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1 Introduction

Integral equations are an important tool for scientific expression of many
phenomena and modeling of a wide range of scientific processes and
have wide applications in various scientific fields such as mathematical
physics, economics, biology, scattering theory, mechanics and population
dynamics [12, 40, 43, 12]. Some other applications of integral equations
can be found in [46, 48, 18]. The importance of the existence of the so-
lution in such studies cannot be overstated, as many times no analytical
solution can be found for such problems. So far, many researchers have
been study in this field and have reflected the results of their research
(for example, see [10, 6]). Using fixed point theorems to check the ex-
istence of solutions in different types of integral equations is one of the
most important methods used by scientists in this field. For example, we
can refer to [2, 24, 22, 25]. Some systems are such that to model them,
familiarity with fractional integral equations is necessary. Also, in the
solution’s existence, we can refer to the works done in [31, 51, 19], and
other classes of these equations in [35, 3, 50], which all are based on the
use of fixed point theorems. Some phenomena include random param-
eters that leads to encountering stochastic integral equations [11, 47].
Such systems have more complexities and it is important to make sure
they have solution. Methods based on fixed point theorems are some
studies that researchers have done to ensure the existence of solutions
in different classes of such equations [26, 15, 44, 10]. There are equa-
tions that contain a combination of random parameters and derivative
of fractional order. Such complex equations can be found in [17, 23].
The introduction and study on the existence of the solution of fractional
functional differential equation in the Riemann-Liouville sense, using
fixed point theorems in Banach algebra is given in [4, 7, 30].

In this study, we examine the existence of the solution of following
fractional stochastic integro-differential equations (FSIDEs).

CD(y(s) + g(s,y(5))) = f(s,y(a(s))) (1)
FE(s.9(36), [ st y(0(0)ds, /0 a(s, £, y(u(t))dVV (1)),
(2)
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with the initial conditions
yD(0) =25, i=0,1,...,n—1. (3)

for s € I, = [0,a]. Here, y € C(I,,R) as the analytical solution of (1)
is unknown and all other functions are known stochastic processes de-
fined on the some probability space ({2, F, P), and W (s) is the Brownian
motion. Also, y(0) is the i-th order of derivative of continuous func-
tion x at point 0 and x;’s are constant. In addition «a, 8,y € C(I,,R),
frg€C(I, x R)R), and ky, ke € C(I, x I, x R,R) are continuous func-
tions. The development of the concept of measures of noncompactness
(M.N.C) was first done by Kuratowski [29]. Later, other researchers used
this concept in investigating the existence of different types of solutions
for the integral equations [1, 8, 14, 34, 38]. This research examines the
existence of a solution to equation (1) by applying the concept of MNC
and in this way, the Petryshyn’s fixed point theorem is used.

2 Auxiliary facts and notations

In this section we review some definitions and theorems, by stating
some auxiliary facts and notations. First, we provide some preliminary
concepts of fractional calculus. Then some basic introductions about
stochastic calculations, and in the next subsection about Petryshyn’s
fixed point theorems which depend on the concept of MNC, brief expla-
nations will be provided.

2.1 Fractional calculus

Definition 2.1. [27] The Riemann-Liouville fractional integral of order
o > 0 of a function &, is defined as

1 T
7€) = g [ - edu, >0
I'(o) Jo
Of course, to learn about the properties of the Riemann-Liouville
derivative, you can see [27]. In this article, the definition of Caputo
derivative is considered, which can better model the phenomenon and is
compatible with the initial conditions of the problems.
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Definition 2.2. [27] The Caputo derivative of fractional order o > 0
for a function £(7) is defined by

(D) = gy | =", n=1<o<n, neN.

I'n—-o

Lemma 2.3. [27] Let o > 0 andn = [o]+1. For two fractional operators
defined above, the following properties yield

(i) (I7°D7¢)(r) = &(r) —
(i) (“D7I7¢)(7) = &(7).

2.2 Stochastic calculus

Systems types have been described and evolved using differential and
integral equations since their inception, based on their applications (i.e.
economic, mechanical and social systems). These equations applied to
model phenomena that in part deal with movement. Stochastic differen-
tial equations is a new branch of mathematics that defines the character-
istics of random motion based on very broad mathematical foundations.
Mathematical models involving measuring uncertainty, are key to the so-
lution and play an important part in the branch of science and industry,
which is why scientists use stochastic differential equations as needed in
systems modeling. Stochastic equations are equations in which one, or
more terms are random processes. Therefore, the solution of stochastic
equations may also be of the type of stochastic processes that despite
the similarity to the methods of solving ordinary differential equations,
there are differences. We studied the basic concepts of this discussion
using the concept of Brownian motion.

Definition 2.4. ([28]).
Brownian motion W (s) which is the following properties is a stochas-
tic process.

(a) For 0 < s; < s2 < ... < Sy, the increments W (sy), W(sa)—W(s1),...,
W (sp) — W{(sp—1) are independent of the path.
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(b) W(s) — W(t) having mean and variance 0 and variance s — ¢, re-
spectively, has a normal distribution, as a result W (s) has normal
distribution with mean and variance 0 and variance s.

(¢c) The W(s), for s > 0 is a continuous functions.

The definition in part a, b and ¢ above, assumes the start of move-
ment from s. The condition P(W(0) = 0) = 0 standardizes Brownian
motion where it start at 0.

Before explaining the next theorem which implies the existence of a
stochastic integral, it is necessary to state the following definition.

Definition 2.5. ([25]). When for all s, Y(s) be F,-measurable, the
process Y is called adapted to the filtration F' = (Fy).

Theorem 2.6. [25] IfY be a process that satisfies the continuous adapted
condition, then the fOT Y (s)dW (s) exists.

If Brownian motion was derivable everywhere, its integral would not
be a problem, but considering that it is not derivable anywhere, therefore
the stochastic integral cannot be calculated by normal methods. The
common method for calculating the stochastic integral is to use the
integration by parts method, which converts the stochastic integral into
a computable normal or simple integral. So that for the differentiable
and bounded function ¢, we have [37]:

/ H(H)AW (1) = S(s)W (s) — / WS, 0<s<1, (1)
0 0
which is an alternative method for calculating stochastic integrals.

2.3 Petryshyn’s fixed-point theorem

Here, we employ the symbol E for Real Banach space, the symbol B,
for Closed ball with center 0 and radius r, the symbol 0B, for Sphere in
E around 0 with radius r > 0, and finally the symbol C(1,) for Space of
all continuous and real-valued functions on I, = [0, al.

We recall some definitions and theorems that are required for the sequel.
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Definition 2.7. [29] Let Y C E be a bounded set, then
a(Y)=inf{p > 0:Y can be covered by a finite number of sets with diameter < p}

is said to be the Kuratowski M.N.C.

Definition 2.8. [21] Let Y C E be a bounded set, then the Hausdorff
M.N.C. is given by

u(Y) =inf{p > 0:Y has a finite p-net in E}.

Theorem 2.9. [2]] Let Y C E be a bounded set, then the M.N.C o and

w fulfill
u(Y) < alY) < 2u(Y).

The space C0, a] is a Banach space under the norm
[yl = sup{ly(s)| : s € [0, al}.
and we shall write the modulus of continuity of a function y € C(I,) as
w(y, p) = sup{ly(s) —y(®)| : [s —t| < p}.
Since y is uniformly continuous on [0, a], we have w(y, p) — 0, as p — 0.

Theorem 2.10. [21] In Hausdorff M.N.C, for all bounded sets Y C
C10, al

u(Y) = lim sup w(y, p) (5)
Definition 2.11. [36] Let Q : E — E be a continuous map. () is said to

be a k-set contraction if for all Y C C(1,) be bounded, Q(Y') is bounded
and a(QY) < ka(Y),0 < k < 1. Moreover, @ is is said to be condensing
(densifying) map if

a(QY) < a(Y).

Note that, a k-set contraction with k € (0, 1) yields condensing (den-
sifying) but not vice versa.

Theorem 2.12 ([39], see also [15]). Suppose that Q : B, — E is a
densifying mapping that satisfies the boundary condition,

If Q(Y) = kY, for some Y in OB, then k <1, (P)

then the set of fized points of Q in B, is nonempty.
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3 Main Results

In this section, we examine the solvability of the FSIDE (1). Because of
the continuity of g and f, we apply the operator I on sides of Eq. (1).

@0 (4) .
s = 3 O 1 ©.30) 5 _ g5, y(s) /fs_tla
=0
(6)
S F(t H Hoy)(t
Y ;_gyg<2w<»ﬁ,
where (H1y)(s) = [, k1(s,t,y(0(t)))dt and (Hay)(s) = [y k2 (s, t,y(u(t)))dW (t).

The Eq. (1.1) is equivalent to the above fractlonal integral equation.

This means every solution of (6) is also a solution of (1), and vice versa.

Next, we consider the following conditions for Eq. (6):

(H1) g, f € O(I, xR,R),F € O(I, x Rx R x R, R), k1, ko € C(I x I x
R,R), and a,53,0,u : I, — I, are continuous,

(H2) There exist nonnegative constants k, c1, ca, cs, ¢4, and k < 1 such
that:

‘g(S,U) —g(S,ﬂ)| < k‘u - ﬂ’,
‘F(S,U,’U,U}) —F(S,’EL,T},w” < cl|u_a| +02‘U—77| +63’w —’LD|

(H3) (Bounded condition) There exists nonnegative r such that

Mla" Mga"
L+ A <
sup{L + A + T+ o) + F(1+0)} <o,
where
()
—mmﬂ§:y Wl vs e 1,3,

A= Sup{\g(s,u)| :Vsel,, and wu € [—rg, 10},

My = sup{|f(s,u)| : Vs € I, and wu € [—rp, 0]},

My = sup{|F(s,u,v,w)|: Vs € I, wu,€ [—7rg,10],|v| < ady,|w| < AB},
Ay =sup{lki(s,t,u)| : Vs,t € I, and u € [—rg,r0]},

B = sup{|ka(s,t,u)| : Vs,t € I,, and wu € [—rp,70]},

A =sup{|W(s)| : Vs € I}.
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Theorem 3.1. By conditions (H1)-(H3) on E = C(I,), Eq. (1) has at
least one solution.

Proof.We define the operator Q : By, — C(I,), as follows

4@ (0 (@) .
@u)(s) = 3 L Oy 4 o [ IR,

il

1 /S F(t,y(8(t)), (Hiy)(t), (Hay)(t ))d
0

(5—1)i—7 t

We will demonstrate that the operator () is continuous on the ball B, .
Take arbitrary z,y € By, and ¢ > 0 such that ||z — y|| < ¢, then for
s € 1,, we get

[(Qy)(s) — (Qz)(s)] <

o500 ~ sl s + gy [ 0= Hrtatt),

. / B ()0, Hw)((i)_tf;(i A AN ) "

< kuy 7| +ﬁ wl (0, 2))

b [ 0. (0. () - P50, ). (B

b 0. ()0 H0) — R (B0, )0 )
) -

. / £, 2(B(1), (Hra)(0) (Hap)() = F (1, 2(B(1), (Hra)(0), (Hor) )]
(s =)
< kny x| +ﬁ <f,w<a,e>>+r(f+a) ly—zl
coas? c3As?
B A (e Al

where for o > 0 we define

w(f,e) =sup{|f(t,y) — f(t,z)| : t € Lo, y,x € [-r0,70), ly — z[| < e},
W(ki75) = Sup{|ki(svt)y) - ki(57t7 l‘)| : S,t € Iavyvx € [_T07T0}7 ||y - $|| < E}7 1= 07 1.
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Since the functions f = f(¢,y) and k = k(s,t,y) are uniformly continu-
ous on [0,a] xR and [0, a] x [0, a] x R, we indicate that w(f,w(a,e)) — 0,
w(ki,e) — 0 and w(ka,e) — 0 as € — 0. Consequently, the operator @
is continuous on By, .

In the following, we prove the operator @) fulfills densifying condition in
view of u.

To do this, we take arbitrary € > 0 and assumed that x € Y C C(I,) is
a bounded set. Here for s1, 59 € I, such that s; < s while s9 — s1 < ¢,
gives:

|(Qy)(52) (Qy)( 1)

- |Zy IO o) + gy [ LY
e F(t B ()0, ()0
* r<o>/o (52— )10 a
n-l (i) (%) ) 1 Q
- YOOI o) - s [
=0 1. g 0 S1
1 [ F(ty(B(t), (Hiy)(t), (Hay)(t))
- r<a>/o (51— 1)° il

n—l () (4)
< |Zy (0)+.9 (0,90)

7!

(sh — s+ |g(s1,y(s1)) — g(s2,y(s2))]

. r(la | /Slpty ()szf_flg)l(g Oy, [ F(t,y«s(t)();;iflg)l(i,<sz><t>> "
o[ R )()Sfihf))ftl (H)()

< latoslon) - sl sen + oen o) - fon oDl

s [ e L

b [ [esPONE0, Ge) Py <“3;5*’1;1(2’“2”“”] u
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F(t,y(8(1), (Hiy)(0), (Ha) ()]
(Sg—t)l o ’

" r(la> /

For simplicity we use the following notation:

wg(ItI?E) = sup{|g(s,y) _g(gv y)| : |S - 5‘ < €, §€ Iaa Yy e [—7"0,7“0]},

and using the above relation we get:

(Qu)(s) — (Qz)(s)] < kw(y,e) + wy(la,€)

M, o o o M o
F(1+0>{51 59 + (52 — s1) }+F<1+J)(82 s1)
My o o o My o

+ F(1+U){81 s9 + (s2 — s1) }+F(1—|—J)(82 s1)

3e? M, 3e9 My
+
'l+o0) T'(1+40)

< kw(z,e) + wy(la,€) +

Taking limit as € — 0 we obtain

w(Qy,¢) < kw(y,e), yev.

Therefore,
HQY) < k(Y).

Now, we get () is a condensing mapping with constant £ < 1. It remains
to verify condition (P) of Theorem 2.12. Suppose y € 0B,,. If Qy = ky
then we have kro = k||y|| = ||Qy|| and by condition (H3) we concluded
that

nl @) (4) .
Quis)| =13 (0) + 970, 0) 5 _ o, 4(s) /fst1 )

7!
=0
1 / F(t,y(B(t)), (Hiy)(t), (Hay)(t ))
I'(o) Jo (s —t)t=e

_|_

dt‘ S To,

hence ||Qy|| < 1o, which gives £ < 1. [ The following corollary which
is the main results of Dadsetadi and et al.[13], would be obtained from
Theorem 3.1.

Corollary 3.2. [17] Suppose
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(M1) g € C(I, x R,R),f € C(I, x R,R),F € C(I, x R ,R),k €
C(I?2 x R,R) and,
w:ly — 1, are continuous,

(M2) There exist non negative constants ki, ke, c1,co, and cs so that
k1 <1 and

‘9(797("}1) _g(ﬂ,W1)‘ < k1|w1 —'Wl‘,

|F(9, w1, w2) — F(Y, w1, w2)| < c1|lwi — 1] + c2|lws — w2,

(M3) 3 60 > 0 such that

Mia® Msa®
L+A <5
sup{L + +F(1+ )+F(1+0)}_ N

where,

(z
—sup{fzx @ Xo)ﬁ’] for all 9 € 1,},

A= sup{]g(ﬁ,w1)| VO €l,, and wy € [—do,d0]},

My = sup{|f(¥,w1)| : VI € I, and wi € [—do, 0]},

My = sup{|F(9,w1,ws)| : VO € I, w1 € [—dp, o], |w2| < aB},
B = sup{|k(V,l,w1)|: VU, 0 € 1,, and wi € [—do, 0]}

Then

9
Cpn (yw) n gw,ym) — F(.y(9) + F(ﬂ,yw» / kw,em(y(uw)))de), del,
(7)
with the initial conditions
yD0) =y, i=0,1,...,n—1. (8)

has at least a solution in I,.
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Proof. It is clear that Eq. (7) is a particular case of Eq. (1). Here
a(9) = B(0) = o(9) = 9, k(D, £, y(u(€))) = K9, O/ H (y(u(£)).

By employing Riemann-Liouville fractional integrating and Lemma 2.3,
Eq. (7) changes into

=l ) (0 »
v(s) = 3 R — g0 + s [ e
L (L y(0), (Hy)(©)
o) /0 w_pre 0

The proof is connected to the Theorem 3.1 and we can drop these parts.
O

Remark 3.3. The above Corollary is the main result of [13], which was
proved here using Petryshyn’s theorem simpler and with fewer condi-
tions, and this is the advantage of using Petryshyn’s theorem.

4 Examples

Here, we provide examples to confirm the efficiency and check the va-
lidity of the results.

Example 4.1. Consider following stochastic integral equation C[0, 1]:

cos(s et A
DV (y(s) + \/%x(s ) = 10+ 52 Sin(l—lks) + y(1 - )V's 9)

352y(82) 6_8 /S ]' (1 ! ln(l + ‘y(€)|)d£)dt
5+552 6+58 0 1+53 0 \/4+€+t
1 s 67351‘/ )

*s /0 2+ 52 +1n(L + 1) sin(y(t)) AW (®),

yD(0) =y, i =0,1. (10)
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Equation (9) is a particular form of Eq. (1) such that:

cos(s)
_onls) ),
V64 +s

e~ 1 (1 —8)y/s
oy Mt

oc=125 m=2 a=1,9(sy(s) =

f(s,y(a(s))) =

F( ) 352y n e’ n 1
S = v —w
) s T s B

o In(1 + [y(©))
o= [ e )

s e—3st )
w = /0 st 1) sin(y(t))dW (t).

It can be seen that

1 _
‘g(S,U)—g(S,’U/” §§|U—U‘
and
o _ o1 _
(s, 0,0,w) = F(s, 8,5,0)] < S~ + Lo — 7]+ Sho — ]
Herek:%<1,cl 5,62 %03
(H2

So, the conditions (H1) and
and yo = 0,41 = 1, we have

9
+ <o+ (=

9,1 . 1 1.m 1 (8 Lrg A
8 8" I(225)°'10 7

for all s € 1.

Therefor (H3)’ holds if, 2 + iro + . 25)( L)+ F(2125) (30 4 L(mo 4
1)+ {5) <ro.

This shows that rop = 0.25629\ + 3.95014 is a solution of the above

13
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inequality. The result is followed from Theorem 3.1. Therefor, assump-
tions (H1)-(H3) be fulfilled and Theorem 3.1 indicates the solution of
(9) in C10, 1].

Example 4.2. Consider following stochastic integral equation C[0, 1]:

n s cos(s)y(s? T
¢ pos (y(s) N 2+ 1(221_:‘3‘)%( )D) _ %e—s + w + ;sin(\/gy(\/g))
(11)

s [V G [ e g

st cos(sy(v/1))
aw (t
+3+32/0 2412+ 5s ®),

y(0) = yo = 0. (12)
Here

2+ In(1 + [y(s)])

oc=05m=a=19(s,y(s)) = (25 1 3)2 ;

COS( S 83
Flo.plals)) = o= 4 2R,

1 7r 52 e’
F(s,u,v,w) = Sln(\/>u)+2(1+s2) 3+82w,

v—/ \/i‘?’;e ! /51+|y T y(€))de)dt

B st cos(sy(v/1))
w= /0 Sre+ss O

It can be seen that we have

and

1
|F(s,u,v,w) — F(s,u,0,0)| < -—Ju—u|+ 5]1} — 0|+ z|w — w|.
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So, we can choose k = 9 <l,e1 = ‘1/;, 1 ,C3 = 1

So, the conditions (H1) and (H2) hold. Moreover for llyl| < ro,70 >0
we have

(5)1 = 19(0) + 900, 0) — g, / e
L [ o0, (s
T /0 (s — )3 il
2 1 1 7 1 1 1 1 1
Sg"i‘(g)<5+4>+F(g)<9+4(1+r0+5)+6/\>, vVt € 1,.

Therefor (H3) holds if |z(t)| < ro. This shows that ro = 2‘(\}1“{)3 2/t 1IESA
The result is followed from Theorem 3.1.

5 Conclusion and Perspective

In this work, Theorem 2.12 and the M.N.C. idea were used to analyze
the of solutions some nonlinear functional FSIDEs in the Banach algebra
C(1,). The superiority of Theorem 2.12 compared to other similar fixed
point theorems (such as Darbo and Schauder) is that here the condition
that involved operator maps a closed convex subset onto itself is not
needed. Thus by applying weaker conditions, the method is extended
and includes a larger range.
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