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Abstract. Non-Newtonian Lebesgue spaces will be emerged as a piv-
otal field in functional analysis, extending the classical Lebesgue spaces
to encompass non-Newtonian Real numbers behaviors encountered in
various physical and mathematical phenomena. This paper offers a
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1 Introduction and Preliminaries

Non-Newtonian (briefly NN-) calculus was created between 1967 and
1970 by Michael Grossman and Robert Katz in [10]. They initially
defined an infinite family of calculus, which includes classical calculus,
geometric calculus, harmonic calculus, and quadratic calculus. Later,
they formed bigeometric, biharmonic, and biquadratic calculus, using
the term ” NN-calculus” for each calculus distinct from classical calculus.
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NN-calculus has applications in various fields such as natural sci-
ences, economy, engineering, mathematics, and more. Among the fields
studied are interest rates, elasticity theory in economics, blood fluidity,
information technology, biology, differential equations, functional anal-
ysis, dynamic systems, fractals, probability theory, and others. Hence,
it can be said that it is significantly used as an alternative to Newton’s
and Leibniz’s classical calculus.

Grossman worked on derivatives and integrals in NN-calculus in [9].
In the study [11], derivative independent of measure was examined in
bigeometric calculus. The authors studied geometric (multiplicative)
calculus and its applications in [1]. Multiplicative type complex calculus
is studied in [16].

Real sequence spaces according to geometric calculus is studied and
some fundamental results are obtained in [15]. While real sequence
spaces according to NN-calculus are defined in [1], new results on com-
plex sequence spaces according to NN-calculus are obtained in [14].

The space of continuous functions and multiple integrals on real se-
quences according to NN-calculus are studied in [3] and [5]. Some fun-
damental topological properties on NN-real numbers are showed in [2]
and [7].

In [13], the authors examined series and sequences in NN-calculus.
They introduced *x—series and x—sequences in NN-calculus and pro-
vided some theorems and properties based on NN-real number field R,.
The concept of x—function sequences, *—function series, *—pointwise
convergence, and x—uniform convergence on NN-real number field R,
are introduced, and theorems that reveal important differences between
«—pointwise convergence and *—uniform convergence are proved in [13].
Moreover, properties arising from x—convergence and convergence tests
such as *—Cauchy criterion and *—Weierstrass M-test for *—uniform
convergence are obtained and x—Abel and x—Dirichlet tests are provided
in [6]. Then, power series are introduced, and properties of summability
and Abel’s interpretation are obtained in the same paper.

In [3], generalization of the usual Lebesgue measure in real numbers
to NN-real numbers is given. For this purpose, they defined the NN-
Lebesgue measure on NN-open and NN-closed sets and examined their
basic properties.
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The concept of a complete ordered field stems from the formaliza-
tion of the real number system, which is widely familiar. Essentially, a
complete ordered field comprises a set X along with four binary oper-
ations +, —, /, x and an ordering relation < defined on X [10]. When
the domain of a complete ordered field is a part of R, it’s termed as
arithmetic. A generator is a bijective function that maps from R to a
subset of R. Each generator precisely yields one arithmetic, and each
arithmetic is uniquely produced by a generator. Consider any generator
¢ with a range in R. By (—arithmetic, we imply arithmetic with domain
R and (—operations defined as follows:

¢—addition o = ¢ {¢ (@) + ¢ (o
(—subtraction i =¢{¢ (u) - ¢
—(

(

(v
¢—multiplication axv = ¢{¢7 (@) - ¢ (0)}
¢—division W =8N =¢{¢(a) /¢ ()}
¢—order u<t & Ha) < L)

for all u,v € R. The set of non-Newtonian (briefly NN-) real numbers
are defined as

R(N)=R¢:={t=((z): 2z € R}
in [10]. By using the new operations above, it is showed in [1] that

(RO +, =, /, X, <) is a complete ordered field. The (—positive real num-

bers RZF are the numbers € R¢ such that 0<i; the (—negative real
numbers R are those for which £<0. The (—zero, 0 = ¢ (0), the (—one
1 =¢() and ¢(—1) = 0-1. The exponential function in the realm of
NN-calculus has garnered significant attention and investigation within
the existing literature. Researchers have extensively explored and stud-
ied this particular case, delving into its implications and applications
within the framework of NN-calculus. According to this, if { (x) = €*,
then0=1,1=e, ("' (-)=1In(-) and

ity = ¢{¢CH @)+
iy o= ({CH(@
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can be found easily.

For any numbers @ and b in Re, if a<b, then the set of all numbers
# €R¢ such that a<i<b which is called an (—interval is denoted by
la,b]y = [a,b]. The (—square of a number & €R is denoted by @xi =
2~ . For each ( —nonnegative number #, the symbol v/% is used to denote
the (—square root of &, i.e. Vi = C{«/C‘l (ac)} which is the unique
(—nonnegative number whose (—square is equal to . Throughout this
paper, we will denote the pt NN-exponent and the ¢** NN-root of & €
R (N) by #P~¥ and %N, respectively. The (—absolute value of a number
& €R¢ is defined as ¢ (‘C‘l (m)’) and is denoted by

o i, 0@
il =lily={ 0, O0=d
0—-&, %<0
and so V#2v = |&] [1, 10]. Tt is showed in [1] that for any &, ¢ €R¢, the

following statements hold:
() ] = |l x]g]
(i) Ja-+i<]l-Hl
(iii) If p > 1 and Zg, Yk E]Rzr for k=1,2,...,n, then

N N

N
n n n
p NZ (zptow)’™ <r NZ-%.'%N +r NZQ@N
k=1 k=1 k=1

Also, it is proved that <R?, d N) is a complete NN-metric space with

dy (Z,9) = | NZ (i’k;yk)%’
=1

for any &, y € RZ‘ where R’g is n-dimensional NN-Euclidian space. The
concepts of NN-convergent sequence, NN-metric space, NN-completeness,
NN-upper and lower bounds, NN-supremum (infimum), NN-open (closed)
set etc. are discussed in [4, 7, 13] and [14]. In their work [10], the authors
introduced a novel calculus, referred to as x—calculus, that embodies the
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overarching structure of NN-calculus. As outlined in [10], due to the iso-
morphic nature of all arithmetics, it becomes straightforward to derive
all arithmetics by employing a unique function from one arithmetic to
another.

Suppose that (, 8 are two arbitrarily selected generators and let

the corresponding complete ordered fields be (RCH—, = /5%, <) and

(R[;, +, 5, /, X, %), respectively. Then the bijective isomorphism from
¢—arithmetic to S—arithmetic is a unique function ¢ (iota) that provides
some required properties for any numbers 1, v €Rg:

(i) (u+v) = o(w)+e(0), t(u—0) = t(i)—u(D),

(i) e(uxv) = v(a)xu(D),

(i) o(@/9) = o(i)/u(d); 0 # 0,

(iv) u<o < (1) <u(D).

It turns out that (i) = 8{¢((4)} for every @ €R¢ and (n) =
for every n € N. Since, for example, 4-+0 = ¢ (4(@)F¢(0)), it should
be clear that any statement in (—arithmetic can readily be transformed
into a statement in S—arithmetic. In [7], the authors showed many
properties of NN-real line and its subsets. For example, some results
related with open, closed, compact, bounded sets and accumulation,
limit points etc. are studied in the sense of NN-calculus. Except those,
the following definition and theorems can be found in [10].

Definition 1.1. Let f : R; — Rg be a function and a € Re¢. If for all

£50, there exists a b = § (£) >0 such that |#—a] <8 implies | f (&) = f (a) <&

for all & € Re, then f is called x—continuous at the point a € Re.

Theorem 1.2. (Fundamental theorem of x—calculus) Let f : [a,b] —
Rg be a x—continuous function. Then for all & € [a,b] C R¢ the

function g (&) = [ f({) xdty defined on |a,i] is *—continuous and

«— differentiable for all & € [a, b] where x—derivative of g is Dy (g9) = f .

Theorem 1.3. (Fundamental theorem of (—calculus) Let f : @, bj — R¢
be a (—continuous function, ¢ (a) = a,((b) = b and define f(x) =

5
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CH(f (&) for all & € [d,i)]. Then

/;f (&)xday = ¢ {/abf(x)dx} =< {/;(()b) ¢S (:b))d:c}

1s written.

2 Main Results

Definition 2.1. (x—Derivative) Let u be a Rg—valued function defined
on (a,b) C R¢ and &g € (a, b). If the x—limit given by

«— lim 2 U0 (#) —u (d0)

i—vio L (%) —t (i)

N

exists, then this limit value is called the x—derivative of the function u
at point g, or it’s said that the function u is *—differentiable at the
point T and it’s derivative is denoted by (Dyu) (2g) [10].

The x—derivative operator is x—linear, i.e.,

(i) (D (u+ ) (d0) = (Do) (i0) + (D-v) (i)

(ii) (Dy (éXu)) (@0) = éX (Dyu) (o), for all ¢ € Rg.

The x—right and x—left derivatives can be defined similarly to the
traditional ones. By using the usual techniques, the following theorems
can be proved.

Theorem 2.2. Let u be a Rg—valued function defined on (C'L, b) U 1
x—differentiable at the point g if and only if x—right and x—left deriva-
tives exist and equal at the point &g.

Theorem 2.3. Let u be a Rg—valued function defined on ((’1, b) If u is
x—differentiable at the point Tq, then u is x— continuous at the point &g.

Theorem 2.4. (Young’s inequality) Let u = u () be a strictly (—increasing

function on [0,0’0) with u (0) = 0. Suppose that u is {—continuously

differantiable function on |a, b] where 0<a<b with ¢ (a) = a, ¢ (b) = b.
Then

a b
c'z>'<b§/ u(j:)xdeJr/ u™ () xdyn
0 0
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where u™t (§) is the inverse function of u. Besides, if u(a) = b, then
the equality holds.

Proof. Let u be (—continuously differantiable on [d, b] and strictly
(—increasing function on [0, 00). Then

/abu(aj) xdry = C{/;:(la()b) ¢ u (m))dm} (1)
e O 60 o o
1(6) ,
_/C x (Cil (u (x))) dac}

~1(a)
— bxu (b) S (@) - /ab:kaC(u) (&) xdzn

where D¢ (u) is the (—derivative of u. If one takes § = w (&), then
dyn = D¢ (u) (&) xdzy, v () = 4 and

b . A ) :
/ u () xdry = bxu <b) —axu(d)—/ u () xdyn  (2)
a u(a)
by (1). Since u is strictly (—increasing function, we get u () <u (') <u (&)
if 7<i<a. Therefore
axu () ;fxu(f)g/ u () xdzy. (3)

By [10], it is known that

[Putrtane = [ sibiann” [ siiian.

Therefore, we have

axu (7) “rsu (i) < /ju(a’:)kdx]\/
/Oa

. u(d:)kdei/Oru(:b)kde (4)

7
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by (3) and
’ : : ) :
/ w (@) xdzy = 75 (7) —/ o () kdyy (5)
0 U
by (2). If one writes (5) in (4), then
: L [ : o ) :
axu () —7xu (1) g/ u(w’)xdmN—fxu(f)+/ ut () xdyn
0 0
and so ' #
axu(r)ﬁ/ u(m)xde—{—/ ut () xdyn
0 0

can be written. If u (a) >b>0, then 7 = u~! (b) can be choosen. Thus

a b
akbé/ u (&) >'<da:N—i—/ ut (9) xdyn .
0 0
If we write 7 = @ and w (@) = b in (5), then we get

a u(a)
/ u(ab)kda;N:aku(a);/ ut () xdyn
0 0
and .
. d . . b .
asch :/ u(ac)xde+/ u=L () xdyn -
0 0
O
Corollary 2.5. Let i<p<i<co be such that (i/p) i (i]q) —i. Then
ab<arvx (1/p) bk (1/4) (6)
for all & and b ¢—positive real numbers. Besides, if
aPN = i)t;{N7

then the equality holds.
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Proof. Firstly, let ¢ (a) = a>0 and ¢ (b) = b>0. Since aPV = ( (aP) and
bIN = ¢ (b9), if PN = bV, then ( (aP) = ¢ (b?) and so a = b9~ . Thus,

axb = ((ab) = ¢ {b7} = bV xi
= imic((172) + (174))
= bk (i/p) Hvx (1/4)
ie.,
axb = aPN (i/p) RN (i/q) .

Now, consider u(%) = &" with #>0 and u~!(&) = #(/7) . Since the
function u satisfies the hypothesis of Theorem 2.4, then

gt ()

. d . . b 17 .
akbgu/ ¢”dexN+i/‘yU“7xdyN:=..' + o~
6 0 ML (i)

If one takes p = 741 and ¢ = (i/f«) 11, then (i/p) i (i/q) — 1 and
hence axb<aPN x (1/p> +bIv % (1/q> can be written. O

Definition 2.6. A o—algebra (o-field) is a class M of subsets of a set
X with the following properties:

(a) @, X € M;

(b) S e M= X\S € M;

(c) If Sp € M for alln=1,2,..., then |J S, € M.

n=1

A set S € DM is said to be measurable.

Definition 2.7. Let X be a set and let 9 be a o-algebra of subsets of
X. A function i : M — R¢ is a NN-measure if it has the properties:

(a) (1(@) = 0;
(b) [ is a—countably additive, that is, if S; € M, j = 1,2,..., are

o0 oo
pairwise disjoint sets then | |J Sj | =~ > 1 (S5) .
j=1 j=1

9
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The triple (X, 9, i) is called a (—measure space. In various appli-
cations of measure theory, sets with measures equal to zero are often
considered "negligible.” Having specific terminology for such sets proves
to be quite useful in these contexts.

Definition 2.8. Let (X,9M, /1) be a (—measure space. A set S € M with
[ (S) = 0 is said to have (—measure zero (or a (—null set). A given
property Q (x) of points x € X is said to hold (—almost everywhere if
the set

{z:Q(x) is false}
has (—measure 0. In a different context, the property Q is deemed to
hold for (—almost all x € X.

The abbreviation (—a.e. will represent either of these expressions
interchangeably. Besides, (—Counting measure, (—Lebesgue measure
and ¢(—Borel measures on R¢ are studied in [%].

Let’s consider a fixed (—measure space (X, 9, i1). In the sequence of
upcoming definitions, we outline the process of constructing the (—integral
for suitable functions f : X — R¢ and later f : X — C*. For detailed
proofs and additional information of usual ones, one can refer to any
integral and measure book. For any subset S C X the characteristic
function xg : X — R, of S is defined by

(s(z) = 1, ifxes,
XSWI= 0, ifwés.

A function ¢ : X — R is called (—simple if it has the form

k
p = dej*ijZ(d1>'<>'<sl)+(d2>'<>'<52)+"-+(dk*XSk)
j=1
= ({¢C (axxs,) + ¢ (daxng,) + o+ (Gxxs,) )
= C{¢M ¢ @) ¢ s)]) + ¢ () ¢ (xs,)]) +
e+ M @) C s }
= C{¢7M (@) T Gksy) + ¢ (A2) T () e+ ¢ (k) ¢ (s }

k
= ¢ Zé_l (c) ¢ (xs;)
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for some k& € N, where &; € Re and S5 € M for all j = 1,...,k If
¢ () >0 for all z € X and (—simple then the (—integral of ¢ over X,
with respect to [t is defined to be

y k
[oxdi = 3 a%i(s)

X J=1
= (daxu(S1)) + (G2t (S2)) + - -+ (i (k)

k
= ¢ (ZCI (65) ¢ (/l(Sj))) :
j=1

Let o (—o0) = —o0 and a (+00) = +co. A function f: X — [—co, +00]
is said to be (—measurable if, for every 7 € R¢,

{reX:fl@)>}={reX (" (f(2) > (H)}em

If f is (—measurable, then the functions

Ifl@) = If@=¢{|c(f @)}

5= Cmax{f (2).0) = ¢ fmax (¢ (7 (@)).¢7 (0)})
7= Cmax {05 (2),0} = ¢ {max {¢1(0) — ¢ (f (@), (0)})

are (—measurable where fjr, f;, |f] X = Ré’ U {O} If f(z)>0 for all
x € X and (—measurable, then the (—integral of f is defined to be

/f>'<d/je = Ssup {/g@kdﬂ : ¢ is ¢ — simple and Oigoif} .
X X
If f is (—measurable and

+o‘o>/'f'>‘<duc{/}<1<f (2))]d (¢ <u<x>>|)}
X X

then f is said to be (—integrable and the (—integral of f is defined to

be . _ _
/fxdp:/fwdp'/f*xdp.
X X X
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Demonstrably, if f is (—integrable, each term on the right side of this
definition is (—finite. Hence, there’s no issue concerning a discrepancy
like co—oco emerging within this context.

The collection of R¢—valued (—integrable functions on X will be
denoted as Lgr, (X) (or Lg, (5) for induced functions on S € M). Now,
we will list some of the basic properties of the (—integral.

Theorem 2.9. Let (X, MM, i) be a (—measure space and let f € Lg, (X).
(a) If f(z) =0 (fi—a.e.), then f € Lr, (X) and [ fxdp= 0.
X

(b) If ¥ € R and f,g € Lr, (X) then the functions f+g and Ax f belong
to Lr, (X) and

/(f+g) xdj = /f*dﬂ+/gkdu,
X

X X
[Gxyxdi = 3% [ rai
X X

In particular, L. (X) is an NN-vector space.

(c)Iff,g € Lr, (X) and f (z) <g(z) forallz € X, thenffkd/lé fgkd;l.
X X
Besides, if f (v) <g (x) for allz € S where (1 (S) >0, then [ fxdp< [ gxdji.
S S
Here [ fxdp = [ fxxsxdj.
S X

It follows from part (a) of the preceding theorem that the values of
f on sets of (—measure 0 don’t affect the integral.

Definition 2.10. Suppose that g is a (—measurable function and there
exists a number B such that g (x) <B (ji—a.e.). Then the (—essential
supremum of g can be defined as

Sesssup (g) = © inf {B g(z)<B 1 — a.e.} .

As a straightforward (albeit not entirely trivial) implication of this
definition, it follows that g (z)<Sesssup(g) (fi—a.e.). Similarly, the
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(—essential infimum of ¢ can be defined in a comparable manner. A
(—measurable function g is said to be (—essentially bounded if there
exists a number B such that |g (z) |[<B (g—a.e.).

Definition 2.11. Let X be a nonempty set and dy : X x X — R¢ be a
function such that, for all x,y,z € X the following axioms hold:
i. dy (x,y) = 0 if and only if x =y,
it. dy (z,y) = dn (y, ),
iii. dy (z,2) <dy (z,y) +dy (y, 2).
Then, the pair (X, dy) is called an (—metric space [1].
Now, we would like to define a (—metric on the space Lg, (X), and
an obvious candidate for this is the function

ds, (f.g) = /if—gikdﬂ: /wm) g (@) |%dji (x)
X X

- [e{ir@ @i}
X

¢ / L (@)~ (g (@) | dia (2)
X

forall f,g € Lg, (X). The properties of the integral outlined in Theorem
2.9 establish that this function fulfills all the conditions for a (—metric,
except for part (i) of Definition 2.11. Regrettably, there exist functions
fand g in Lg  (X) where f = g (1—a.e.) but f # g. Consequently, as
per part (a) of Theorem 2.9, dg_ (f,g) = 0 and so, the function dg,, (-,-)
does not qualify as a (—metric on Lg, (X). To resolve this issue, we’ll
adopt a strategy where we consider any two functions f and g that are
equal (fi—a.e.) as ”identical” or ”equivalent.” To be precise, we define
an equivalence relation f=¢g < f = g (i — a.e.). The defined equiva-
lence relation partitions the set Lg. (X) into a collection of equivalence
classes, denoted as L (X,R¢). Through appropriate definitions of addi-
tion and scalar multiplication within these equivalence classes, the space
L (X,R¢) transforms into a (—vector space the function dr, (+,-) yields
a (—metric on the set L (X,R¢). Now, we can proceed to define several
other spaces comprising {—integrable functions.

13
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Definition 2.12. Let us define the spaces
5%(: (X) =< g:g is ( — measurable and /|g (z) [PV xdji (z) < 4 o
X
for 1 < p < co where
[ia@irsdi@ = ¢ [ (lg@ 0 )au e
X X

{1 (¢l (@)1} dp ()

I
S

and
ﬁﬁ’@ (X) = {g : g is ( — measurable and O‘esssup]gk + o'o} .

Similarly, we can define the sets LP (X,R;) by equating functions
in Eﬁg (X) that are almost everywhere equal and examining the result-
ing spaces of equivalence classes (in practical terms, we typically refer
to representative functions from these equivalence classes rather than
explicitly addressing the classes themselves).

Example 2.13. Let X = [0, (1/2)] and u : X — R¢ be defined by

1
&x In%N (&)

u(z) = N. Then, we get for p = 1,

. i/ _
/ fu (@) [P dfi () = / 'MNPW@)
X 0

"¢ / < ()|

and u € ﬁ%&g (X) if the generator ¢ is equal to e® or I identity function.
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Example 2.14. Let X = (0,00) and u: X — R¢ be defined by u () =

\'/iletN . Then, we have

- . 7 i N
lu(z) [PV xdi(z) = [ |—F—==NP"xdj(z)
/ 0/ vV 1+z

oo_1 1 P
—co/c (me) dps ()

Therefore u € Eic (X) if ¢(z) = 2%+ (k€ Z) and p>ﬁ Also,
u ¢ L’ﬁc (X) for any p>0 if ¢ (z) = €.

Theorem 2.15. Let (X,0M, (1) be a (—measure space such that (X )<co.
Then L* (X,R¢) C LY(X,R;) C LP(X,R;) C L' (X,R¢) for any
1<p<g<co.

Proof. Firstly, let p # co and u be an element of L® (X,R¢). Then,
by the definiton of (—essential supremum, we have

|u| < “esssup|u| =||ul|, (& — a.e.)

and

/ fu () [P % () <7 5 () <o
X

sou € LP(X,R¢). Now, let v € LI(X,R;) and 4 = {z € X :
lu(z)| <1}. Then, xx = xa+Xx_a and |u(x) [PN< |u(z) |9 for all
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€ X — Aand ju(z)] <i, for all z € A. Therefore,

/ fu(2) PYxdis(z) = ¢

-
c{

S e @) e <m>}

{1 (@) [1)]7} du (=)

e

[ e (C{Cl(U(w))})]p}du(w)}
X—-A
< / du<x>+x /A () o s ()

A

£ )+ [ fute) i dis @),
X
Since fi (A) <ji (X) <o, we get that u € LP (X,R;). O

Remark 2.16. The inclusion in Theorem 2.15 is strict. It means

Li(X,Re) § LP(X,Re) if i<p<g<co. Let ¢((z) = L, X = [0,1],
1<p<§<oco and A = %N. Then p<A<q, §N<i and %N}i. Choose
Q= %N and define
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Since gN(i, we get

/Ig(m)'mxdu(x) = ¢ [ {l¢c! (c{!cl<g<x>)})]”}du<x>}

0

= C [xla] du(w)}
1 / 1
= C{ xpadﬂ(x)}f{/pdﬂ(x)}
_ Ihy
q+p

and g € LP (X,R¢). On the other hand, the NN-integral

[ig@ i xdi() - c{/{[cl (C{Cl(g(w))})]q}du(w)}

o
= C{/[Cl (g(x))]qdﬂ(x)}

0

- 4{/1;1@@}

is divergent and this gives that g ¢ L7 (X,R¢). Therefore L7 (X,R¢) &
LP (X,Re).
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Example 2.17. Let X = [0, 1.6]' and v : X — R¢ be defined by v (z) =
exp (ﬂvUZlN> For geometric calculus, since (7! (z) = Inz, we can write

/iu (z) [P¥xdf (z) = c{/{[cl (C{]¢ @) )]} du <x>}

{:{6{ [1n(e{1n<u<z>>})]P}du(x)}

16 P i ) 4
/ dp(z) esjéhr =T 2 (

= g0 (p—4)16 4 (p—4)e 4

= €

=1
x 4

Then, we get u € L' (X, R¢) but u ¢ L* (X, R;).

Theorem 2.18. (NN-Minkowski’s inequality). Let 1<p<oco and u,v €
LP (X,R¢). Then utv € LP (X, R¢) and

[lut-vll,, <llull,, +vll,,

. i/p . 2
lull,, = (}Z'u(w)'”*d/l(m)) C{{Cl(X/'U(w)'pN*dﬂ(w))] }

- e (e e e o)) |

- c{ :cl C{X/Cl (c{c (i@ ) du})})] ;}

X

_ g{ ¢! C{/Cl (C{ (T @@ }F)) du})

X

If Ax|u] = Bx|v] (i — a.e.) for AxB>0, then the equality exists.

il

}.
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Proof. Let AxB>0 such that Axju] = Bx|v] (i — a.c.). Then

: i/p
Ax I'IUI'IpN = (Z APN X fu () [PY % djy (ff))

. i/p
(X/ BPN v (x) PN xdjs (w))

= Bx|[vl],,

and luf],, = BNX|Jo]],,. In other words,

L. B_|_A B e L. .. L.
lutoll,,y = =7~ Nx vl = = VXl 1l = Hellpy +Hvllpy
as well as when |.|u|.]pN = |‘|U|‘|pN =0. If p = co or p = 1 the inequality

is immediate. Now, assume that 1<p<co, |'|u|‘|pN =C #0and |'|v|']pN =
D # 0. Then, there exist functions f, g such that \u| = Cxf and
]U| = Dxg with [[f]|,, =1 =|lgll,,- Now, let § = N and 1-6 =
—=—N. Then, we get

(@) 4o @) P = (¢ {u (x)i}”)
= ¢(¢H ¢ c{c )+ w @)
< (¢t \+<\< (v (@)]}")
= (w@ o )pN
- (fo+ng>pN
- ([C+D] <X f+ [C+D] (1;5) >'<g) P

[C+D} <5><f+ (1 5) )pN
< [C+D} : [5>< N (1 5) XgpN}

19
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and
. i/p
[lutoll,y = /i“(l‘)JrU(x) [P %dji (x)
< [e+D] % [5x]] fib + (i) xl'lg!'IZN}
= C+D = [ull,,, H]vl], -
|

Corollary 2.19. The NN-Lebesgue space (Lp (X,R¢), |- HPN) is a normed

space with the norm
hull = (K/ u 2) P i (a)

Theorem 2.20. (NN-Holder’s inequality). Let u € LP (X,R¢), v €
L9 (X, Re) and i<p, §< oo with (i/p) i (i/q) —1i. Thenuxv e L1 (X,Ry)
and

i/p

for all 1<p<oo.

[luxvlly <[lull,, *[v]]4,-
If AkiuipN = Bkiv]qN (1 — a.e.) for AxB>0, then the equality exists.

Proof. When p = 1 and ¢ = o, we have
[luxoll; = /iU(ﬂf)*v(x)]*dﬂ(x)él'vl'\oo/iU(ﬂf)i*d/l(x)
X X

= lvlloollell;

due to |v] < Cesssup]vi =||v||os. Now, let 41 = WN and 72 = |-“Z|(-‘x)| N.
PN aN

By (6) in Corollary 2.5, we get

u(@)] s lv@ i fu@ ™1 @) [

— N St e ,
lullpy — Mollgy Pl @
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If one integrates the both sides of (7), then

[ u@) [P xdi (@)
° 1 .X
HuH x||v|y /' z) [xdji(z) < SV

[l

@) i @)
X

[0l gx

can be written. O

3 Conclusion

This paper not only contributes a rigorous theoretical understanding
of non-Newtonian Lebesgue spaces but also highlights their practical
utility in modeling real-world phenomena. Insights gleaned from this
exploration promise to enrich mathematical analysis and its applications
in physics, engineering, and other interdisciplinary fields. Furthermore,
we explore the interplay between non-Newtonian Lebesgue spaces and
related mathematical frameworks, such as fractional calculus and other
functional analysis topics.

The foundation of non-Newtonian Lebesgue spaces lies in their ex-
tension of classical Lebesgue spaces to accommodate non-Newtonian be-
haviors. These spaces offer a sophisticated mathematical framework ca-
pable of characterizing complex phenomena that deviate from traditional
Newtonian models. Their properties, including but not limited to, inte-
grability, norm behavior, and functional characteristics, exhibit unique
traits that aptly capture the intricacies of non-Newtonian systems.
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