
[17, 21]).

The relatively new notion of IK-convergence for functions was first
introduced by M. Macaj and M. Sleziak [12] in the year 2021 as a gener-
alization of I∗-convergence. In a space, this subject was first discussed
in [6]. After that, some more results relating to IK-convergence can be
found in the papers [3, 4, 5, 16, 15, 8], etc.

In connection with these concepts, the author S.K. Pal in [20] intro-
duced the I-sequential topological space, and later X. Zhou, L. Liv, and
S. Lin in [22] gave more results about the I-sequential topological space
in 2020. After these studies, in the paper [9] I∗-sequential topological
space, and recently,in [10] the notion of IK-sequential topological space
was introduced.

In the year 2000, A. Blali et al. [1] defined the concept of I-
compactness. Later, several results about compactness in relation to
ideals were published in [7, 14, 19, 2, 13, 18].

In 2023, M. Singha and R. Sima in [11] defined the I-sequential
compact space and I∗-sequential compact space by taking the I-non-
thin subsequence of a given sequence by considering an admissible ideal
I.

In this work, the ideas considered in the papers [1] and [11] will be
generalized, and IK-connectedness and IK-compactness are going to be
introduced for any ideals I and K. The first section will present certain
established definitions and outcomes. The second and third sections
will focus on the concepts of IK-compactness and IK-connectedness in
a topological space.

Throughout this paper, (Ω, T ) will be referred to as a topological
space and Instead of using the term ”topological space,” we shall use
the abbreviation ”space” . The collection of finite subsets of natural
numbers is an ideal, which is symbolized as Fin.

Definition 1.1. [1]

A sequence t̃ = (tn) in a space (Ω, T ) is said to be I-convergent to a
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point t ∈ Ω if the set {n ∈ N : tn ∈ w} is an element of the filter F(I)
for every neighborhood w of t.

The point t can be described as the ideal limit of the sequence, t̃ and

it is expressed by t̃
I→ t (or I − lim tn = t).

Definition 1.2. [1] Consider F ⊂ Ω . The I-closure of a set F is defined
as the set of all t ∈ Ω for which there exists a sequence (tn) ⊂ F that
I-converges to t. F is considered I-closed if its I-closure is identical
to itself, while a subset of Ω is considered I-open if its complement is
I-closed.

Definition 1.3. [1] Consider a space (Ω, τ) with an ideal I. (i) A subset
F of Ω is considered I-compact if, for any I-open cover of F , there exists
a finite subcover.

(ii) A set F is said to be sequentially I-compact if every sequence
(tn) in F has a subsequence (tnk

) that I-converges to a point of F .

Definition 1.4. [12] Consider I and K as arbitrary ideals, and let (Ω, T )
be a space. A sequence t̃ = (tn) ⊂ Ω is IK-convergent to a point t ∈ Ω
if there exists M ∈ F(I) such that the related sequence (yn) defined by

yn :=

{
tn, n ∈ M,
t, n /∈ M,

is K-convergent to t. The expression IK−lim(tn) = t or t̃
IK

→ t represents
the limit of the sequence tn as it approaches the value of t under the
context of IK.

Definition 1.5. [10] Let I and K be two ideals and (Ω, T ) be a space.
Then, (i) A subset F ⊆ Ω is considered to be IK-closed if the IK-limit
point of all sequences F is a point of F .

(ii) A subset V of Ω is considered to be IK-open if its complement
V C is IK-closed.

Remark 1.6. Define K as the set of all finite subsets of the set of natural
numbers. Then, (i) IK-convergence is transformed into the familiar
concept of I∗-convergence.

(ii) IK-open and IK-closed are identical to I∗-open and I∗-closed,
respectively.
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Proof. The proof is provided in [10]. □

Remark 1.7. According to the reference [12], it is evident that any
K-converges sequence is also IK-converges. Therefore, it can be demon-
strated that any set that is IK-open is also K-open.

Definition 1.8. Consider two ideals, I and K, and a space (Ω, T ).

Then, IK-closure of A is denoted by A
IK

and defined as

A
IK

:= {t ∈ Ω : ∃(tn) ⊆ A, tn
IK
→ t}

for any subset A ⊆ Ω.

Remark 1.9. The following statements are true: (i) The IK-closure
of the empty set and Ω are equal to themselves. Additionally, for any
A ⊆ Ω, A is a subset of its IK-closure. (ii) A subset of the space Ω is
IK-closed if and only if its IK-closure is equal to itself.

Proof. The proof is provided in [10]. □

Theorem 1.10. Consider a space (Ω, τ), and let I and K be two ideals
of N. Then,

TIK := {A ⊂ Ω : clIK(Ω−A) = Ω−A}

is a topology over the set Ω.

Proof. The proof can be obtained by considering definitions. Therefore,
we have excluded it from this discussion. □

Definition 1.11. [10] (Ω, τIK) is said to be IK-discrete space if every
subset of Ω is IK- open set.

2 IK-Compactness

For any ideal I and K, the notions IK-compactness and IK-connectness
will be defined.
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Definition 2.1. Consider I and K as arbitrary ideals of N, and let
(Ω, τ) be a space. A set C that is a subset of Ω is referred to as: (i) IK-
compact, for any collection of IK-open sets that covers C, there exists
a finite subcollection that also covers C.

(ii) A set C is sequentially IK-compact if, for any sequence (tn) in
C, there exists a subsequence that is IK-convergent and IK-converges
to a point t in C.

(iii) Locally IK-compact if for any point t ∈ Ω, there is a neighbor-
hood that is IK-compact.

In the case where K = Fin, the concepts of IK-compactness and
sequentially IK-compactness are identical to I∗-compactness and se-
quentially I∗-compactness, respectively.

Every space that is IK-compact is also locally IK-compact.

Theorem 2.2. Consider I and K as arbitrary ideals of N. Let (Ω, τ)
be a space. A subset of an IK-compact space that is also IK-closed, is
IK-compact.

Proof. Let A be an IK-closed subset of Ω. Let {Uα}α∈Λ be a collection
of IK-open sets that covers the set A, then {Uα}α∈Λ ∪ Ac} is IK-open
cover of Ω. Since Ω is IK-compact, then there exists a finite subcover of
Ω. Hence, we have

Ω ⊂ ∪n
α=1Uα ∪ (Ac)

and
A = A ∩ Ω ⊂ A ∩ (∪n

α=1Uα ∪ (Ac)).

So, the set A is an IK-compact set. □

Theorem 2.3. Consider I and K as arbitrary ideals of N. Let (Ω, τ)
denote a space. An IK-closed subset of sequentially IK-compact space
is sequentially IK-compact.

Proof. Let Ω be a sequentially IK-compact space. Let C be an IK-
closed subset of Ω, and (tn) ⊂ C be any sequence. Since Ω is sequentially
IK-compact and C ⊂ Ω, then there exists an IK-convergent subsequence
(tnk

) of (tn) such that IK-converges to some point t ∈ Ω. It is clear that
t is the IK closure point of C. Since C is IK-closed, then t ∈ C. Hence,
C is sequentially IK-compact. □
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Theorem 2.4. Consider I and K as ideals of N, and let (Ω, τ) be a
space. If A1 and A2 are IK-compact subsets, then A1∪A2 is IK-compact.

Proof. Assume that A1 and A2 are IK compact subsets of the space
(Ω, τ). Let C = {Ui : i ∈ λ} be an IK-open cover of A1 ∪A2, i.e.,

A1 ∪A2 ⊂ ∪i∈λUi.

This inclusion implies that the family C is also IK-open cover of A1 and
A2. Because of the IK-compactness of A1 and A2, there exists a finite
subcover C1 = {Ui : i = 1, 2, ...n} and C2 = {Uj : j = 1, 2, ...m} of C that
covers A1 and A2, respectively. Then, the collection C1 ∪ C2 is a finite
subcover of A1 ∪A2. □

Theorem 2.5. Consider I and K as ideals of N, and let (Ω, τ) be a
space. If A1 and A2 are sequentially IK-compact sets, then A1 ∪ A2 is
sequentially IK-compact.

Proof. Let t̃ = (tn) ⊂ A1∪A2 be any arbitrary sequence. Then, at least
an infinite number of terms of the sequence t̃ are in the set A1 (or A2).
Since A1 and A2 are sequentially IK-compact, then there exists an IK-
convergence subsequence (tnk

) of x̃ in A1 (or in A2), which IK-converges
to some point of A1 ∪A2. □

Corollary 2.6. The finite union of IK-compact (sequentially IK-compact)
sets is IK-compact (sequentially IK-compact), respectively.

Theorem 2.7. Arbitrary union of locally IK-compact space is locally
IK-compact.

Proof. The proof is clear from the definition of locally IK-compactness.
□

Theorem 2.8. Consider I and K as ideals of N, and let (Ω, τ) be a
space. Then, (i) Every K-compact space is IK-compact.

(ii) Every sequentially K-compact space is equentially IK-compact.

Proof. (i) Let Ω be a K-compact space. Then, for any K-open cover of
Ω, there exists a finite subcover. Now, consider an arbitrary family of
IK-open sets {Uα}α∈Λ as a cover of Ω. Then, by Remark 1.7, it is clear
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that {Uα}α∈Λ is a K-open cover, and by the K-compactness of Ω there
exists a finite subcover.

(ii) Let Ω be a sequentially K-compact space. Let t̃ = (tn) ⊂ Ω
be a sequence. Then there exists a subsequence (tnk

) of t̃ such that
K-converges to somepoint t ∈ Ω. And by [12] the sequence t̃ is IK

convergent to t ∈ Ω. □

Remark 2.9. By (Proposition 2 in [1]), if I is an admissible ideal, then
every open subset of space Ω is I-open. So, every I-compact space is
also a compact space.

The following example shows that every sequentially I-compact space
is not sequentially IK-compact.

Example 2.10. Let Ω = [0, 1] be equipped with the standard topology
inherited from R. Consider the set N, which may be decomposed as
the union of infinitely many subsets ∆j . Each ∆j is infinite, and the
intersection between any two different subsets ∆i and ∆j is empty. Let

I = {A ⊂ N : A ∩∆iis finite, for all but finitely many i’s} ∪ Fin

and K = Kd = {A ⊂ R : δ(A) = 0}. Here δ(A) shows the asymptotic
density of A, (see [22]). Clearly, the ideals I and K are non-trivial and
admissible. We claim that Ω is sequentially I-compact. Let (tn) ⊂ Ω
be a sequence. Then, by the Bolzano-Weierstrass theorem, it has a con-
vergent subsequence (tnk

) such that (tnk
) → t, t ∈ Ω. As the ideal I is

admissible by (Proposition 1 in [1]) tnk

I→ t. Therefore, Ω is sequentially
I-compact. But it is not a sequentially IK-compact space. Now consider
the sequence (tn) = ( 1n). It is clear that in the decomposition of N, each
∆i ∈ I. Let (yn) be a sequence defined as yn = tj when n ∈ ∆j . The
sequence (yn) is not IK-convergent. Assume that (yn) is IK-convergent
to zero. Then, there exists M ∈ F(I) such that the following sequence

sn :=

{
yn, n ∈ M,
0, n /∈ M,

is K-convergent to 0. So, for any neighborhood U of zero, {n ∈ N : tn /∈
U} ∈ K. This implies that {n ∈ M : tn /∈ U} ∈ K. But δ({n ∈ N : tn /∈
U}) ̸= 0 because M ∈ F(I) implies that there exists H ∈ I such that
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M = N−H. So there exists l ∈ N and assume thatH ⊂ ∆1∪∆2∪...∪∆l,
and for all i > l + 1, there exist infinitely many terms of yn that are
equal to ti.

Definition 2.11. Consider I and K as ideals of N, and (Ω, τ) and
(Ω

′
, ρ) as spaces. A function f from the space Ω to Ω

′
is said to be

IK-continuous if it provides the inverse image of any IK-open subset of
Ω

′
is IK-open in Ω.

Theorem 2.12. (i) The image of IK-compact space under IK-continuous
function is IK-compact, (ii) The image of sequentially-IK-compact space
under IK-continuous function is sequentially-IK-compact,

Proof. (i) Let us assume that f : Ω → Ω
′
be an IK-continuous function

and Ω be an IK-compact space. Take {Uα}α∈Λ be an IK-open cover of
f(Ω). Therefore, f(Ω) ⊂

⋃
α∈Λ Uα implies that

Ω ⊂
⋃
α∈Λ

f−1(Uα).

Since Ω is IK-compact and f is IK-continuous function, then we have

Ω ⊂
n⋃

α=1

f−1(Uα) = f−1(

n⋃
α=1

Uα)

and this implies that f(Ω) ⊂
⋃n

α=1 Uα holds.
(ii) Let Ω be a sequentially IK-compact space. Let (yn) ⊂ f(Ω) be

an arbitrary sequence. Then, there exists a sequence (tn) ⊂ Ω such that
yn = f(tn) for all n. Since Ω is sequentially IK-compact, then there is

an IK-convergence subsequence (tnk
) of (tn) such that tnk

IK
→ t. Since

every IK-continuous function is a sequentially IK-continuous function,

then f(tnk
)
IK
→ (f(t)) which completes the proof. □

The following theorem shows the existence of IK-compact subset of
a space Ω.

Theorem 2.13. Consider I and K as ideals of N. Let (Ω, τ) be a space.
Assume that a sequence (tn) ⊂ Ω is IK-convergent to a point t. Then,
following set

A = {tn : n ∈ N} ∪ {t}
is sequentially IK-compact.
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Proof. Let (yn) ⊂ A be a sequence. Case 1: If there are infinitely
many terms of (yn) that are equal to t, we can take the subsequence
(ynk

) = t, and it is IK-convergent to x ∈ Ω. Case 2: Let finitely many
terms of yn be equal to t. Then infinitely many terms of (yn) are equal
to terms in (tn). Take ynk

= yn where yn ̸= t, then (ynk
) = (tn), which

is IK-converges to x ∈ Ω. And in case (3), if the infinite number of
terms of the sequence is equal to tn and also equal to x, clearly there
exists IK-convergent subsequence which is converging to some point of
set A □

Definition 2.14. Consider two IK-sequential spaces denoted as (Ω, τIK)
and (Ω

′
, ρIK). Then, the IK-product topology on Ω×Ω

′
is the topology

having as basis the collection

B = {U × V : U ∈ τIK , V ∈ ρIK}.

Lemma 2.15. Consider two sequential spaces denoted by (Ω, τIK) and
(Ω

′
, ρIK).Then the projection maps πj : Ω × Ω

′ → Ω, j = 1, 2 are IK-
continuous.

Proof. The proof is evident based on the concept of function IK-
continuity, hence it is omitted. □

Theorem 2.16. If Ω and Ω
′
are spaces, then

(i) Ω×Ω
′
is IK-compact if and only if Ω and Ω

′
are both IK-compact.

(ii) The Cartesian product of Ω and Ω
′
is sequentially IK-compact

if and only if Ω and Ω
′
are both sequentially IK-compact.

Proof. (i) Let Ω × Ω
′
be an IK-compact space. Since the projection

maps π1 and π2 are IK-continuous maps, Ω and Ω
′
are IK-compact

spaces.
Conversely, let Ω and Ω

′
be IK-compact spaces. Consider an arbi-

trary IK-open cover {Ui × Vj , i, j ∈ λ} of Ω × Ω
′
such that Ω × Ω

′ ⊂
∪i,j∈λUi×Vj holds. So, for all (x, y) ∈ Ω×Ω

′
, there exists m,n ∈ λ such

that x ∈ Un and y ∈ Vm. Hence, Ω ⊂ ∪n∈λUn and Ω
′ ⊂ ∪m∈λVm are

satisfied. From the IK-compactness of Ω and Ω
′
, we have Ω ⊂ ∪n0

n=1Un

and Ω
′ ⊂ ∪m0

m=1Vm. So, Ω× Ω
′ ⊂ ∪n0,m0

m,n=1Un × Vm holds.

(ii) Let Ω and Ω
′
be sequential IK-compact spaces. Let x̃ = ((tn, yn)) ⊂

Ω× Ω
′
be a sequence, then π1(x̃) = (tn) and π2(x̃) = (yn) are in Ω and
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Ω
′
, respectively. Since Ω and Ω

′
are sequentially IK-compact spaces,

there exists IK-convergent sub-sequences (tnk
) of (tn) and (ynj ) of yn,

which are IK-converge to some point t ∈ Ω and y ∈ Ω
′
. So, there exists

M1,M2 ∈ F(I) such that the sequences

y1n =

{
tnk

, nk ∈ M1,
t, nk /∈ M1,

is K-converges to t and the sequence

y2n =

{
ymj , mj ∈ M2,
y, mj /∈ M2,

is K-converges to y. So, for any neighborhood U1 of t and for any
neighborhood U2 of y

{nk ∈ M1 : tnk
∈ U1} ∈ F(K)and{mj ∈ M2 : ymj ∈ U2} ∈ F(K)

Let M = M1 ∩M2. Define a sequence

tn =

{
(tnk

, ynk
), nk ∈ M,

(t, y), nk /∈ M.

Let U be any IK-open set that contains (t, y). So, there exists B1 ×
B2 ∈ B such that B1 ×B2 ⊂ U and (t, y) ∈ B1 ×B2. Hence,

{(nk) ∈ M : (tnk
, ynk

) /∈ U} ⊂

⊂ {(nk, ,mj) ∈ M : tnk
, ynk

) /∈ B1 ×B2}
⊂ {(nk ∈ M1 : tnk

/∈ B1} ∪ {,mj ∈ M2 : ymj /∈ B2} ∈ K
is satisfied. Therefore, the sequence K-converges to (t, y). This implies
that Ω× Ω

′
is sequentially IK-compact.

The converse of the proof is clear by the IK-continuity of the pro-
jection mappings. □

Definition 2.17. Consider I and K as arbitrary ideals of N. Let
(Ωj , T j

IK)j∈Λ be a family of IK-sequential-spaces. Let Ω =
∏

j∈ΛΩj .

The IK-product space is defined as the product set Ω equipped with a
topology TIK , having as its basis the family

B = {
∏
j∈Λ

Oj : Oj ∈ T j
IKand Oj = Ωj for all but finite numbers of j}
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Proposition 2.18. Let (Ωj , T j
IK)j∈Λ be a family of IK-sequential spaces.

Then, the projection maps πi :
∏

j∈ΛΩj → Ωi are IK-continuous maps.

Proof. The proof is self-evident based on the definition of IK-continuous
maps and projection maps, so it is omitted. □

Theorem 2.19. Let (Ωj , T j
IK)j∈Λ be a family of IK-sequential spaces.

Then, the IK-product space Ω is IK-compacted iff the set Ωi is compacted
for all i ∈ Λ.

Proof. We will prove the theorem by the fact that a sequential space Ω
is IK-compact iff every family E of IK-closed subset of Ω with the finite
intersection property (F.I.P.) satisfy

⋂
E∈E E ̸= ϕ.

Let Ωi be an IK-compact space for each i. Let E be a family of
IK-closed subsets of Ω with the F.I.P.; we prove that

⋂
E∈E E ̸= ϕ.

By using Zorn’s Lemma, it can be shown that there exists a maximal
family G subsets of Ω (not necessary IK-closed) that contain E and
have the F.I.P. We will demonstrate that

⋂
G∈G Ḡ ̸= ϕ, This implies the

desired result, as each E ∈ E is closed.

If G1, G2, ..., Gn ∈ G, for any n ∈ N, then the set G
′
= G1∩G2∩ ...∩

Gn ∈ G. Assuming that this is not true, we can conclude that the set
G′

= G ∪ {G′} properly contains G, has the F.I.P, and contains E . This
contradicts the maximality of G.

Consider S, a subset of Ω,which has intersection with every element
in G. We assert that the set G ∪ {S} possesses the F.I.P. To see this,
let G

′
1, G

′
2, ..., G

′
m be members of G. By previous paragraph, G

′
1 ∩G

′
2 ∩

... ∩ G
′
m ∈ G, and by assumption, S ∩ (G

′
1 ∩ G

′
2 ∩ ... ∩ G

′
m) ̸= ϕ, hence

G ∪ {S} has the F.I.P and contains E . By utilizing the properties of
G being maximum, having a F.I.P, and including E , it becomes evident
that S belongs to G.

Fix i and let Pi : Ω → Ωi be the projection maps, then the family
{P i(Gi) : G ∈ G} has the F.I.P. As (Ωi, Ti) is IK-compact,

⋂
G∈G Pi(G) ̸=

ϕ. Select xi ∈
⋂

G∈G Pi(G), then for each i we can find a point xi ∈⋂
G∈G Pi(G), put x =

∏
xi ∈ Ω.

We shall prove that x ∈
⋂

G∈G G. Let O be any IK-open set con-
taining x. Then O contains a basic IK-open set about x of the form⋂

i∈J P
−1
i (Wi), where Wi ∈ Ti, xi ∈ Wi, and J is a finite subset of Λ. As
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xi ∈ Pi(G), Wi ∩Pi(G) ̸= ϕ, for all G ∈ G, thus P−1
i (Wi)∩G ̸= ϕ for all

G ∈ G. By observation above, this implies that P−1
i (Wi) ∈ G,∀i ∈ J .

As G has F.I.P,
⋂

i∈J P
−1
i (Wi) ∩H ̸= ϕ for all G ∈ G, so O ∩G ̸= ϕ for

all G ∈ G, hence x ∈
⋂

G∈G G, as required.
Conversely, let the product space Ω be IK-compact. Since the pro-

jection maps pi are IK-continuous maps and they map IK-compact space
into IK-compact spaces, so Ωi is IK-compact for all i ∈ Λ. □

3 IK-Connectedness

In this section, the idea of connectedness of a space has been generalized
to IK-connectedness.

Definition 3.1. Consider I and K as ideals of N, and let (Ω, T ) be a
space. The subsets U and V of Ω are said to be IK-semi separated if

clIK(U) ∩ V = ϕ = U ∩ clIK(V )

Lemma 3.2. Consider I and K as ideals of N. Let (Ω, T ) be a space
and Ω

′
be a subspace of Ω. Then, any subsets U, V ⊂ Ω

′
are IK-semi

separated in Ω iff they are IK-semi separated in Ω
′
.

Proof. Let U and V be IK-semi separated in Ω. Then,

clIK(U) ∩ V = ϕ = U ∩ clIK(V )

holds. So, CY (U) ∩ V = clIK(U) ∩ Ω
′ ∩ V = ϕ. Similarly, we have

CY (V ) ∩ U = clIK(V ) ∩ Ω
′ ∩ U = ϕ.

Conversely, let U and V be IK-semi separated in Ω
′
. Then,

CY (U) ∩ V = ϕ = CY (V ) ∩ U.

Therefore, clIK(U) ∩ Ω
′ ∩ V = ϕ. Since Ω

′ ̸= ϕ, then clIK(U) ∩ V = ϕ.
Similarly, we can show that clIK(V ) ∩ U = ϕ. □

Lemma 3.3. Consider I and K as ideals of N, and (Ω, T ) and (Ω
′
, T ′

)
as spaces. Let f be a function from X to Y that is IK-continuous. If A
and B are IK-semi separated subsets of Ω

′
, then the preimage of A and

B under f are IK-semi separated subsets of Ω.
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Proof. Let A,B ⊂ Ω
′
be IK-semi separated. Then, we have

clIK(A) ∩B = ϕ = A ∩ clIK(B)

and we are going to prove,

f−1(A) ∩ clIK(f−1(B)) = ϕ = f−1(B) ∩ clIK(f−1(A))

holds. Let x ∈ f−1(A) ∩ clIK(f−1(B)). Then, x ∈ f−1(A) and x ∈
clIK(f−1(B)). So, f(x) ∈ A and there exists a sequence (tn) ⊂ f−1(B)
such that IK-converges to x. Since f is an IK-continuous function,
the sequence (f(tn)) IK converges to f(x) in Ω

′
. Because of f(tn) ⊂

B, f(x) ∈ clIK(B). Therefore, f(x) ∈ A ∩ clIK(B). But A and B
are IK-semi separated subsets of Ω, which is a contradiction. Hence
f−1(A) ∩ clIK(f−1(B)) = ϕ. Similarly, we can prove that f−1(B) ∩
clIK(f−1(A)) = ϕ. □

Definition 3.4. Consider I and K as ideals of N, and let (Ω, T ) be
a space. (i) A set C ⊂ Ω is considered IK-connected if it cannot be
expressed as the combination of two IK-semi-separated sets.

(ii) The space Ω is considered IK-connected if there are no subsets
U and V of Ω that are semi-separated and satisfy Ω = U ∪ V .

Definition 3.5. Consider a space (Ω, T ). The component CIK(t) of t
in Ω is the union of all IK-connected subsets of Ω containing t.

Definition 3.6. A space, (Ω, T ) is totally IK-disconnected if the com-
ponent CIK(t), consists just of the element t for all t ∈ Ω.

Theorem 3.7. Consider a space (Ω, T ). A subset Y ⊂ Ω is IK-
connected if and only if for every subset A of Y ,

[clIK(A) ∩ (Y −A)] ∪ [clIK(Y −A) ∩A] ̸= ϕ

Proof. Let Y ⊆ Ω be an IK-connected set. Let

[clIK(A) ∩ (Y −A)] ∪ [clIK(Y −A) ∩A] = ϕ

then
clIK(A) ∩ (Y −A) = ϕ ∧ clIK(Y −A) ∩A = ϕ
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This means that A and Y − A are IK-semi separated, and Y is an IK-
disconnected set.
Conversely, let

[clIK(A) ∩ (Y −A)] ∪ [clIK(Y −A) ∩A] ̸= ϕ

hold for any proper subset A ⊂ Y . Let Y be IK-disconnected subset
of Ω, then there exists U ⊂ Y such that U and Y − U are IK-semi
separated. So

clIK(U) ∩ (Y − U) = ϕ ∧ clIK(Y − U) ∩ U = ϕ

therefore,

[clKI (U) ∩ (Y − U)] ∪ [clIK(Y )− U) ∩ U ] = ϕ

it is not the case. □

Theorem 3.8. Consider a space (Ω, T ). the following assertions are
equivalents:

(i) Ω is IK-connected.
(ii) The only subsets of Ω that are simultaneously IK-open and IK-

closed are Ω itself and the empty set.
(iii) If the IK discrete space Ω

′′
has more than one point, there isn’t

a non-constant IK-continuous function that maps Ω to Ω
′′
.

Proof.
(i) ⇒ (ii):Consider a space Ω that is IK-connected. Consider a valid

subset D of Ω that is simultaneously IK-open and IK-closed. There
are two possibilities: (1): D is IK-open. Then, Ω−D is IK-closed and
Ω−D = clIK(Ω−D). (2): D is IK-closed. Then D = clIK(D).
Given that both instance (1) and (2) occur simultaneously. So D and
Ω − D are IK-semi-separated subsets of Ω such that their union is Ω.
So Ω is IK-disconnected, which is a contradiction.

(ii) ⇒ (iii):Consider a set Ω
′′
that is an IK-discrete space with more

than one element. Let f : Ω → Ω
′′
be a function that is IK-continuous.

Let’s assume that f is not constant. There is a subset D of Ω such that
f(D) is equal to a in Ω

′′
, and f(Dc) is equal to b in Ω

′′
. Given that Ω

′′

is an IK-discrete space, it follows that both {a} and {b} are IK-open
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subsets of Ω
′′
. Thus, D and Ω −D are both IK-open sets in Ω, where

D is the inverse image of {a} under the function f , and Ω − D is the
inverse image of {b} under the same function. Alternatively, we have
that

clIK(D) = clIKf−1({a}) = f−1(clIK({a})) = f−1({a}) = D.

this indicates that D is also IK-closed under the operation in Ω. Which
is a contradiction.

(iii) ⇒ (i): Let Ω
′′
be IK-discreet space with consisting of more than

one element. Suppose that Ω is an IK-disconnected space. Then, there
exists IK-semi-separated subsets D and E of Ω such that Ω = D∪E. If
we consider E = Ω−D, we have clIK(Ω−D)∩D = ϕ and also Ω−D∩
clIK(D) = ϕ. So clIK(D) ⊂ D and clIK(Ω − D) ⊂ Ω − D. Therefore,
clIK(D) = D and clIK(Ω − D) = Ω − D. Without loss of generality,
take Ω

′′
= {0, 1} with clIK(ϕ) = ϕ, clIK(Ω

′′
) = Ω

′′
, clIK({0}) = {0}

and clIK({1}) = {1}. Define a function f : Ω → Ω
′′
as f(D) = {0} and

f(E) = {1}.
We argue that f is an IK-continuous function. Let ϕ ̸= C ⊂ Ω

′′
. In

order to observe this, we have three cases as follows:

(i) If C = Ω
′′
, then f−1(C) = Ω holds. So, clIK(f−1(C)) = clKI (Ω) =

Ω = f−1(clIK(C)).

(ii) If C = {0}, then f−1(C) = A holds. So, clIK(f−1({0})) =
clIK(D) = D = f−1(clIK({0})).

(iii) If C = {1}, then f−1(C) = E holds. So, clIK(f−1({1})) =
clIK(E) = D = f−1(clIK({1})).

Thus, f is an IK-continuous function but not constant. Hence, Ω is
an IK-connected space. □

Theorem 3.9. If M is an IK-connected subset of a space, Ω and S and
W are IK-semi-separated subsets of Ω. Then, either M ⊂ S or M ⊂ W .

Proof. The proof is evident based on the concept of IK-connectedness
and the definition of IK-semi-separated sets. Therefore, it is excluded
in this context. □

Theorem 3.10. Let M be an IK-connected subset of a space (Ω, T ) and
M ⊂ N ⊂ clIK(M). Then, N is IK-connected.
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Proof. Assume that N is not IK-connected. Then there exists IK-
semi-separated subsets S and W of N such that N = S ∪ W . Since
M is IK-connected, then either M ⊂ S or M ⊂ W . Suppose that
M ⊂ S. Then clIK(M) ⊂ S and W ∩ clIK(M) = ϕ. But by hypothesis,
W ⊂ N ⊂ clIK(M), andW = clIK(M)∩W = ϕ, which is a contradiction
since W ̸= ϕ. □

Corollary 3.11. If M is an IK-connected subset of a space (Ω, T ), then
clIK(M) is IK-connected.

Theorem 3.12. Let M and N are subsets of an IK-connected space,
(Ω, T ). If M and N are IK-connected but not IK-semi-separated, then
M ∪N is IK-connected.

Proof. Assume that E = M ∪ N is not IK-connected. Then there
exists IK-semi-separated subsets C and D of Ω such that E = C ∪D.
M ⊂ C ∪D, so by theorem 3.9 either M ⊂ C or M ⊂ D. Similarly, we
can say that either N ⊂ C or N ⊂ D. If M ⊂ C and also N ⊂ C, then
M ∪N ⊂ C and D = ϕ, which is not the case. Thus

(M ⊂ C ∧N ⊂ D) or (M ⊂ D ∧N ⊂ C)

In the first case,

clIK(M) ∩N ⊂ clIK(C) ∩D = ϕ

and
clIK(N) ∩M ⊂ clIK(D) ∩ C = ϕ

Likewise, in the second situation, we can have the identical outcome.
Thus, it follows that M and N are IK-semi-separated in Ω, which con-
tradicts the initial statement. □

Theorem 3.13. If {Mi : i ∈ λ} be a non-empty family of IK-connected
subsets of space, such that

⋂
i∈λMi ̸= ϕ. Then,

⋃
i∈λMi is IK-connected.

Proof. Let T =
⋃

i∈λMi. Assume that T is an IK disconnected subset
of Ω. Then T = S ∪W , where S and W are IK-semi-separated sets in
Ω. Since

⋂
i∈λAi ̸= ϕ, we choose a point x ∈

⋂
i∈λMi. Then x ∈ T . So

either x ∈ S or x ∈ W . Suppose that x ∈ S. Since x ∈ Mi, for each
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i ∈ λ and (Mi ∪ S ̸= ϕ, ∀i ∈ λ), so Mi must be either in S or in W .
Since S and W are disjoint, So Mi ⊂ S for all i ∈ λ. Hence, T ⊂ S.
This means that W = ϕ, which is a contradiction. □

Theorem 3.14. IK-continuous image of IK-connected space is IK-
connected.

Proof. Let Ω be an IK-connected space and Ω′′′ be an IK-discreet space
that has more than one element. Then, any IK-continuous function from
Ω to Ω′′′ is constant.

Let g : f(Ω) → Ω′′′ be an IK-continuous function. Since f and g are
both IK-continuous functions, then g ◦ f : Ω → Ω′′′ is an IK-continuous
function, and by the IK-connectedness of Ω, g ◦ f is constant. This
implies that g is constant. Hence, f(Ω) is IK-connected. □
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