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1 Introduction

In the realm of shift invariant systems on frames, various authors, in-
cluding de Boor et al. [1], Ron and Shen [8], and Cacazza and Lammers
[1], have extensively utilized the bracket product defined as

[f, g](x) =
∑

α∈2πZn

f(x+ α)g(x+ α),

on L2(Rn). Interestingly, this emerges as a special instance of the
inner product on a Hilbert C∗-module, a concept effectively employed by
Rieffel [4] and others in advancing results in harmonic analysis on non-
commutative groups. In our paper [9], we introduce the (ϕ, p)-bracket
product for a locally compact Abelian group G with a lattice L, defined
by

Γg : Lp(G) → L1(G/ϕ(L)),

such that

f 7→ Γg(f) = [f, g]ϕ,p,

where

[f, g]ϕ,p(x) =
∑
k∈L

fgp−1(xϕ(k−1)).

Let us outline the structure of the paper. In Section 2, we revisit es-
sential definitions and fundamentals concerning the quotient space G/H,
where H denotes a closed subgroup of a locally compact group G. Sec-
tion 3 introduces the definition of the (p,H)-bracket product for Lp(G)
and explores some of its fundamental properties. In Section 4, we delve
into the study of (p,H)-factorable operators and establish a form of the
Riesz Representation Theorem for the (p,H)-bracket product. While
our focus has been on closed subgroups in this paper, it’s worth noting
that the validity of the (p,H)-bracket product can be verified for any
desired subgroup.
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2 Preliminaries and Notations

Let G be a locally compact group and H be a closed subgroup of G
with the Haar measures dx and dh, respectively. Consider G/H as a
homogeneous space in which G acts from the left, and let µ be a Radon
measure on G. For x in G and a Borel subset E of G/H, the translation
µx of µ is defined by µx(E) = µ(xE). Then µ is said to be G-invariant if
µx = µ, for all x ∈ G. Moreover, the measure µ is called strongly quasi
invariant if there is a continuous function λ : G × G/H → (0,∞) such
that dµx(ẏ) = λx(ẏ)dµ(ẏ) for all x ∈ G and ẏ = yH ∈ G/H, where λx

is defined by λx(ẏ) = λ(x, ẏ).
A ρ-function for the pair (G,H) is a continuous function ρ : G →

(0,∞) such that

ρ(xξ) =
∆H(g)

∆G(ξ)
ρ(x), (x ∈ G, ξ ∈ H). (1)

By [4, Proposition 2.54] for any locally compact group G and any
closed subgroup H, the pair (G,H) admits a rho-function. Assume that
dx, dẋ, dh, dµ(ẋ) are chosen such that∫

G
f(x)dx =

∫
G/H

∫
H
f(xh)dhdµ(ẋ), (f ∈ L1(G)). (2)

This equality is known as Weil’s type of formula (for details see [4]).
Suppose again that ρ is a continuous, strictly positive function on G

satisfying (1). It is well known that

λx(j) =
dµ

dµ
(j) =

ρ(xy)

ρ(y)
, (x, y ∈ G). (3)

Also, for a relatively invariant measure on G/H which arises for a
rho-function ρ, we have

ρ(xy) =
ρ(x)ρ(y)

ρ(e)
, (x, y ∈ G). (4)

The group G acts on G/H by the action Λ : G × G/H → G/H
defined by

Λy(ẋ) = y−1x, (y ∈ G), (5)
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which are homeomorphisms on G/H. The measure dµ(ẋ) on G/H de-
fined by (2) has the property∫

G/H
F (ẋ)dµ(ẋ) =

∫
G/H

F (λy(ẋ))dµ(ẋ), (x ∈ G,F ∈ L1(G/H)),

where λy and Λy are given by (3) and (5), respectively.

3 (p, H)-Bracket Product and Its Basic Prop-
erties

For 1 < p < ∞, (Lp(G), ∥·∥p) stands for the Banach space of equivalence
classes of Haar-measurable complex-valued functions on G whose pth

powers are integrable.
Let q be the conjugate exponent to p. Let f, g be in Lp(G), it is clear

that |g|p−1 in Lq(G). So f |g|p−1 in L1(G) and hence by Weil’s formula,
we get∫

G/H

∣∣∣∣∫
H

g|g|p−1(xh)

ρ(xh)
dh

∣∣∣∣ dµ(ẋ) = ∫
G
|f | |g|p−1(x)dx ≤ ∥f∥p∥g∥p−1

p .

Thus for almost all x in G, the integral
∫
H

f |g|p−1(xh)
ρ(xh) dh is absolutely

convergent.
Therefore, each function g ∈ Lp(G) induces a bounded linear map

Γg : Lp(G) → L1(G/H),

Let
f 7→ Γg(f) = [f, g]p,H

with ∥Γg∥ = ∥g∥−1
p′ , where

[f, g]p,H(x) :=

∫
H

g |g|p′−1(xh)

ρ(xh)
dh.

Note that Γg(f) = [f, g]p,H is a periodic function on H. Indeed, for
f, g ∈ Lp(G) we have

[f, g]p,H(xξ) =

∫
H

g |g|p′−1(xξh)

ρ(xξh)
dh
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=

∫
H

g |g|p′−1(xh)

ρ(xh)
dh

= [f, g]p,H(x),

for all ξ ∈ H. So one may consider the (p,H)-bracket product as a
mapping [·, ·]p,H : Lp(G) × Lp′(G) → L1(G/H) that for f, g ∈ Lp(G) is
defined by

rg(f)(ẋ) =

∫
H

g |g|p′−1(xh)

ρ(xh)
dh,

for all ẋ ∈ G/H. Consequently, one may define the (p,H)-norm as
follows,

∥f∥p,H : Lp(G) → Lp(G/H),

f 7→ ∥f∥p,H = (Γ|f |(|f |))1/p,

which is an isometry, ∥||f |||p,H = ∥f∥p. Indeed, by Weil’s Formula for
f ∈ Lp(G), 1 < p < ∞ we have,

|||f |||pp,H =

∫
G/H

∥f∥pp,H(ẋ)dẋ

=

∫
G/H

Γ|f |(|f |)(ẋ)dẋ

=

∫
G/H

∫
H

|f |p−1(xh)

ρ(xh)
dhdẋ

=

∫
G

|f |p(xh)
ρ(xh)

dhdẋ

=

∫
G
|f |p(x)dx

= ∥f∥pp.

The basic properties of [·, ·]p,H , ∥ · ∥p,H are gathered in the next
proposition and the proof is similar to [proposition 2.7, 9] the proof for
which has been omitted.

Proposition 3.1. Let H be a closed subgroup of a locally compact group
G, let 1 < p < ∞ and q the conjugate exponent to p. Then for every
f, g ∈ Lp(G), c ∈ C:
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(i) [f + h, g]p,H(ẋ) = [f, g]p,H(ẋ) + [h, g]p,H(ẋ).

(ii) [cf, g]p,H(ẋ) = c[f, g]p,H(ẋ) = [f, cp
′−1g]p,H(ẋ).

(iii) ∥f∥p,H = 0 ⇐⇒ f = 0 a.e.

(iv) ∥cf∥p,H = |c|∥f∥p,H .

(v) ∥f∥p−1
p,H = ∥|f |p−1∥q,H .

(vi) ∥f∥p,H∥g∥p′,H ≥ |[f, g]p,H(ẋ)| (Hölder’s inequality).

(vii) ∥f + g∥p,H(ẋ) ≤ ∥f∥p,H(ẋ) + ∥g∥p,H(ẋ) (triangle inequality).

(viii)
∫
G/H [f, g]p,H(ẋ)dẋ ≤ ⟨f, gp′−1⟩Lp,Lq , where ⟨·, ·⟩Lp,Lq stands for the
duality of Lp and Lq.

(ix) [f, g]p,H(ẋ) = [gp
′−1, fp−1]q,H(ẋ).

Remark 3.2. The (p,H)-bracket product is linear in the first compo-
nent, but it is not linear in the second component.

Remark 3.3. Note that Proposition 3.1 shows that [·, ·]p,H is a type
of semi-inner product on Lp(G). More precisely, for any coset ẋ in
G/H, [·, ·]p,H(ẋ) is a semi-inner product. For more details on semi-
inner product see [3].

Recall that the definition of left translation operator Ly : Lp(G) →
Lp(G) is defined by Ly(f)(x) = f(y−1x). Further, we also define Ly :
L1(G/H) → L1(G/H) by LyΓg(f) = Γg(f)(y

−1x), for any ẋ in G/H.

Proposition 3.4. Let y in G and Ly be the left translation operator.
For f, g in Lp(G), we have∫

G/H
ΓgLyf(ẋ)dµ(ẋ) =

∫
G/H

ΓL−1
y gf(ẋ)dµ(ẋ).

where µ is the Radon measure on G/H satisfying the Weil’s formula
(2). Moreover, when µ is the relatively invariant measure which arises
from a rho-homomorphism function ρ, we have:

(i) Ly(Γgf) =
ρ(y)
ρ(e)ΓLyg(Lyf),
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(ii) Ly[f, Ly−1g]p,H = ρ(y)
ρ(e) [Lyf, g]p,H ,

(iii) ∥Lyf∥pp,H = ρ(e)
ρ(y)∥Lyf∥pp,H .

Proof. For f, g in Lp(G), we have,

∫
G/H

ΓgLyf(ẋ)dµ(ẋ) =

∫
G/H

∫
H

Lyf |g|p−1(xh)

ρ(xh)
dhdµ(ẋ)

=

∫
G
Lyf |g|p−1(x)dx

=

∫
G
f(y−1x)|g|p−1(x)dx

=

∫
G
f(x)|g|p−1(yx)dx

=

∫
G
f(x)Ly−1g|g|p−1(x)dx

=

∫
G/H

∫
H

fLy−1gp−1(xh)

ρ(xh)
dhdµ(ẋ)

=

∫
G/H

ΓLy−1gf(ẋ)dµ(ẋ).

Now using (2.4), we get,

Ly(Γgf)(ẋ) = Γgf(y
−1ẋ)

=

∫
H

f |g|p−1(y−1xh)

ρ(y−1xh)
dh

=

∫
H

f(y−1xh)|g|p−1(y−1xh)

ρ(y−1)ρ(xh)
dh

=
ρ(y)

ρ(e)
ΓLyg(Lyf)(ẋ).

So the proof (i) is completed. By (i), the proof of (ii) is obvious. For
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(iii), we have,

∥Lyf∥p,H(ẋ) = [Lyf, Lyf ]p,H (ẋ)

=
ρ(e)

ρ(y)
∥f∥p,H(ẋ)

=
ρ(e)

ρ(y)
∥Lyf∥p,H(ẋ).

□

Corollary 3.5. With the assumption as in Proposition 3.2, if G/H
possesses a G-invariant measure, including when G is abelian, we have:

(i) LyΓgf = ΓLyg(Lyf),

(ii) Ly[f, Ly−1g]p,H = [Lyf, g]p,H ,

(iii) ∥Lyf∥p,H = ∥Lyf∥p,H .

Now we consider the set of all H-periodic functions in L∞(G),

B∞(G) = {k ∈ L∞(G); k(xh) = k(x), for all h ∈ H}.

It is easy to show that B∞(G) is a subspace of L∞(G). In the following
proposition, we mention some more properties of B∞(G).

Proposition 3.6. Let f, g ∈ Lp(G), 1 < p, q < ∞ and q is the conjugate
exponent of p. Then for all k ∈ B∞(G) we have,

(i) Γg(fk) = k(Γgf),

(ii) Γgf = kp−1Γgf.

In particular, if k satisfies k(ẋ) ̸= 0 a.e., then Γgf = 0 if and only if
Γg(fk) = 0.

Proof. By the definition of the (p,H)-bracket product, the proof is
immediate. □

Definition 3.7. Let f ∈ Lp(G), g ∈ Lq(G) where 1/p + 1/q = 1
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and 1 < p, q < ∞. For E ⊆ Lp(G), the H-orthogonal complement of E
is

E⊥,H = {g ∈ Lq(G); Γgf = 0 a.e.µ for all f ∈ E}
= {g ∈ Lq(G); ⟨f, gp−1⟩p,Lp,H = 0 a.e.µ for all f ∈ E}.

The following proposition declares the space E⊥,H .

Proposition 3.8. For E ⊆ Lp(G), we have E⊥,H = ∩k∈B∞(G)(kE)⊥,H .

Proof. For g ∈ E⊥,H , k ∈ B∞(G) and f ∈ E, by Proposition 3.6, we
have

⟨fk, gp−1⟩p,Lp,H =

∫
G
(fk)(g)(x)dx

=

∫
G/H

∫
H

fkg(xh)

ρ(xh)
dhdµ(ẋ)

=

∫
G/H

Γgp−1(fk)(ẋ)dµ(ẋ)

=

∫
G/H

k(ẋ)(Γgp−1f)(ẋ)dµ(ẋ)

= 0.

Hence g ∈ ∩k∈B∞(G)(kE)⊥,H . Now let g ∈ ∩k∈B∞(G)(kE)⊥,H and f ∈ E.
For n ∈ N, define kn(ẋ) = (Γgp−1f)(ẋ), when |(Γgp−1f)(ẋ)| ≤ n, and
kn(ẋ) = 0 otherwise. Then kn ∈ B∞(G). So we have

0 =

∫
G/H

kn|gp−1f |(ẋ)dµ(ẋ)

=

∫
G/H

|kn|p−1(ẋ)(Γgp−1f)(ẋ)dµ(ẋ)

=

∫
G/H

|kn|p(ẋ)dµ(ẋ).

Therefore |kn(ẋ)| = 0, for almost all ẋ. Hence Γgp−1f(ẋ) = 0 a.e., that
is g ∈ E⊥,H . □
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4 (p,H)-Factorable Operator on Lp(G)

Let G be a locally compact abelian (LCA) group and H be a closed
subgroup of G. In this section, (p,H)-factorable operators are defined.
Moreover, the relation between (p,H)-factorable operators and (p,H)-
bracket product is indicated. Finally, a type of Riesz Representation
theorem for Lp(G) with the (p,H)-bracket product is given.

Let G be a (LCA) group, then G/H admits a G-invariant measure
which we denote by dx. We shall denote the dual group of G by Ĝ. Let
the Fourier transform

ˆ: L1(G) → C0(Ĝ), f 7→ f̂ ,

be defined by

f̂(ξ) =

∫
G
f(x)ξ(x)dx for ξ ∈ Ĝ.

It is It is well known that if f ∈ Lp(G) (1 ≤ p ≤ 2), then f̂ in Lq(Ĝ)
satisfies ∥f̂∥q ≤ ∥f∥p, where q and p are conjugate exponents (see [4,
Theorem 4.27]).

Definition 4.1. Let G be a LCA group and H be a closed subgroup
of G. An operator U : Lp(G) → Lp(E) that 1 < r, p < ∞ is called
(p,H)-factorable if U(kf) = kU(f), for all f ∈ Lp(G) and all H-periodic
k ∈ L∞(G), where E = G/H.

Note that for g ∈ Lp(G), 1 < p < ∞, Proposition 3.6(i) shows that
[·, g]p,H is (p,H)-factorable.

In the following, some properties of the (p,H)-factorable operators
are investigated, whose proofs are almost the same as the ones when H
is a lattice in G, (see [Lemma 3.2, 3.3, 9]), so we omit the proofs.

Lemma 4.2. Let U1, U2 : Lp(G) → L1(G/H) be two (p,H)-factorable
operators. Then U1 = U2 if and only if∫

G/H
U1(f)(ẋ)dẋ =

∫
G/H

U2(f)(ẋ)dẋ,

for every f ∈ Lp(G).
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To demonstrate the lemma, it’s worth noting that if k ∈ L∞(G) and
f ∈ Lp(G), then kf ∈ L1(G). Thus, we can utilize Weil’s formula.

Lemma 4.3. Let k ∈ B∞(G) and f ∈ Lp(G) where 1 < p < ∞.
Then ∫

G
|kpf(x)|dx =

∫
G/H

|k(ẋ)|p∥f∥pp,H(ẋ)dẋ,

for ẋ ∈ G/H.

Proposition 4.4. Let U be a (p,H)-factorable linear operator from
Lp(G) to Lp(G/H), 1 < p < ∞. Then U is bounded if and only if there
is a constant B > 0 (B = ∥U∥) so that for every f ∈ Lp(G) we have,

|U(f)(ẋ)| ≤ B∥f∥p,H(ẋ), for a.e. ẋ ∈ G/H.

Proof. Let k ∈ B∞(G) and f ∈ Lp(G). By Lemma 4.3,∫
G/H

|k(ẋ)|p|U(f)(ẋ)|pdẋ =

∫
G
|U(kf)(x)|pdx

≤ ∥U(kf)∥pLp(G)

≤ ∥U∥p∥kf∥pLp(G)

= ∥U∥p
∫
G/H

|k(ẋ)|p∥f∥pp,H(ẋ)dẋ.

Therefore,
|U(f)(ẋ)| ≤ B∥f∥p,H(ẋ).

It follows immediately that |U(f)(ẋ)|p ≤ ∥U∥p∥f∥pp,H(ẋ), a.e. for
ẋ ∈ G/H.

Conversely, let f ∈ Lp(G), we have,

∥U(f)∥pp =
∫
G/H

|U(f)(ẋ)|pdẋ

≤
∫
G/H

Bp∥f∥pp,H(ẋ)dẋ

= Bp

∫
G/H

∥f∥pp,H(ẋ)dẋ

= Bp∥f∥pp.
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So, the proof is completed. □

Corollary 4.5. If U : Lp(G) → Lp(G/H) (1 < p < ∞) is a (p,H)-
factorable linear operator, then U is bounded if and only if there is a
constant B > 0 (B = ∥U∥) so that for every f ∈ Lp(G),

∥U(f)∥p,H(ẋ) ≤ B∥f∥p,H(ẋ).

Theorems 4.6 and 4.7 serve as the main theorems in this section,
representing certain types of Riesz representation theorem for the (p,H)-
bracket product in Lp(G).

Theorem 4.6. The operator U : Lp(G) → L1(G/H) is a bounded
(p,H)-factorable if and only if there exists g ∈ Lq(G) such that U(f) =
[f, g]p,H a.e. for all f ∈ Lp(G) in which 1 < p < ∞, 1/p + 1/q = 1.
Moreover, ∥U∥ = ∥g∥q.
Proof. Let U : Lp(G) → L1(G/H) for 1 < p < ∞ be a bounded
(p,H)-factorable operator. Define the linear functional Ψ : Lp(G) → C
by Ψ(f) =

∫
G/H U(f)(ẋ)dẋ.

The isometrically isomorphic of (Lp(G))∗ ∼= Lq(G) implies that there
exists g ∈ Lq(G) such that Ψ(f) =

∫
G fg(x)dx for all f ∈ Lp(G). Thus

∫
G/H

U(f)(ẋ)dẋ = Ψ(f) =

∫
G
fg(x)dx =

∫
G/H

(Γgp−1f)(ẋ)dẋ.

By Proposition 4.4, U(f) = Γgp−1f a.e. for all f ∈ Lp(G). Moreover,
for any f ∈ Lp(G),

∥U(f)∥L1(G/H) = ∥Γgp−1f∥L1(G/H)

= ∥fg∥1
≤ ∥f∥p∥g∥q.
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So ∥U∥ ≤ ∥g∥q. Now letting f = |gp−1|, hence

∥U(|gp−1|)∥L1(G/H) =

∫
G/H

|U(|gp−1|)(ẋ)|dẋ

=

∫
G/H

|Γgp−1 |gp−1|(ẋ)|dẋ

=

∫
G/H

||gp−1|, |gp−1|⟩p,H(ẋ)dẋ

=

∫
G/H

|g|qp,H(ẋ)dẋ

= ∥g∥qq.

Thus

∥g∥qq = ∥U(|gp−1|)∥L1 ≤ ∥U∥∥g∥q−1
q ,

i.e., ∥g∥q ≤ ∥U∥. For the converse, according to boundedness of g, U is
bounded.

Moreover, for every H-periodic k ∈ L∞(G) and f ∈ Lp(G),

U(kf)(ẋ) = Γgp−1(kf)(ẋ) = k(Γgp−1f)(ẋ) = kU(f)(ẋ),

where ẋ ∈ G/H. Therefore the proof is complete. □

Note that for p = 2, Theorem 4.6 is the Theorem 5.25 in [5]. We say
f ∈ Lp(G) is (p,H)-bounded if there existsM > 0 such that ∥f∥p,H ≤ M
a.e. ẋ ∈ G/H.
In the next Theorem we assume that H is also a co-compact subgroup
of G.

Theorem 4.7. A linear operator U : Lp(G) → Lp(G/H) (1 < p < ∞)
is a bounded (p,H)-factorable if and only if there exists (p,H)-bounded
g ∈ Lq(G) such that U(f) = Γgp−1f a.e. (ẋ ∈ G/H) for all f ∈ Lp(G).
Moreover,

∥U∥ = ess supẋ∈G/H ∥g∥q,H(ẋ),

where 1
p + 1

q = 1.
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Proof. Let U be a bounded (p,H)-factorable operator from Lp(G) →
Lp(G/H). Since G/H is compact, Lp(G/H) ⊆ L1(G/H) and so by
Theorem 4.6, there exists g ∈ Lq(G) such that U(f) = Γgp−1,Hf , a.e.
(ẋ ∈ G/H), for all f ∈ Lp(G).

Letting f = gq−1, by Proposition 4.4 we get

|Γgp−1 |g|q−1(ẋ)| = |U(|gq−1|)(ẋ)|

≤ ∥U∥|gq−1|p,H(ẋ),

for ẋ ∈ G/H. Hence |gq−1|p,H ≤ ∥U∥ a.e. Thus ∥g∥q,H ≤ ∥U∥ a.e.

For the converse, let g be a (p,H)-bounded function and U(f) =
Γgp−1f a.e. ẋ ∈ G/H for some g ∈ Lq(G). Then U is (p,H)-factorable.
Now by the assumption that g is (p,H)-bounded and by Theorem 4.6,
we have

∥U(f)∥pp =
∫
G/H

|Γgp−1f |p(ẋ)dẋ

≤
∫
G/H

∥f∥pp,H(ẋ)∥g∥pq,H(ẋ)dẋ

≤ esssupẋ∈G/H ∥g∥pq,H(ẋ)

∫
G/H

∥f∥pp,H(ẋ)dẋ

= esssupẋ∈G/H ∥g∥pq,H(ẋ)∥f∥pp.

Thus, U is bounded. Now by replacing f = gq−1 in the above, we
get

∥U∥ = esssupẋ∈G/H ∥g∥q,H(ẋ).

This result makes the proof complete. □
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