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1 Introduction

Fractional calculus may be regarded as an extension of integer calcu-
lus. This gives fractional calculus various privileges that integer cal-
culus does not have. For instance, it is observed by most of the re-
searchers who study this subject that real-world problems and real-life
social issues are more appropriately represented by fractional-order sys-
tems rather than integer-order systems. Today, fractional-order systems
have been used in almost all areas such as tumor growth[28], micro-
bial propagation[15], viscoelastic models for vibrational analysis[61, 51],
nature, biology[53, 12, 31, 13, 14, 60, 11], image and signal possessing,
engineering, biophysics, models of neurons, thermodynamics, and math-
ematical physics; see [44, 19, 27, 58, 20, 33, 59]. When having a look
at the literature, we have observed that there are so many definitions
of fractional derivatives such as Euler, Fourier, Abel, Liouville, Rie-
mann, Grünwald, Hadamard, Weyl, Erdélyi-Kober, Caputo[42, 40, 48,
63, 49, 50, 46], conformable[16, 2], etc, fractional derivatives. The con-
formable fractional derivative is of particular importance over the others
because one of the most likely reasons is that it satisfies the correspond-
ing quotient rule, the corresponding product rule, the corresponding
chain rule, the corresponding mean value theorem, the corresponding
Rolle theorem, generally the corresponding semigroup property com-
pared to the classical 1st derivative while the others do not. Also, it
begins to attract everyone’s attention, whether they are mathematicians
or not, because its definition is so simple and so close to the well-known
1st derivative. In addition, the importance of conformable fractional
derivatives in the medical world is undeniable based on the available
studies[29, 52, 17, 4, 26, 45, 8]. Moreover, Dazhi and Maokang[66] in
2017 first gave the physical and geometrical interpretations of the con-
formable fractional derivatives.

In recent years, the theory of Laplace transforms, which is also known
as Laplace transformation or operational calculus, has emerged as a cru-
cial aspect of the mathematical foundation required for engineers, physi-
cists, mathematicians, and other scientific disciplines. Laplace transform
methods are not only of great theoretical interest but also provide a con-
venient and effective tool for solving problems across different scientific
and engineering disciplines[56, 18, 32, 64].
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Gösta Mittag-Leffler, the Swedish mathematician, designed the tra-
ditional Mittag-Leffler function[43] in 1903

Eβ(t) =

∞∑
j=0

tj

Γ(jβ + 1)
, Re(β) > 0,

which is a generalization of the well-known exponential function et. In
the progress of time, it has made efforts to be generalized and extended
to several types by modifying coefficients to account for the extra pa-
rameters such as the two-parameter Mittag-Leffler function Eβ,θ(t) and
the three-parameter Mittag-Leffler function Eδ

β,θ(t) discussed in [25, 33],
which are depicted by power series similar structure to the classical
Mittag-Leffler:

Eβ,θ(t) =

∞∑
j=0

tj

Γ(jβ + θ)
, Re(β) > 0,

and

Eδ
β,θ(t) =

∞∑
j=0

(δ)j
Γ(jβ + θ)

tj

j!
, Re(β) > 0.

In recent times, different kinds of generalizations have been suggested
like the bivariate Mittag-Leffler functions[23, 35, 47] and multivariate
Mittag-Leffler functions[39, 55] for more details, see [38, 9, 57], which
depicted by two power series in two variables and by more than two
power series as many as the number of the independent available vari-
ables in a number of variables. It is obvious that there is more than
one kind of bivariate Mittag-Leffler function which is tantamount to the
traditional Mittag-Leffler function. In the reference[22], the bivariate
Mittag-Leffler function, which is also another kind of bivariate Mittag-
Leffler function different from the above-mentioned ones, is defined and
its relation to fractional calculus, especially, Riemann-Liouville and Ca-
puto derivatives is established. The conformable exponential function

e
tα

α was proposed and discussed in [2]. I wonder how is the bivariate
Mittag-Leffler function in the conformable sense and what is the relation
to the conformable fractional derivatives. Moreover, differential equa-
tions involving two fractional orders were studied and the existence of
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their solutions, their stabilities[65, 36, 37, 6, 5, 62, 7], etc were investi-
gated.

Inspired by the above explanations and the above-cited studies, we
will consider the following linear sequential conformable fractional dif-
ferential system involving two generalized fractional orders as follows{

Dnβ
0 c (t)− λ1D(n−1)β

0 c (t) = λ2c (t) + ζ (t) , t ∈ (0, T ] ,

c (0) = c0, Dkβ
0 c (0) = ck, k = 1, 2, . . . , n− 1,

(1)

where the symbols Dnβ
0 and D(n−1)β

0 stand for the sequential conformable
derivatives of orders n− 1 < nβ ≤ n and n− 2 < (n− 1)β ≤ n− 1 with
n ≥ 2. Here,

Dnβ
0 = D(n−1)β

0 Dβ
0 = Dβ

0D
(n−1)β
0 for all n = 1, 2, . . . ,

λ1, λ2 ∈ R, ζ ∈ C ([0, T ]× R,R).
Equation 1 can be regarded as a generalization of the classical Langevin

formula[41] for a Brownian particle, which is given by

m
d2

dt2
x(t) + γ

d

dt
x(t) = f(t, x(t)),

here, f is the force on the particle, x stands for the position of the parti-
cle, γ is the coefficient of the friction, and m is the particle mass. Many
stochastic problems in the presence of a fluctuating medium are char-
acterized by the Langevin equation. However, the standard Langevin
equation is not able to express the right description of some sophisti-
cated problems. So, it needs to be generalized to compensate for the
lack of the classic one, which enables researchers to describe more phys-
ical problems in disordered regions[34]. One of the generalizations of
the Langevin equation is acquired by replacing the ordinary derivative
with a fractional one, which provides the well-known fractional Langevin
equation. The fractional Langevin equation was employed for modeling
many physical problems such as diffusion[21], anomalous transport[34],
and electrical circuits[10]. In this work, the theory of comfortable frac-
tional calculus is improved and Equation 1, a generalization Langevin
equation, is employed for modeling the vibration of springs.
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The paper is organized as follows. In Section 1, a brief summary
of fractional derivatives and the available Mittag-Leffler functions are
given and the tackled system is offered. In Section 2, necessary tools
and concepts in the literature, which are available, are remembered.
In Section 3, the conformable bivariate Mittag-Leffler function is first
proposed, simple calculations with and without the conformable Laplace
transform are made, and a representation of a solution to the linear
sequential conformable fractional differential system is looked for via two
different approaches such as the Laplace transform, and the variation
of constants. In Section 4, the vibration of springs is offered as an
application with simulations to show the effectiveness of our findings by
determining a tie between the fractional order of the tackled system and
its equilibrium position. In Section 5, all I obtained are summed up and
a couple of possible future works are presented.

2 Preliminaries

The focus of this section is to outline the key tools required for readers
to gain a clearer understanding of forthcoming proofs and statements.

For −∞ < a < b < ∞, J = [a, b] is the interval of R that symbolizes
the set of all real numbers, and let C(J,R) be the Banach space of all
continuous functions from J → R endowed with the infinity norm

∥ζ∥C = sup
t∈J

∥ζ(t)∥ ,

for an arbitrary norm ∥.∥ on R.

Definition 2.1. [30] The conformable fractional integral of order 0 <
β ≤ 1 with a function ζ : [0,∞) → R

Iβ
0 ζ (t) =

∫ t

0
ζ (s) sβ−1dτ, t > 0.

Definition 2.2. [30] The following fractional expression

Dβ
0 ζ (t) = lim

ε→0

ζ
(
t+ εt1−α

)
− ζ (t)

ε
, t > 0, 0 < β ≤ 1,
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is said to be the α-ordered conformable fractional derivative of a function
ζ : [0,∞) → R. Moreover, if ζ (.) is differentiable and lim

x→0+
Dβ

0 ζ (t)

exists, Dβ
0 ζ (0) = lim

x→0+
Dβ

0 ζ (t).

Lemma 2.3. [1] The conformable fractional derivative of order 0 < β ≤
1 of a function ζ : [0,∞) → R exists iff it is differentiable at a point t,
and also

Dβ
0 ζ (t) = t1−βζ

′
(t) .

Lemma 2.4. [2] For 0 < α ≤ 1,

Iα
0 Dα

0 ζ (t) = ζ (t)− ζ (0) .

Definition 2.5. [2] For each t ≥ 0, the conformable exponential func-
tion is described by

Eβ (d, t) = exp

(
d
tβ

β

)
= e

d tβ

β , d ∈ R, 0 < β ≤ 1.

Definition 2.6. [56] A function ζ (t) is said to be conformably expo-
nentially bounded if ζ (t) holds the inequality ∥ζ (t)∥ ≤ MEβ (d, t) for
all sufficiently large t, where 0 < β ≤ 1, M,d ∈ R+.

Definition 2.7. [56] The Laplace transform of order 0 < β ≤ 1 of a
function ζ in the conformable sense is described as noted below

Lβ {ζ (t)} (s) =
∫ ∞

0
Eβ (−s, t) ζ (t) tβ−1dt,

where the function ζ : [0,∞) → R.

The following lemma expresses the uniqueness of the conformable
Laplace transform.

Lemma 2.8. [64] Let g(t) and f(t) be conformably exponentially bounded.
If

Lβ {g (t)} (s) = Lβ {f (t)} (s) , s > a,

then
g(t) = f(t), ∀t ≥ 0,

where both functions are continuous. Furthermore,

g (t) = L−1
β {Gβ (t)} (s) ⇔ Lβ {g (t)} (s) = Gβ (t) . (2)
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Theorem 2.9. [18] Let ζ : [0,∞) → R be differentiable and 0 < β ≤ 1,
then for an arbitrary integer number n we have

Lβ

{
Dnβ

0 ζ (t)
}
(s) = snLβ {ζ (t)} (s)−

n−1∑
k=0

sn−k−1Dkβ
0 ζ (0) ,

where Dnβ
0 = D(n−1)β

0 Dβ
0 = Dβ

0D
(n−1)β
0 for all n = 1, 2, . . . .

Theorem 2.10. [32] Assume that ζ, η : [0,∞) → R and 0 < β ≤ 1.
The conformable convolution of ζ and η is given by

(ζ ∗ η) (t) =
∫ t

0
ζ

(
tβ

β
− sβ

β

)
η

(
sβ

β

)
d
sβ

β
,

and
Lβ {(ζ ∗ η) (t)} (s) = Lβ {ζ (t)} (s)Lβ {η (t)} (s) ,

if the conformable Laplace transforms of both ζ and η exist for s ≥ 0.

Proposition 2.11. [54] The conformable gamma function Γβ (α) sat-
isfies the below equations:

1. Γβ (α+ 1) = (α+ β − 1) Γβ (α),

2. Γβ (α) = β
α+β−1

β Γ
(
α+β−1

β

)
,

3. Γβ (1) = β,

here, Γ denotes the gamma function, which is well-established in math-
ematical literature.

Theorem 2.12. [54] Given p > 0 and 0 < β ≤ 1, the Laplace trans-
forms of 1, t, and tp can be expressed as:

1. Lβ {1} (s) = s−1Γβ (1),

2. Lβ {t} (s) = s
− 1+β

β Γβ (2),

3. Lβ {tp} (s) = s
− p+β

β Γβ (p+ 1) = 1

s
1+

p
β
Γβ (p+ 1).

Our novel contributions are presented starting from Section 3 on-
wards.
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3 An Explicit Solution to the Considered Sys-
tem

In this section, we will expend energy to obtain an explicit solution
to non-homogeneous sequential linear conformable fractional differential
systems through two different approaches.

Definition 3.1. The conformable bivariate Mittag-Leffler function with
three parameters Eα,β,γ (u, v) : [0,∞)× [0,∞) → R is given by

Eγ+1
β,α (u, v) :=

∞∑
i=0

∞∑
j=0

(
i+ j

j

)
uivj

Γβ (iβ + jα+ γ + 1)
,

where β, α, γ > 0.

To make the proofs easy, we make some preparations.

Corollary 3.2. For 0 < β ≤ 1 and α > 0, we have

Γβ (α+ 1) = αΓβ (α− β + 1) .

Proof. It is an immediate result of items (1) and (2) in Proposition
2.11. □

Lemma 3.3. For α, β, γ > 0, u = λ2t
β, b = λ1t

α, t ∈ [0,∞), we have

Dβ
0

(
tγEγ+1

β,α

(
λ2t

β, λ1t
α
))

= tγ−βEγ−β+1
β,α

(
λ2t

β, λ1t
α
)
.

Proof. If Lemma 2.3 and Corollary 3.2 are exploited, one can easily
acquire

Dβ
0

(
tγEγ+1

β,α

(
λ2t

β, λ1t
α
))

=

∞∑
i=0

∞∑
j=0

(
i+ j

j

)
λi
2λ

j
1D

β
0

(
tiβ+jα+γ

Γβ (iβ + jα+ γ + 1)

)

=
∞∑
i=0

∞∑
j=0

(
i+ j

j

)
λi
2λ

j
1

(
tiβ+jα+γ−β

Γβ (iβ + jα+ γ − β + 1)

)
= tγ−βEγ−β+1

β,α

(
λ2t

β, λ1t
α
)
.
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□
I would like to give an explicit proof of the following lemma which

exists in the literature.

Lemma 3.4. The following equation holds true:
∞∑
i=0

∞∑
j=0

(
i+ j

j

)
aij = a00 +

∞∑
i=0

∞∑
j=1

(
i+ j − 1

j − 1

)
aij

+

∞∑
i=1

∞∑
j=0

(
i+ j − 1

j

)
aij ,

where aij ∈ R.
Proof. It is known that

(
0
0

)
= 1,

(
i
j

)
= 0, for j > i, and

(
i
j

)
=
(
i−1
j

)
+(

i−1
j−1

)
, for 0 < j < i. Consider

∞∑
i=0

∞∑
j=0

(
i+ j

j

)
aij =

∞∑
j=0

(
j

j

)
a0j +

∞∑
i=1

∞∑
j=0

(
i+ j

j

)
aij

=
∞∑
j=0

(
j

j

)
a0j +

∞∑
i=1

(
i

0

)
ai0 +

∞∑
i=1

∞∑
j=1

(
i+ j

j

)
aij

=

(
0

0

)
a00 +

∞∑
j=1

(
j

j

)
a0j

+

∞∑
i=1

(
i

0

)
ai0 +

∞∑
i=1

∞∑
j=1

(
i+ j

j

)
aij

= a00 +
∞∑
j=1

(
j − 1

j − 1

)
a0j +

∞∑
i=1

(
i− 1

0

)
ai0

+
∞∑
i=1

∞∑
j=1

(
i+ j − 1

j

)
aij +

∞∑
i=1

∞∑
j=1

+

(
i+ j − 1

j − 1

)
aij

= a00 +

∞∑
i=0

∞∑
j=1

(
i+ j − 1

j − 1

)
aij

+

∞∑
i=1

∞∑
j=0

(
i+ j − 1

j

)
aij .
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□

Lemma 3.5. The following expressions hold true.

1

(sn − λ1sn−1)l+1
=

∞∑
k=0

(
l + k

k

)
λk
1

sn(l+1)+k
,

and
sd

sn − λ1sn−1 − λ2
=

∞∑
l=0

∞∑
k=0

(
l + k

k

)
λl
2λ

k
1

snl+k+n−d
,

where
∣∣∣λ1
s

∣∣∣ < 1,
∣∣∣ λ2
sn−λ1sn−1

∣∣∣ < 1 λ1, λ2 ∈ R, s > 0.

Proof. By employing the binomial series, one easily demonstrates the
former

1

(sn − λ1sn−1)l+1
=

1

sn(l+1)

1(
1− λ1

s

)l+1

=
1

sn(l+1)

∞∑
k=0

(
l + k

k

)(
λ1

s

)k

,

∣∣∣∣λ1

s

∣∣∣∣ < 1,

=
∞∑
k=0

(
l + k

k

)
λk
1

sn(l+1)+k
.

In the light of geometric series and the first item, we get

sd

sn − λ1sn−1 − λ2
=

sd

sn − λ1sn−1

1

1− λ2
sn−λ1sn−1

=
sd

sn − λ1sn−1

∞∑
l=0

λl
2

(sn − λ1sn−1)l
,

∣∣∣∣ λ2

sn − λ1sn−1

∣∣∣∣ < 1,

=

∞∑
l=0

λl
2s

d

(sn − λ1sn−1)l+1
,

=

∞∑
l=0

λl
2s

d
∞∑
k=0

(
l + k

k

)
λk
1

sn(l+1)+k
,

∣∣∣∣λ1

s

∣∣∣∣ < 1,

=
∞∑
l=0

∞∑
k=0

(
l + k

k

)
λl
2λ

k
1

snl+k+n−d
.



LINEAR SEQUENTIAL FRACTIONAL DYNAMICS 11

□

Lemma 3.6. We have the following equalities, for λ1, λ2 ∈ R, n−1
n <

β ≤ 1, and s > 0,

L−1
β

{
sd

sn − λ1sn−1 − λ2

}
(t) = t(n−1)β−dβE

(n−1)β−dβ+1
nβ,β

(
λ2t

nβ, λ1t
β
)
.

Proof. Under the choices of λ1, λ2 ∈ R, 0 < β ≤ 1, and s > 0, we take
the former into consideration

L−1
β

{
sd

sn − λ1sn−1 − λ2

}
(t)

=
∞∑
l=0

∞∑
k=0

(
l + k

k

)
λl
2λ

k
1L−1

β

{
1

snl+k+n−d

}
(t)

=
∞∑
l=0

∞∑
k=0

(
l + k

k

)
λl
2λ

k
1L−1

β

{
1

s
1+nlβ+kβ+nβ−β−dβ

β

}
(t)

=
∞∑
l=0

∞∑
k=0

(
l + k

k

)
λl
2λ

k
1

tnlβ+kβ+nβ−β−dβ

Γβ (nlβ + kβ + nβ − β − dβ + 1)

= t(n−1)β−dβE
(n−1)β−dβ+1
nβ,β

(
λ2t

nβ, λ1t
β
)
.

□

Theorem 3.7. The following expression

c (t) =

n−2∑
k=0

tkβ

Γβ (kβ + 1)
ck + λ2

n−2∑
k=0

t(n+k)βE
(n+k)β+1
nβ,β

(
λ2t

nβ, λ1t
β
)
ck

+ t(n−1)βE
(n−1)β+1
nβ,β

(
λ2t

nβ, λ1t
β
)
cn−1, t ≥ 0, (3)

is a solution to the homogeneous linear generalized sequential conformable
fractional differential equations.

Proof. Our principle idea is to show that c(t) in (3) satisfies the
homogeneous generalized sequential conformable fractional differential
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equations. Thus, taking the conformable fractional derivative of order
0 < β < 1 of c(t) in the light of Lemma 3.3, one gets Dβ

0 c (t):

=
n−2∑
k=1

tkβ−β

Γβ (kβ − β + 1)
ck + t(n−1)β−βE

(n−1)β−β+1
nβ,β

(
λ2t

nβ, λ1t
β
)
cn−1

+ λ2

n−2∑
k=0

t(n+k)β−βE
(n+k)β−β+1
nβ,β

(
λ2t

nβ, λ1t
β
)
ck,

if it is derived in the conformable sense once again, one gets D2β
0 c (t):

=
n−2∑
k=2

tkβ−2β

Γβ (kβ − 2β + 1)
ck + t(n−1)β−2βE

(n−1)β−2β+1
nβ,β

(
λ2t

nβ, λ1t
β
)
cn−1

+ λ2

n−2∑
k=0

t(n+k)β−2βE
(n+k)β−2β+1
nβ,β

(
λ2t

nβ, λ1t
β
)
ck.

If it is kept going in similar procedures, one can acquire

D(n−2)β
0 c (t) =

1

Γβ (1)
cn−2 + tβEβ+1

nβ,β

(
λ2t

nβ, λ1t
β
)
cn−1

+ λ2

n−2∑
k=0

t(k+2)βE
(k+2)β+1
nβ,β

(
λ2t

nβ, λ1t
β
)
ck.

If it is derived in the conformable sense once again, one gets D(n−1)β
0 c (t):

= E1
nβ,β

(
λ2t

nβ, λ1t
β
)
cn−1 + λ2

n−2∑
k=0

t(k+1)βE
(k+1)β+1
nβ,β

(
λ2t

nβ, λ1t
β
)
ck.

Now we use double series expansions of the conformable bivariate Mittag-
Leffler functions

D(n−1)β
0 c (t) =

∞∑
i=0

∞∑
j=0

(
i+ j

j

)
λi
2λ

j
1 tnβi+βj

Γβ (nβi+ βj + 1)
cn−1

+ λ2

n−2∑
k=0

∞∑
i=0

∞∑
j=0

(
i+ j

j

)
λi
2λ

j
1 tnβi+βj+(k+1)β

Γβ (nβi+ βj + (k + 1)β + 1)
ck.
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Lemma 3.4 gives D(n−1)β
0 c (t) as follows

=
1

Γβ (1)
cn−1 +

∞∑
i=0

∞∑
j=1

(
i+ j − 1

j − 1

)
λi
2λ

j
1 tnβi+βj

Γβ (nβi+ βj + 1)
cn−1

+

∞∑
i=1

∞∑
j=0

(
i+ j − 1

j

)
λi
2λ

j
1 tnβi+βj

Γβ (nβi+ βj + 1)
cn−1

+ λ2

n−2∑
k=0

t(k+1)β

Γβ ((k + 1)β + 1)
ck

+ λ2

n−2∑
k=0

∞∑
i=0

∞∑
j=1

(
i+ j − 1

j − 1

)
λi
2λ

j
1 tnβi+βj+(k+1)β

Γβ (nβi+ βj + (k + 1)β + 1)
ck

+ λ2

n−2∑
k=0

∞∑
i=1

∞∑
j=0

(
i+ j − 1

j

)
λi
2λ

j
1 tnβi+βj+(k+1)β

Γβ (nβi+ βj + (k + 1)β + 1)
ck,

rearranging the indices and using the definition of the conformable bi-
variate Mittag-Leffler functions

D(n−1)β
0 c (t) =

1

Γβ (1)
cn−1 + λ1t

βEβ+1
nβ,β

(
λ2t

nβ, λ1t
β
)
cn−1

+ λ2t
nβEnβ+1

nβ,β

(
λ2t

nβ, λ1t
β
)
cn−1

+ λ2

n−2∑
k=0

t(k+1)β

Γβ ((k + 1)β + 1)
ck

+ λ1λ2

n−2∑
k=0

t(k+2)βE
(k+2)β+1
nβ,β

(
λ2t

nβ, λ1t
β
)
ck

+ λ2
2

n−2∑
k=0

t(k+1)β+nβE
(k+1)β+nβ+1
nβ,β

(
λ2t

nβ, λ1t
β
)
ck.

If the conformable fractional derivative is applied to the just-above equa-
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tion, one can get Dnβ
0 c (t):

= λ1E
1
nβ,β

(
λ2t

nβ, λ1t
β
)
cn−1 + λ2t

(n−1)βE
(n−1)β+1
nβ,β

(
λ2t

nβ, λ1t
β
)
cn−1

+ λ2

n−2∑
k=0

tkβ

Γβ (kβ + 1)
ck + λ1λ2

n−2∑
k=0

t(k+1)βE
(k+1)β+1
nβ,β

(
λ2t

nβ, λ1t
β
)
ck

+ λ2
2

n−2∑
k=0

tkβ+nβEkβ+nβ+1
nβ,β

(
λ2t

nβ, λ1t
β
)
ck. (4)

We also have,

−λ1D(n−1)β
0 c (t) = −λ1E

1
nβ,β

(
λ2t

nβ, λ1t
β
)
cn−1

− λ1λ2

n−2∑
k=0

t(k+1)βE
(k+1)β+1
nβ,β

(
λ2t

nβ, λ1t
β
)
ck, (5)

and −λ2c (t):

= −λ2

n−2∑
k=0

tkβ

Γβ (kβ + 1)
ck − λ2λ2

n−2∑
k=0

t(n+k)βE
(n+k)β+1
nβ,β

(
λ2t

nβ, λ1t
β
)
ck

− λ2t
(n−1)βE

(n−1)β+1
nβ,β

(
λ2t

nβ, λ1t
β
)
cn−1. (6)

The summation of equalities (4), (5), and (6) provides the desired result,
that is,

Dnβ
0 c (t)− λ1D(n−1)β

0 c (t)− λ2c (t) = 0.

□

Theorem 3.8. The following convolution function

c (t) = t(n−1)βE
(n−1)β+1
nβ,β

(
λ2t

nβ, λ1t
β
)
∗ ζ(t) t ≥ 0,

is a solution to the inhomogeneous generalized sequential conformable
fractional differential equations.

Proof. This proof can be done in the same approaches as Theorem 3.7.
However, we use the constant variation technique to simplify the proof.
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Then an arbitrary solution c(t) of the inhomogeneous generalized se-
quential conformable fractional differential equations should be fulfilled
in the following structure

c (t) = t(n−1)βE
(n−1)β+1
nβ,β

(
λ2t

nβ, λ1t
β
)
∗ ℸ(t),

where ℸ(t) is an unknown continuous function. Keeping Theorems 2.9
and 2.10 in mind and applying the conformable Laplace transform to
the inhomogeneous system,

Lβ {ζ(t)}

=
(
sn − λ1s

n−1 − λ2

)
Lβ

{
t(n−1)βE

(n−1)β+1
nβ,β

(
λ2t

nβ, λ1t
β
)}

Lβ {ℸ(t)} .

Lemma 3.6 provides

Lβ {ℸ(t)} = Lβ {ζ(t)} .

Based on the uniqueness of the conformable Laplace transform, we get

ℸ(t) = ζ(t), t ≥ 0,

which completes the proof. □

Theorem 3.9. An explicit solution to the linear generalized sequential
conformable fractional differential equations is given by

c (t) =
n−2∑
k=0

tkβ

Γβ (kβ + 1)
ck + λ2

n−2∑
k=0

t(n+k)βE
(n+k)β+1
nβ,β

(
λ2t

nβ, λ1t
β
)
ck

+ t(n−1)βE
(n−1)β+1
nβ,β

(
λ2t

nβ, λ1t
β
)
cn−1

+ t(n−1)βE
(n−1)β+1
nβ,β

(
λ2t

nβ, λ1t
β
)
∗ ζ (t) .

Proof. The proof of this theorem is obvious. Hence, we will omit it.
□

We can verify the explicit solution to the equation (1) as given in The-
orem 3.9 by using the conformable Laplace transformation technique.
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Theorem 3.10. The following integral equation

c (t) =
n−2∑
k=0

tkβ

Γβ (kβ + 1)
ck + λ2

n−2∑
k=0

t(n+k)βE
(n+k)β+1
nβ,β

(
λ2t

nβ, λ1t
β
)
ck

+ t(n−1)βE
(n−1)β+1
nβ,β

(
λ2t

nβ, λ1t
β
)
cn−1

+ t(n−1)βE
(n−1)β+1
nβ,β

(
λ2t

nβ, λ1t
β
)
∗ ζ (t) ,

is a representation of a solution to the system (1).

Proof. Applying the conformable Laplace integral transformation to
the system (1), we get

Lβ

{
Dnβ

0 c (t)
}
(s)− λ1Lβ

{
D(n−1)β

0 c (t)
}
(s)

= λ2Lβ {c (t)} (s) + Lβ {ζ (t)} (s) .

Implementing Theorem 2.9 to the just above equation, we get

snLβ {c (t)} (s)−
n−1∑
i=0

sn−i−1Diβ
0 c (0)

− λ1

(
sn−1Lβ {c (t)} (s)−

n−2∑
i=0

sn−i−2Diβ
0 c (0)

)
= λ2Lβ {c (t)} (s) + Lβ {ζ (t)} (s) ,

and

⇒
(
sn − λ1s

n−1 − λ2

)
Lβ {c (t)} (s)

=
n−2∑
i=0

(
sn−i−1 − λ1s

n−i−2
)
ci + cn−1 + Lβ {ζ (t)} (s)

=

n−2∑
i=0

s−i−1
(
sn − λ1s

n−1
)
ci + cn−1 + Lβ {ζ (t)} (s) .



LINEAR SEQUENTIAL FRACTIONAL DYNAMICS 17

Lβ {c (t)} (s) =
n−2∑
i=0

s−i−1 sn − λ1s
n−1

sn − λ1sn−1 − λ2
ci +

1

sn − λ1sn−1 − λ2
cn−1

+
1

sn − λ1sn−1 − λ2
Lβ {ζ (t)} (s)

=
n−2∑
i=0

s−i−1

(
1 +

λ2

sn − λ1sn−1 − λ2

)
ci +

1

sn − λ1sn−1 − λ2
cn−1

+
1

sn − λ1sn−1 − λ2
Lβ {ζ (t)} (s)

=

n−2∑
i=0

s−i−1ci + λ2

n−2∑
i=0

s−i−1

sn − λ1sn−1 − λ2
ci

+
1

sn − λ1sn−1 − λ2
cn−1 +

1

sn − λ1sn−1 − λ2
Lβ {ζ (t)} (s) .

The Laplace inverse transform is taken on both sides of the aforemen-
tioned equation, using (2), one acquires

c (t) =
n−2∑
i=0

L−1
β

{
s−i−1

}
(t) ci + λ2

n−2∑
i=0

L−1
β

{
s−i−1

sn − λ1sn−1 − λ2

}
(t) ci

+ L−1
β

{
1

sn − λ1sn−1 − λ2

}
(t) cn−1

+ L−1
β

{
1

sn − λ1sn−1 − λ2
Lβ {ζ (t)} (s)

}
(t) .

By utilizing Lemma 3.6, we can achieve the intended outcome in the
following manner.

c (t) =
n−2∑
k=0

tkβ

Γβ (kβ + 1)
ck + λ2

n−2∑
k=0

t(n+k)βE
(n+k)β+1
nβ,β

(
λ2t

nβ, λ1t
β
)
ck

+ t(n−1)βE
(n−1)β+1
nβ,β

(
λ2t

nβ, λ1t
β
)
cn−1

+ t(n−1)βE
(n−1)β+1
nβ,β

(
λ2t

nβ, λ1t
β
)
∗ ζ (t) .

□
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Remark 3.11. Although, in Theorem 3.10, we have supposed that
the conformable Laplace transforms of c(t), ζ(t), and Dnβ

0 c(t) for n =
1, 2, . . . exist, Theorem 3.9 has shown that these conditions could be
removed.

The following corollary expresses the special case of our problem for
n = 2, which corresponds to that of [10].

Corollary 3.12. The below continuous function

c (t) =
1

Γβ (1)
c0 + λ2t

2βE2β+1
2β,β

(
λ2t

2β, λ1t
β
)
c0

+ tβEβ+1
2β,β

(
λ2t

2β, λ1t
β
)
c1 + tβEβ+1

2β,β

(
λ2t

2β, λ1t
β
)
∗ ζ (t) ,

is a solution to the following linear system{
D2β

0 c (t)− λ1Dβ
0 c (t) = λ2c (t) + ζ (t) , t ∈ (0, T ] ,

c (0) = c0, Dβ
0 c (0) = c1,

where the symbols of D2β
0 and Dβ

0 stand for the sequential conformable
derivatives of orders 1 < 2β ≤ 2 and 0 < β ≤ 1, respectively. Here,
D2β

0 = Dβ
0D

β
0 .

4 An Application to the Vibration of Springs

Inhomogeneous linear ordinary differential equations with second-order
appear in the works of electrical circuits and the vibration of springs[3,
24].

The vibration theory of springs is mostly exploited in the primary
suspension system of road vehicles such as trucks, buses, cars, etc; and
heavy vehicles such as wagons, railway coaches, etc. It is also employed
in the suspension system of machine beds which are exposed to vibra-
tions and damping systems to absorb shocks.

We will investigate the motion of an object with massm at the end of
a spring that is exposed to a frictional force Ff in the case of a horizontal
spring as in Figure 1 or a damping force Fd in the case of the fact that
a vertical spring moves through a fluid as in Figure 2 in addition to the
spring affected by external force F (t).
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Figure 1: The horizontal system

According to Hooke’s Law, when the spring is compressed or stretched,
it extends c units from its natural length. So it spends a force that is
proportional to c, that is,

r = restoring force = −kc, k > 0 (spring constant),

can be verified via experimental data. We suppose that a force of fric-
tion or damping force is proportional to the velocity of the mass and
it is in the opposite direction of the motion which has been verified
approximately by some physical experiments, i.e.

Fd = damping force = −e
dc

dt
:= frictional force := Fr,

where e > 0 is a frictional or damping force. We also assume that the
motion of the spring is affected by an external force Fex = F (t).

According to Newton’s second law which expresses that the sum of
all forces in a motion is equal to mass times acceleration, we have∑

F = m.a,

where a = dv
dt = d2

dt2
c. So we acquire

Fr + Ff + Fex = m
d2c

dt2
,
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Figure 2: The vertical system

and

−kc− e
dc

dt
+ F (t) = m

d2c

dt2
.

One can rewrite an IVP consisting of ordinary derivatives as noted below{
m d2

dt2
c(t) + e d

dtc(t) + kc(t) = F (t),

c (0) = c0, c
′
(0) = c1.

As done in the reference[24], one can reformulate the initial value prob-
lem for the linear conformable fractional equations by switching integer-
order derivatives with fractional-order ones 0 < β ≤ 1, 1 < 2β ≤ 2.
In this regard, the desired initial value problem could be remodeled as
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stated below {
mD2β

0 c (t) + eDβ
0 c (t) + kc (t) = F (t) ,

c (0) = c0, Dβ
0 c (0) = c1,

(7)

where

lim
β→1

Dβ
0 c (t) =

d

dt
c(t), lim

β→1
D2β

0 c (t) = D2β
0 c (t) .

Based on Corollary 3.12, one gets an exact analytical solution to
system (7) as follows:

c (t) =
1

Γβ (1)
c0 −

k

m
t2βE2β+1

2β,β

(
− k

m
t2β,− e

m
tβ
)
c0

+ tβEβ+1
2β,β

(
− k

m
t2β,− e

m
tβ
)
c1 + tβEβ+1

2β,β

(
− k

m
t2β,− e

m
tβ
)
∗ F (t) .

The graphs of the position c(t) and the velocity v(t) for k = 128,
e = 30, m = 5, β = 0.55, c0 = 20, c1 = 52, and F (t) = 20t2 + 5t+ 2 are
given in Figure 3. As seen in Figure 1, the zero point is accepted as the
equilibrium position. Thus, Figure 3 expresses the position and velocity
at an arbitrary time of a mass that starts at the equilibrium position
and is exposed to some mentioned forces, again reaching the equilibrium
position.

c(t)

v(t)

0.1 0.2 0.3 0.4 0.5 0.6

t

-50000

50000

Figure 3
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c(t) for �=1

c(t) for �=0.8

c(t) for �=0.7

c(t) for �=0.6

c(t) for �=0.5

c(t) for �=0.3

0.0 0.5 1.0 1.5 2.0

t

5

10

15

20

25

Figure 4

Table 1: The amplitude (amp) change

β = 1 β = 0.8 β = 0.7 β = 0.6 β = 0.5 β = 0.3

Amp. 6.08361 7.57481 8.61478 9.96791 11.8069 18.9655

The graphs of the positions c(t) for each of β = 1, β = 0.8, β = 0.7,
β = 0.6, β = 0.5, β = 0.3 with the common parameters k = 7.8, e = 9,
m = 3, c0 = 0, c1 = 8, and F (t) = t are given in Figure 4. One can
infer from Figure 4 that a mass that starts at the equilibrium position
again reaches the equilibrium position earlier as the values of the beta
parameters decrease.

Note that the amplitude (of vibration of springs) refers to the max-
imum displacement of a vibrating body from its equilibrium position.
In Table 1, amplitudes obtained from the position functions, which de-
pend on the distinct beta parameters, presented in Figure 4 are shared.
For example, when β = 1, the corresponding amplitude of vibration of
springs is equal to 6.08361cm. In the case of β = 0.6, the corresponding
one is 9.96791cm. For the last one, it is 18.9655cm It is easily observed
from Table 1 that the values of amplitudes increase as the values of the
beta parameters decrease.

It should be emphasized that system (7) transforms to the ordinary
second-order linear system when β = 1. So the results of the fractional
linear system with 0 < β < 1 and the ordinary second order linear
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Table 2: Positions of the mass at some time (t seconds) for β = 0.7

0.1 0.3 0.4 0.5 0.7 0.8 0.9 1 Amp.

1.93 5.87 9.14 12.81 19.31 21.08 21.26 19.44 21.4142

system with β = 1 are compared in Figure 4 and Table 1.

In addition, let’s draw the graphs of the position functions c(t) of the
mass at any time for each of β = 0.6, β = 0.7 with the new parameters
k = 10, e = 8, m = 2, and F (t) = t are given in Figure 4 when it
starts from the equilibrium position and is given a push to start it with
an initial velocity of 8cm/sec. It is drawn in Figure 5. In Table 2 and
3, the positions and amplitudes of the mass at some time in the cases
of β = 0.6 and β = 0.6 are respectively presented. It is observed from
Table 2, Table 3, and Figure 5 that the mass moves away from the
equilibrium position rapidly and comes to the equilibrium position even
faster when the case β = 0.6 is compared to the case β = 0.7. This also
shows that there is a strong relationship between the system’s order β
and the velocity of the mass. The similar situation is also true for their
amplitudes, that is, the amplitude for β = 0.6 is greater than that for
β = 0.7.

Β=0.6

Β=0.7

0.5 1.0 1.5
t

5

10

15

20

25

30

cHtL

Figure 5
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Table 3: Positions of the mass at some time (t seconds) for β = 0.6

0.1 0.3 0.4 0.5 0.7 0.8 0.9 1 Amp.

3.43 12.52 17.82 22.13 24.47 21.35 14.80 4.41 24.8752

5 Conclusion and Future Work

This study primarily focuses on the introduction of a linear sequential
conformable fractional differential system with two generalized fractional
orders and bivariate conformable Mittag-Leffler functions. An explicit
solution that incorporates the bivariate conformable Mittag-Leffler func-
tions for the system is derived. Additionally, an analysis on the vibration
of springs is conducted to solidify the theoretical results.

As possible future work, one can explore finite-time stability, asymp-
totic stability, Lyapunov-type stability, and exponential stability of the
tackled system. As another possible future work, one can investigate
whether it is iteratively learning controllable or relatively and approxi-
mately controllable.
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