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Abstract. In this paper, we define the concept of d-Oresme polynomi-
als, which is a generalization of the classical Oresme polynomials. We
obtain several fundamental properties for these new polynomials includ-
ing the generating function, the Binet-like formula, some combinatorial
identities and summation formulas. We define the matrix Oq4, and show
that the power of O4 generates the d-Oresme polynomials. Then, we
introduce the infinite d-Oresme polynomials matrix, which is a Riordan
matrix. We present two new factorizations of the infinite Pascal matrix
whose entries are the d-Oresme polynomials by Riordan method.
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1 Introduction

Many researchers have been interested in number sequences and their
polynomials for long years since they have many applications in na-
ture and various fields. The Fibonacci numbers are one of the most
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well-known number sequences. Fibonacci numbers are defined by the
recurrence relation

Fopi=Fy+Fr1, n>1

with initial conditions Fyp = 0 and F' = 1. For Wy, Wi,p,q € Z, the
Horadam numbers W,, = W,,(Wy, Wi;p, q) are defined by

Wht1 =pWn +qWn1, n>1 (1.1)

with the initial values Wy and Wy (see, for example, [12] and [13]). In
[14], A. F. Horadam extended the equation (1.1) considering rational
numbers Wy, W1, p, q, and provided a history of number attributed to
Nicole Oresme, Oresme number sequences

1 1 123 4 5 n
O’n = Wn 077;17_7 = 077777777777"'777"' .
{On}nen { ( 2 4)}n€N { 2747816’ 32 2n }

The Oresme numbers have many interesting properties and applications
in many fields of science (see, for example, [7], [3], [9] and [14]). The
Oresme polynomials can be useful in specific boundary-value problems
and numerical methods with certain stability requirements. In particular
situations, their recursive form can be computationally advantageous.
The Oresme numbers are defined by the recurrence relation

1

OnJrl =0, — Zonfly n>1

1
with initial conditions Op = 0 and O; = 7 In [5], Cerda-Morales defined

the Oresme polynomials by the recurrence relation

1
Op+1(x) = Op(x) — ?On_l(a:), n>1

with initial conditions Og(x) = 0 and O1(z) =
In 1883, Fibonacci polynomials, investigated by Catalan, were de-
fined by the recurrence relation

K=

Foi1(x) =xF,(z) + Fh—1(x), n>1
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with initial conditions Fy(z) = 0 and Fj(z) = 1. Nalli and Haukkanen
[19] defined h(z)-Fibonacci polynomials as

Fhpt1(x) = h(x)Fpp(z) + Fpp_1(x), n>1

with initial conditions F}, o(z) = 0 and Fj,1(x) = 1. In [I18], Lee and
Asci introduced (p, q)-Fibonacci polynomials as

Fpagn+1(x) = p(x)Fpgn(z) + ¢(2) Fpgn-1(z), n>1

with initial conditions Fp40(z) = 0 and Fp,41(z) = 1. Let d € ZT =
{1,2,...} and p;(z) be a real polynomial for each i =1,2,...,d+ 1. In
[20], Sadaoui and Krelifa generalized (p, ¢)-Fibonacci polynomials to d-
Fibonacci polynomials, which are described such that

Foi1(x) = p1(2) Fy(z) + pa(2) Fro1(z) + - + pag1(2) F—g(z), n>1

with initial conditions F,(z) = 0 for n < 0 and Fi(x) = 1. In [10],
Heydari et al. generated shifted Vieta-Fibonacci polynomials for the
fractal-fractional fifth-order KdV equation. Heydari and Avazzadeh [11]
have developed the collocation technique based on the Fibonacci polyno-
mials for finding the approximate solution of variable-order space-time
fractional Burgers-Huxley equation. Furthermore, Kuloglu and Ozkan
[15] defined the d-Tribonacci polynomials, which is a generalization of
Tribonacci polynomials, and studied these polynomials.

Lawden [10] introduced the n x n lower triangular Pascal matrix
P = (pi ;) such that

0, ifi <y
Pij = i— P .
TG, iz
for 1,5 = 1,2,...,n (see, for example, [2] and [1]). The infinite Pascal

matrix P is given as

(1.2)

e
= w N = O
DW= OO
= = O O O

o o O o
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The Pascal matrices have several applications in probability, numer-
ical analysis, surface reconstruction and combinatorics. In [1], [3] and
[23], the authors investigated the linear algebras of the generalized Pascal
functional matrix, the Pascal matrix and the generalized Pascal matrix,
respectively. In [17] and [22], the authors derived two factorizations of
the Pascal matrix involving the Fibonacci matrix.

In [21], Shapiro et al. introduced the Riordan group as follows.

Leti,j e N={0,1,2,...} and A = (a;;) be an infinite matrix with
entries in C. Let £ € N and ¢x(u) = Y o amru™ be the generating
function of the kth column of A. The matrix A = (g(u), f(u)) is called a
Riordan matriz, if ci(v) = g(u) [f(w)]*, where g(u) = > gmu™ and
flu) =3 m—g fmu™

We denote by R the set of Riordan matrices. It is well-known that
R is a group under matrix multiplication *, and is called by Riordan
group. We present the following features related to Riordan group.

(i) (g(u), f(u))*C(u) = g(u)C(f(u)), where C(u) is a column vector
(matrix multiplication x with C'(u)),
(9
t

(i) (g(w), f(w)) * (h(w), l(w)) = (g(w)h(f(w)),[(f(u)))  (matrix mul-

iplication *),

(iii) ig = (1,u), where i is the identity element of R,

(iv) (g(u), f(u) ™ = (g(fl(u))’ f(u)), where f(u) is compositional in-

verse of f(u) (inverse element).

Riordan group has many applications. The three applications of Ri-
ordan group are provided by Euler’s problem of the King walks, binomial
and inverse identities and a Bessel-Neumann expansion in [21]. Further-
more, Cheon et al. [0] presented a generalization of Lucas polynomial
sequence by using the Riordan array which is obtained from weighted
Delannoy numbers.

This study is structured as follows:

In Section 2, we introduce the d-Oresme polynomials. These poly-
nomials are a new generalization of the known Oresme polynomials. We
give a variety of conclusions of the d-Oresme polynomials including the
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generating function, the Binet-like formula, some combinatorial identi-
ties and summation formulas. We describe the matrix Oy, and show
that the power of Oy generates the d-Oresme polynomials. In Section 3,
we define the infinite d-Oresme polynomials matrix, which is a Riordan
matrix. Then, we obtain two factorizations of the infinite Pascal matrix
including d-Oresme polynomials.

2 d-Oresme Polynomials

In this section, we introduce a new generalization of Oresme polynomi-
als.
Definition 2.1. Let d € Z" and gi(x) be a real polynomial for k =

1,2,...,d + 1. Then, d-Oresme polynomials Ogld)(x) are defined by the
recurrence relation

0\%,(z) = 1 (2)0? (z) + g2(2)OL 1 () + - + qar1 (2)OP y(z), n>1  (2.1)
with initial conditions O% () =0 for n <0 and Ogd) (z) = L.

x
Throughout this paper, we adopt the notations Ogd) and ¢ instead
of O (x) and gx(x) in (2.1), respectively. In Table 1, we give a few

terms of d-Oresme polynomials.

Table 1: Some values of d-Oresme polynomials.

n Oﬁbd)
2 o
xr
5 @+ @
3 xr
4 q7 +2q1q2 + g3
q4+3q2q +§q +q2 +
5 1 1492 143 T 45 T 44
54 4¢3 3¢% 3 L2+ 2 2
6 q7 + 49792 + 397q93 + 39195 + 29194 + 29293 + g5

Xz

In (2.1), if we take g1 = 1, g2 = —% and gy =0fork =3,4,...,d+1,
(d)

so we derive Oy’ = Op(x). Therefore, d-Oresme polynomials are a
generalization of the classical Oresme polynomials.
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By (2.1), for d-Oresme polynomials, the characteristic equation is
given by

d+1

wt — quw? — - — ggq = 0. (2.2)

Theorem 2.2. Let n > d. Then we get

w" = Ofﬂdﬂwd + (QQOr(ﬁd +oeet qcl+107(zd—)2d+1) w’!

d d -
+ <Q3O§L—)d Tt Qd+107(1—)2d+2> w'?
d
4. +Qd+1O£L_)d- (2.3)
Proof. To prove the theorem, we employ mathematical induction on n.
For n = 1, it is clear that the equation (2.3) is true. Assume that the
equation (2.3) satisfies for n = j. We will show that the equation (2.3)

is true for n = j 4+ 1. From (2.1) and the characteristic equation (2.2),
we obtain

wl Tl
= ww
= Oﬁ)dﬂ (fhwd +-+ Qd+1) + (Q2Oﬁ)d +-+ Qd+10§@2d+1) w?
+ (ngj(.i)d 4ot qd+10§?2d+2) w4+ Qd+10§i)dv
(0O a0 ) 0
+ <q20](.i)d+1 +- Qd+10]('ci)2d+2) w?!

4+ 4 (QdOg('Ci)d—i—l + qd+10](-ci)d) v+ Qd—&-le(-Ci)d—i-L

O

Theorem 2.3. The generating function for d-Oresme polynomials is
given by

w
(I - qw— qu? — - — ggwitl)’

() () —
g (w) .
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Proof. We have
g Dw) = Y o
i=0

= O+ 0w+ 0w 4. ODw™ 4. (2.4)
If we multiply the equation (2.4) by qrw,gw?, ..., qgeiw®?
tively, then we derive the following equations.

, respec-

quwg@(w) = ¢O{"w+a0\"w? + O w® + ...

g (w) = @0 w? + 0\’ + 0w + -

d d
garw gD (w) = a0 w4 ga O 4 -

If the necessary calculations are made, by the equation (2.1) we have

gD (w) <1 —qw — gu? — - — qdﬂwdH) = O(()d) + <O§d) — qu(()d)> w
and so
(d) (1) — v :
g w) (1 - quw—qw? - — ggrwith)
U

Let the set of the roots of (2.2) be {\1, A2,...,Agyr1}. That is, we
get

d+1
w _ Ci
r (1 — qw— uw? — - — qgpwttl) — 11— Aw
By Theorem 2.3, we have
00 ) d+1 0
IR S S
i=0 i=1 k=0

Hence, we can obtain the Binet-like formula of Ofmd) in the following

corollary.
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Corollary 2.4. The Binet-like formula of d-Oresme polynomials is given
by
d+1
0P => ")y (2.5)
k=1

The multinomial coefficients, in particular, enable us to provide an
explicit version of the d-Oresme polynomials.

Theorem 2.5. Forn > 0, then we have

oD 1 Jitjet -t jart g2 .. Jd+1

ntl = 1. j i) Qa+1
Tdzrddgt 1,J2y -5 Jd+1

J1+2d2++(d+1)jgp1=n

Proof. By Theorem 2.3, we obtain

— @)

>0

=0
B 1

z(1—quw— q@w?— - — gz witl)

1 & j
.t 2 d+1)

. ]ZO (Q1 + @uw* + -+ qit1

oo .

— l J g1 Jd+1

o J1sJ2 Gapr )BT G

J=0 [J1+s2++ja+1=J B Jat
witt2izt 4 (d+1)jat

_ 1 Jutge ot gavi Gio daa |
= C . q; Qg | W
v j=0 31292 ddg1 J1525 -5 Jd+1
| j1+250++(d+1)jgp1=5
O

Theorem 2.6. The sum of d-Oresme polynomials is given by

= Cz(l-q—qe— - — qap1)
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Proof. We have

S0 =0 4 0 40 4 (2.6)
1=0

Multiplying (2.6) by q1,q2,- - -, q4+1, respectively, then we have

g ZOz(d) = 0" + @O + -+ q O + -
=0
q2 Z O, = QQO(()d) + QQOgd) + -+ QQOng) + -
i=0
qd+1 Z O = 441105 + 10 + -+ g 0D + -
=0

If we take the necessary calculations, by (2.1) we can easily obtain

Zoz(d) l-a1—q@——qn) = O(()d) + (Ogd) - 910(()d))
i=0
and so
> 1
S o= .
2 Py Y
O

Nalli and Haukkanen [19] introduced the matrix
_ =) 1
Qh(x) - I: 1 O:| ’
Lee and Asci [18] defined the matrix

00 (o) — [p<1x> q(om] |

that plays the role of the Fibonacci matrix

o- ]
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Then in [20], Sadaoui and Krelifa defined the matrix

pi(z) pa(z) - Pat1()]
1 0 0
Qa=1] 0
0 01 0

Now we define the matrix Oy such that

ran 92 dd-+17
% T €T
- 0 0
€T
Oa= |0 (2.7)
-0 = 0
L x -

d
This means that the determinant of Oy is the polynomial (_1)(1#. We
X

provide matrix representation of O,Sd) in the following theorem.

Theorem 2.7. For n > 1, then we have

051621 @O + -+ Qd—&-lO?(;Qd—&-l o ganOf
o; = oy quﬁﬂl +--+ (Id-f—lOde i qd+1O§le
OSLCquLl ‘12051,{)0[ t+ot Qd+1O£LCi22d+1 e ‘Jd+107(i)d

Proof. We use induction method on n to demonstrate the theorem. Let
n=1. From (2.1) and (2.7), we get

Oéd) qu§d)+---+qd+1O§‘f)d Qd+105d)
Oy = Oﬁd) Q2O(()d)+-"+qcl+10§d,)d Qd+10(()d)

Oéi)d qu@d +o Qd+10£d_)2d e qcl+10§d_)d



d-ORESME POLYNOMIALS AND THEIR MATRIX ...

Suppose that the hypothesis is true for n = j. Namely,

O](‘Cj_)l quj(d) Lt Qd+10§i)d+1 e Qd+10§d)

Oé _ O](-d) QQO]@l +o Tt Qd+1O§C?d ‘MHOJ@I
d' . : J . . 4

OJ(-,)dH Q2Oj(<,)d +F Qd+10j(32d+1 o qd+1OJ('2d

We show that it is true for n = j + 1. Therefore we get

d d d d
0, GO 40Oy a0
0 - 00— | O w0 e raho ol
@ @ ' @ ' @
Oj7d+2 q20j7d+1 +oet qd+10j—2d+2 T qd+10j7d+1

O

For n,k > 0, we get 0305 = OZLH“. In addition, we know that the
first entry of matrix Ongk is the production of the first row in O by the
first column of ij. Hence by Theorem 2.7, we can derive the following
corollary.

Corollary 2.8. Let n,t > 0. Then we have

d
Oﬁl‘i)’t‘l’l

d d d
r o\,0{0) + 2000

n+1
40 (02,01 + 00",

n—

+01 (02,0 + 0%, 0%, + 0{00(%, )
' d d d
+qd+1 (Oy(q—)d-i-log R Oﬁzd)ot(—)d—i-l) :

Theorem 2.9. Forn > 0, then we have

g2+ Jdv\ g
o _ (Jl g
(d+1)n > L ; 102
3159255 dd41 J15025 -5 Jd+1
(d+1)j1+djg+-+igi1=n

Ja+1 ~(d)
g On—(j1+j2+~~~+jd+1)' (2.8)
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Proof. We denote the right hand side of (2.8) by U. By using Binet-like
formula in (2.5) and the characteristic equation in (2.2), for n > 2, we

find that

U

J1+Jo+ o+ Jas 1 Jo Jd+1
Z : . . qp 95 - Qd+1
1ol J15025 -+ Jd+1
(d+1)j1+dig+-+igy1=n
d+1
Z Ci)\?*(j1+j2+'“+]’d+1)
i=1
Jitga+-- +jd+1> J1 . J2 Jd+1
.. . q, 493 - q
Z < J15,725 5 Jd+1 152 dt1

J1+J25Jd+1
(d+1)j1+djo+-+jg41=n

d+1

dj1+(d—1)ja++j
E:Ci)\ijﬁ( )izt +id
i=1

Jitiet -+ jan 2\
c1 E < o . ((h)\l)
G153255dd41 J15J25 -5 Jd+1
(d+1)j1+djo+-+igq1=n

1\ J2 .
(qu\il 1) oo (gagr )
+

Jtje+ -+ it n
+Cd+1 Z ( .. . * ) (Q1)\§+1>
1092 i1 J15J25 -« 5 Jd+1

(d4+1)j1 +djg+-+igp1=n
_1\J2 .
(Q2)\g+i) o (Qagr )
n
c1 ((h)\il + Q2)\§l71 + -+ Qd+1)

d d—1 "
+ot Carr (@AG T @A+ dan
d+1

Ci)\l('CH_l)n

(d)
O(d+1)n :
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Theorem 2.10. Let n > 0. Then we have

— (n (@)
> (t) (=26241)" O(gi)n—s)

=0

Jitget+ -t i\ g
Z < +>q{1q%2

F1092ddg1 J15J25 -+ 5 Jd+1

(d+1)j1+djg++igy1=n

Ja+1\ H(d)
o <_qd'*f1 ) On—(j1+j2+"'+jd+1)' (2.9)

Proof. We denote the right hand side of (2.9) by V. Then, considering
the proof of Theorem 2.9, we obtain

Vv

n
c <Q1X11 + o+ qaA — Qd+1>

n
ot cap <¢J1>\Cdl+1 + o garas1 — Qd+1>
d+1

n
Z Ci ()\?H - QQdH)

i=1
d+1 n n (@ 1) )

S Al +1)(n—t _9 t
;lc ;0 <t> i (—2q4+1)

3 The Infinite d-Oresme Polynomials Matrix

In this section, we introduce a new infinite matrix called the infinite
d-Oresme polynomials matrix. Then, we provide two factorizations of
infinite Pascal matrix.

Definition 3.1. The infinite d-Oresme polynomials matrix is defined

13
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by
_ . )
— 0 0
X
a 1 0
2$ i
Ny = a1 + @ [0 ,
3 L 9t
47 +2q1q2 +q3 g7 +q2
X X

where (NVg); | = Oz(d) fori e Z*.

By Definition 3.1, we can express the infinite d-Oresme polynomials
matrix as

o 0 0
ol ol ¢
N [0 off
Oid) Oéd)

Then the matrix Ny is a Riordan matrix. Since the first column of Ny
is

) ) )
r T T x

T
(1 QO G+ @420+ )

by Theorem 2.3, we obtain the following corollary.

Corollary 3.2. The generating function for the first column of the ma-
triz Ny is

1
1 —quw— guw? — - — ggp1wdtl)’

gNd(w) = x(
In the matrix Ny, for n > 1 and j € ZT, we get

Na)pi1; = @ WNa)p; +a2WNa)p_1j+ -+ datt Na) g

by Definition (2.1). Hence if we take fa;,(w) = w, for the matrix Ny we
obtain the next corollary.
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Corollary 3.3. The infinite d-Oresme polynomials matriz Ny is

Na = (gn,(w), fa,(w))

1
= ,w | .
(rc (1-qw—qguw?—- — ggrwtl) )

For i,j € Z™, we define the infinite matrix Ay as

d+1 i—t—1
(Ad)l"j = xz _Qt< 1 >7
t=0 J =

where ¢ = —1. Thus we have
i T 0 0 0 i
z(1—q) x 0 0
Ag=| #(1—a—q) z(2-q) z ol (30)

r(l-q—q—q) z(3-201—q) z(3—q)

Now we give the first factorization of the infinite Pascal matrix in the
following theorem.

Theorem 3.4. Let Ny be the infinite d-Oresme polynomials matriz and
Ag be the infinite matriz as in (3.1), then we get

P = Nd * Ad,
where P is the infinite Pascal matriz as in (1.2).

Proof. From the definition of the infinite Pascal matrix, we know that

P= (1110 1ww> . (3.2)
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The generating function for the first column of the matrix Ay is

ga,(w) = z+z(l-g)wtz(l-q - g)w
tr(l—q—q@—g)w’ +--
= z(l+w+w+wl+ ) —zq (w+w +w+-)
—xqz(w2+w3+w4+---)

e agn (wd+1+wd+2+wd+3+_”>

1 qw  quw? qar 1wt
1—w 1—w 1—w 1—w
1— — 2_ ... _ d+1
= < L Gar1® ) . (3.3)
1—w

On the other hand, the generating function for the second column of the
matrix Ay is

9a, (W) fa,(w)

= sw+r2—-q)w+z3-2¢ —q@)uwd+---

= z(w+2w*+ 3w+ ) —zqw(w + 2w? + 3w + )
—zqw?(w 4 2w? + 3w + - )
_..._qu+1wd+1(w+2w2+3w3+...)

= 21— quw— guw? — - — qgrw™)(w + 2w? + 3w + )

1—qw—quw? — - — ggrwt! w
= x
1—w 1—w)/’

and so by the equation (3.3), we obtain

w

fa,(w) = . (3.4)

Then from the equations (3.3) and (3.4), we can find that

Aa = (9a,(w), fa,(w))
_ <x <1 —quw — qu?— - — Qd+1wd+1) w > (35)

1—w "1 —w

From Corollary 3.3, (3.2) and (3.5), we can derive P = Ny x Ay.
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O
For i,j € ZT, we define the infinite matrix {2 as

d+1 i1
2. . = —
@iy =edafi i),

where gy = —1. Hence we get
i T 0 0 0 i
z(1—q) x 0 0
4= *0-20-q) z(2-q) T ] (3.6)

r(1-3¢1 —3¢2—q3) 2(3—-3¢1—¢q2) z(3—q1)

Now we give the second factorization of the infinite Pascal matrix in the
following corollary.

Corollary 3.5. Let Ny be the infinite d-Oresme polynomials matriz and
24 be the infinite matriz as in (3.6), then we get

P = Qd * Nd,
where P is the infinite Pascal matriz as in (1.2).

We can easily derive the inverse of Ny in Corollary 3.3 by the defini-
tion of the reverse element for the Riordan group in the next corollary.

Corollary 3.6. The inverse for the infinite d-Oresme polynomials ma-
triz Ny 1is

Nyt = (UC <1 —qw — @u® — - — Qd+1wd+1> ,w) .

4 Conclusions

In this work, we generalize the classical Oresme polynomials , and call

these polynomials as d-Oresme polynomials Ofld). We give the generat-
ing function, Binet-like formula, combinatorial identities and summation

17
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(d)

formulas for Oy, ’. We define the new matrix Oy, whose powers gener-

ate Oﬁd). Futhermore, we introduce the infinite d-Oresme polynomials
matrix Ny, which is a Riordan matrix. To factorize the infinite Pascal
matrix P, we use the Riordan method, and therefore obtain two factor-
izations of P including the matrix Ny. Then, we present the Riordan
representation of the inverse of the matrix Nj.
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