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Abstract. In this paper, we introduce several regularity properties
for the locally Lipschitz C(T )-valued functions which are defined on a
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1 Introduction

In this paper, we study the regularity property for locally Lipschitz
C(T )-valued functions f : H → C(T ) where H is a Hilbert space and
C(T ) denotes the set of real-valued continuous functions on a (not nec-
essarily compact) metric space T . Note that the C(T )-valued function
φ : H → C(T ) is said to be locally Lipschitz if for all t ∈ T the function
φ(·)(t) : H → R is locally Lipschitz, i.e., for each x0 ∈ H, we can find a
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neighborhood Ux0 of x0 and a positive constant number L
Ux0

> 0 such
that

|φ(x)(t) − φ(y)(t)| ≤ L
Ux0

∥x− y∥H , ∀x, y ∈ Ux0 , ∀t ∈ T,

where ∥ · ∥H denotes the norm of H. Note that if T is a compact space,
C(T ) becomes a Banach space, and the above inequality is equivalent
to

∥φ(x) − φ(y)∥
C(T )

≤ L
Ux0

∥x− y∥H , ∀x, y ∈ Ux0 ,

in which ∥ · ∥
C(T )

denotes the norm of C(T ), defined as

∥ϑ∥
C(T )

:= max
{
ϑ(t) | t ∈ T

}
, ∀ϑ ∈ C(T ).

Given a locally Lipschitz C(T )-valued functions φ : H → C(T ), we
consider the following subset of H,

S :=
{
x ∈ H | φ(x)(t) ≤ 0

}
.

Note that, if T is a compact space, S can be written as

S =
{
x ∈ H | ∥φ(x)∥ ≤ 0

C(T )

}
,

where 0
C(T )

denotes the zero vector of C(T ). According to

S =
⋂
t∈T

{x ∈ H | φ(x)(t) ≤ 0} =
⋂
t∈T

φ−1
(
(−∞, 0]

)
(t),

and regarding the closedness of level sets of real-valued continuous func-
tions, we conclude that S is an intersection of closed sets, and conse-
quently is itself closed (Here, φ−1(·)(t) denotes the inverse relation of
φ(·)(t)). In what follows we shall assume that S ̸= ∅.

If a locally Lipschitz C(T )-valued function φ : H → C(T ) and a
vector x̂ ∈ S are given, the following condition, which is named Basic

constraint qualification, is very important in many theoretical and
applied problems (see, e.g., [1,12,14]):

NF (S, x̂) ⊆ cone

( ⋃
t∈T (x̂)

∂cφ(x̂)(t)

)
,



REGULARITY PROPERTIES FOR LOCALLY LIPSCHITZ
C(T)-VALUED FUNCTIONS ON HILBERT SPACES 3

where the Fréchet normal cone of S at x̂ is denoted by NF (S, x̂), the
Clarke subdifferential of function φ(·)(t) at x̂ is denoted by ∂cφ(x̂)(t),
and T (x̂) is defined as T (x̂) := {t ∈ T | φ(x̂)(t) = 0}.

As a result, finding conditions from which Basic constraint qualifi-
cation can be concluded are of great importance. Any property that
is a sufficient condition for the Basic constraint qualification is called a
regularity property.

It should be noted that if T is a finite set, C(T ) can be considered
the same as R|T |, and then the C(T )-valued functions f : H → C(T )
are reduced to the vector-valued functions f : H → R|T |. The regularity
properties of this special type of C(T )-valued functions can be seen in
[2,5,11]. Also, if H = Rn and T is a compact space, then the the C(T )-
valued function f : Rn → C(T ) is said to be semi-infinite function. The
regularity properties of semi-infinite functions are studied in [7] for linear
case, in [4] for differentiable case, in [3,10] for convex case, and in [6,8,9]
for locally Lipschitz case. Recently, it have been studied in [12,14] the
cases where H is a Banach space and T is a compact space.

Since in this article we do not consider any of the limitations of the
above papers (even compactness of T ), then the results of this article
can be considered as a generalization of all the above papers. To the
best of our knowledge, this paper is the first to investigate the regularity
properties for the locally Lipschitz C(T )-valued functions.

The rest of the paper unfolds as follows: Section 2 is devoted to
preliminaries, and Section focuses on the defining of some regularity
properties of the locally Lipschitz C(T )-valued functions and their rela-
tionships.

2 Preliminaries

In this section, we overview some notations and preliminary results from
[1,2,13] that will be used throughout this paper.

For a non-empty subset B of the Hilbert space H, its polar and its
strictely polar sets are respectively defined as

B⊙ := {x ∈ H | ⟨x, y⟩ ≤ 0, ∀y ∈ B},
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B⊖ := {x ∈ H | ⟨x, y⟩ < 0, ∀y ∈ B},

where, ⟨·, ·⟩ denotes the inner-product of H. With convention ∅⊙ =
∅⊖ = H, it is easy to see that M⊙ is a weakly closed convex cone for
each M ⊆ H, and if M1 and M2 are two subsets of H and M1 ⊆ M2,
then M⊙

2 ⊆ M⊙
1 and M⊖

2 ⊆ M⊖
1 . Also, if Λ is an arbitrary index set

and Mα is a subset of H for each α ∈ Λ, then( ⋃
α∈Λ

Mα

)⊙
=

⋂
α∈Λ

M⊙
α and

( ⋃
α∈Λ

Mα

)⊖
=

⋂
α∈Λ

M⊖
α .

For a given M ⊆ H, the weakly closure of M , the convex hull of M ,
and the convex cone of M are denoted by M

w
, conv(M), and cone(M),

respectively. The weakly closure of the convex hull of M (resp. the
convex cone of M) is denoted by convw(M) (resp. conew(M)), i.e.,

convw(M) := conv(M)
w

and conew(M) := cone(M)
w
.

It is easy to see ([2]) that M⊙ is always a weakly closed convex cone in
H, and

M⊙ =
(
M

w)⊙
=

(
conv(M)

)⊙
=

(
cone(M)

)⊙
=

(
convw(M)

)⊙
=

(
conew(M)

)⊙
.

Also, we can see [13] that if M⊖ ̸= ∅, then M⊙ = M⊖w
.

Theorem 2.1. (Bipolar)[2,13] Let M ⊆ H be given. Then,

M⊙⊙ :=
(
M⊙)⊙ = conew(M).

Theorem 2.2. [13] Let M ⊂ H be a weakly compact set. Then, cone(M)
is a weakly closed cone if 0H /∈ conv(M), where 0H denotes the null
vector of H.

Suppose that I is an arbitrary index set and Ci ⊆ H is a nonempty
convex set for each i ∈ I. If C :=

⋃
i∈I Ci, then ([13])

conv(C) =
{∑

i∈I∗

βici | βi ≥ 0,
∑
i∈I∗

βi = 1, ci ∈ Ci, I∗ ⊆ I, |I∗| <∞
}
.

(1)
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Assume that M ⊆ H and x0 ∈M
w

are given. The feasible directions
cone, the Bouligand tangent cone, and the attainable directions cone of
M at x0 are respectively defined by

ΓF (M,x0) :=
{
v ∈ H | ∃δ > 0 : x0 + εv ∈M, ∀ε ∈ (0, δ)

}
,

ΓB(M,x0) :=
{
v ∈ H | ∃rn ↓ 0, ∃vn → v : x0 + rnvn ∈M, ∀n ∈ N

}
,

ΓA(M,x0) :=
{
v ∈ H | ∀rn ↓ 0, ∃vn → v : x0 + rnvn ∈M, ∀n ∈ N

}
.

Also, the Fréchet normal cone of M at x0 is defined as polar cone of
ΓB(M,x0), i.e.,

NF (M,x0) :=
(
ΓB(M,x0)

)⊙
.

We can see ([13]) that ΓB(M,x0) and ΓA(M,x0) are always weakly
closed (not necessarily convex) cones in H, and

ΓF (M,x0)
w ⊆ ΓA(M,x0) ⊆ ΓB(M,x0) ⊆ convw

(
ΓB(M,x0)

)
. (2)

It is worth mentioning that if M is a convex subset of H, the above
inclusions increase to equality and

(
NF (M,x0)

)⊙
= ΓB(M,x0).

Let f : H → R be a locally Lipschitz function, and x0 ∈ H. The
Clarke subdifferential of f at x0 is defined as

∂cf(x0) := {ξ ∈ H | f c(x0; v) ≥ ⟨ξ, v⟩, ∀v ∈ H},

where f c(x0; v) denotes the Clarke generalized directional derivative of
f at x0 in the direction v ∈ H,

f c(x0; v) = lim sup
y→x0 r↓0

f(y + rv) − f(y)

r
.

It should be note from [1] that if g : H → R is continuously differentiable
at x0, then ∂cg(x0) = {▽g(x0)}, where ▽g(x0) denotes the standard
gradient of g at x0. Moreover, it can be shown ([1]) that if h : H → R
is a convex function, then ∂ch(x0) = ∂h(x0) and hc(x0; v) = h′(x0; v),
where ∂h(x0) and h′(x0; v) denote the convex subdifferential of h at x0
and the standard directional derivative of h at x0 in the direction v, are
respectively defined as ([13])

∂h(x0) := {ξ ∈ H | h(x) − h(x0) ≥ ⟨ξ, x− x0⟩, ∀x ∈ H},
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h′(x0; v) = lim
r↓0

h(x0 + rv) − h(x0)

r
.

Consequently, the sentences expressed in terms of ∂c are generalizations
of sentence that are expressed with gradient for C1 functions and with
convex subdufferential of convex functions.

The locally Lipschitz function f : H → R is said to be regular at
x0 ∈ H when f ′(x0; v) exists for all v ∈ H, and f c(x0; v) = f ′(x0; v).
The function f is said to be regular if it is regular at each x0 ∈ H.
The continuously differentiable functions and the convex functions are
examples for regular functions; see, e.g., [1].

Moreover, it can be shown that if φ is a locally Lipschitz function,
∂cφ(x0) is a nonempty, convex and compact set. Also, φ◦(x; v) is a
convex function with respect to v.

As the final point of this section, in the following theorem we sum-
marize some important properties of the Clarke directional derivative
and the Clarke subdifferential from [1] which are widely used in what
follows.

Theorem 2.3. If f1 and f2 are locally Lipschitz functions from H to R
and x0 is a point in H, then

• ∂cf1(x0) is a nonempty convex weakly compact subset of H.

• one has ∂c(f1 + f2)(x0) ⊆ ∂cf1(x0) + ∂cf2(x0). Moreover, the above
inclusion increses to equality if f1 and f2 are regular at x0.

• we have ∂c(λf1)(x0) = λ∂cf1(x0), ∀λ ∈ R. Moreover, if f1 is
regular at x0 and λ ≥ 0, then λf1 is regular at x0.

• one has f c(x0; v) = max{⟨ξ, v⟩ | ξ ∈ ∂cf(x0)}.

• the function v 7→ f c(x0; v) is convex on H, and

α
(
f c(x0; ·)

)
(0H) = ∂cf(x0).

3 Main Results

As the starting point of this section, we put

 L(x̂) :=
⋃

t∈T (x̂)

∂cφ(x̂)(t),
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where ∂cφ(x̂)(t) denotes the Clarke subdifferential of the function φ(·)(t)
at x̂ ∈ H, i.e.,

∂cφ(x̂)(t) := ∂c

(
φ(·)(t)

)
(x̂), ∀t ∈ T.

Also, let the Clarke directional derivative of the function φ(·)(t) at x̂ in
the direction d ∈ H be denoted by φc(x̂; d)(t), i.e.,

φc(x̂; d)(t) :=
(
φ(·)(t)

)c
(x̂; d), ∀t ∈ T.

Set

φ(x) := sup
t∈T

φ(x)(t), ∀x ∈ S.

Note that if T is finite, then φ is locally Lipschitz and by [1, Proposition
2.3.12] we have

∂cφ(x̂) ⊆ conv
(
 L(x̂)

)
, ∀x̂ ∈ S. (3)

In general, (3) does not hold if T is infinite (see [1,Theorem 2.8.2]), and
we are thus led to the following definition.

Definition 3.1. We say that the Pshenichnyi-Levin-Valadire property
(PLVP, briefly) is satisfied for φ : H → C(T ) at x̂ ∈ S, if φ is Lipschitz
around x̂ and (3) holds.

Note that the above definition is in agreement with [3] for convex
C(T )-valued functions.

Remark 3.2. An interesting sufficient condition ensuring the Lips-
chitzian property of φ around x̂ can be found in [1].

The following theorem characterizes the Basic constraint qualifica-
tion for the locally Lipschitz C(T )-valued functions.

Theorem 3.3. Suppose that the locally Lipschitz C(T )-valued function
φ : H → C(T ) and x̂ ∈ S are given.

(i): If the Basic constraint qualification holds at x̂, then

 L⊙(x̂) ⊆ conew
(
ΓB(S, x̂)

)
, where  L⊙(x̂) :=

(
 L(x̂)

)⊙
.
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(ii): If  L⊙(x̂) ⊆ conew
(
ΓB(S, x̂)

)
and cone

(
 L(x̂)

)
is a weakly closed set

in H, then the Basic constraint qualification holds at x̂.

Proof.
(i) If the Basic constraint qualification holds at x̂, i.e.,
NF (S, x̂) ⊆ cone

(
 L(x̂)

)
, then(

 L(x̂)
)⊙

=
(
cone

(
 L(x̂)

))⊙
⊆

(
NF (S, x̂)

)⊙
=

(
ΓB(S, x̂)

)⊙⊙
.

This inclusion and Theorem 2.1 imply that(
 L(x̂)

)⊙ ⊆ conew
(
ΓB(S, x̂)

)
, as required.
(ii) Assume that  L⊙(x̂) ⊆ conew

(
ΓB(S, x̂)

)
and cone

(
 L(x̂)

)
is a weakly

closed set in H. The definition of Fréchet normal cone and Theorem 2.1
conclude that

NF (S, x̂) =
(
ΓB(S, x̂)

)⊙
=

(
conew

(
ΓB(S, x̂)

))⊙
⊆

(
 L(x̂)

)⊙⊙

= conew
(
 L(x̂)

)
= cone

(
 L(x̂)

)
. □

The above theorem leads us to the some parts of the following defi-
nition, which introduces some regularity properties for locally Lipschitz
C(T )-valued functions.

Definition 3.4. Let φ : H → C(T ) be a given locally Lipschitz C(T )-
valued function and x̂ ∈ S. We say that φ satisfies

(a): the Abadie regularity property (ARP briefly) at x̂ if

 L⊙(x̂) ⊆ ΓB(S, x̂).

(b): the Guignard regularity property (GRP briefly) at x̂ if

 L⊙(x̂) ⊆ convw
(
ΓB(S, x̂)

)
.

(c): the Zangwill regularity property (ZRP briefly) at x̂ if

 L⊙(x̂) ⊆ ΓF (S, x̂)
w
.



REGULARITY PROPERTIES FOR LOCALLY LIPSCHITZ
C(T)-VALUED FUNCTIONS ON HILBERT SPACES 9

(d): the Tucker regularity property (TRP briefly) at x̂ if

 L⊙(x̂) ⊆ ΓA(P, x̄).

(e): the Kuhn-Tucker regularity property (KTRP briefly) at x̂ if

{d ∈ H | φc(x̂; d) ≤ 0} ⊆ ΓA(S, x̂).

(f): the Cottle regularity property (CRP briefly) at x̂ if  L⊖(x̂) ̸= ∅,
where  L⊖(x̂) :=

(
 L(x̂)

)⊖
.

It should be noted that the ARP, GRP, ZRP, TRP, and KTRP, which
are based on the concepts of Bouligand, feasible directions, and attain-
able directions tangent cones, are named geometric regularity properties,
and the CRP, which is not based on any tangent cone, is an algebraic
regularity property.

The following theorem shows that if the C(T )-valued function is
regular at x̂, then the GRP is equivalent to the equation

 L⊙(x̂) = convw
(
ΓB(S, x̂)

)
.

Theorem 3.5. Suppose that the locally Lipschitz C(T )-valued function
φ : H → C(T ) are given. If the function φ(·)(t) is regular at x̂ ∈ S for
all t ∈ T (x̂), then

convw
(
ΓB(S, x̂)

)
⊆  L⊙(x̂).

Proof. Suppose that d ∈ ΓB(S, x̂) is given arbitrarily. Then, we can
find some sequences rk ↓ 0 and dkΓd such that x̂+ rkdk ∈ S, and so

φ(x̂+ rkdk)(t) ≤ 0, ∀t ∈ T.

Let t0 ∈ T (x̂) be given. Thus, φ(x̂)(t0) = 0, and so

φ(x̂+ rkdk)(t0) − φ(x̂+ rkd)(t0)

rk
+
φ(x̂+ rkd)(t0) − φ(x̂)(t0)

rk
=

φ(x̂+ rkdk)(t0) − φ(x̂)(t0)

rk
=
φ(x̂+ rkdk)(t0)

rk
≤ 0. (4)
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If the Lipschitz constant of φ(·)(t) near to x̂ is denoted by Lt, for suffi-
ciently small rk we have∣∣∣∣φ(x̂+ rkdk)(t0) − φ(x̂+ rkd)(t0)

rk

∣∣∣∣ ≤ Lt0∥dk − d∥γ0 (when rkγ0).

Taking into consideration the regularity of φ(·)(t0) at x̂, (4) , and the
definition of directional derivative we conclude

φc(x̂; d)(t0) = φ′(x̂; d)(t0) = lim
rkγ0

φ(x̂+ rkd)(t0) − φ(x̂)(t0)

rk
=

lim
rkγ0

φ(x̂+ rkdk)(t0) − φ(x̂+ rkd)(t0)

rk
+ lim

rkγ0

φ(x̂+ rkd)(t0) − φ(x̂)

rk
≤ 0.

Hence, with regard to Theorem 2.3 , for each ξ∗ ∈ ∂cφ(x̂)(t0) we have

⟨ξ∗, d⟩ ≤ max
{
⟨ξ, d⟩ | ξ ∈ ∂cφ(x̂)(t0)

}
= φc(x̂; d)(t0) ≤ 0,

and so d ∈
(
∂cφ(x̂)(t0)

)⊙
. Since t0 is an arbitrary index in T (x̂), then

d ∈
⋂

t∈T (x̂)

(
∂cφ(x̂)(t)

)⊙
=

( ⋃
t∈T (x̂)

∂cφ(x̂)(t)

)⊙
=  L⊙(x̂).

The above inclusion and the arbitrary nature of the member d in ΓB(S, x̂)
imply that

ΓB(S, x̂) ⊆  L⊙(x̂).

Owing to the convexity and weakly closedness of  L⊙(x̂), we have

convw
(
ΓB(S, x̂)

)
⊆ convw

(
 L⊙(x̂)

)
=  L⊙(x̂),

and the proof is complete. □
Observe that, there is no relation of implication between the defined

regularity properties in Definition 3.4 and the PLVP. Indeed, for any
finite T the PLVP is trivially true, but it may not satisfy each of the
regularity properties; while in the following example the C(T )-valued
function actually satisfies all the regularity properties at x̂ = 0, but the
PLVP does not hold at this point.
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Example 3.6. Let T = N ∪ {0}, H = R, x̂ = 0, and∣∣∣∣∣∣∣∣∣∣
φ(x)(0) = 2x,

φ(x)(2k + 1) = x− 1
k+1 , k = 0, 1, 2, ...,

φ(x)(2k) = 3x− 1
k , k = 1, 2, ....

It is easy to see that

S = ΓF (S, x̂)
w

= ΓA(S, x̂) = ΓB(S, x̂) = (−∞, 0],

T (x̂) = {0}, conv
(
 L(x̂)

)
=  L(x̂) = ∂cφ(x̂)(0) = {2},

 L⊙(x̂) = (−∞, 0],  L⊖(x̂) = (−∞, 0),

φ(x) = sup
t∈N

{φ(x)(0), φ(x)(t)} =

{
x, if x < 0,
3x, if x ≥ 0,

φ′(x̂; d) =


−1, if d < 0,
0, if d = 0,
3, if d > 0

, ∂φ(x̂) = [1, 3].

Therefore, PLVP is not satisfied for φ at x̂ but CRP, GRP, ARP, ZRP,
TRP, and KTRP are satisfied at x̂.

The relationships between the defined geometric regularity proper-
ties are given in the following theorem.

Theorem 3.7. Assume that the locally Lipschitz C(T )-valued function
φ : H → C(T ) and x̂ ∈ S are given.

(i): The following implications hold at x̂:

ZRP =⇒ TRP =⇒ ARP =⇒ GRP.

(ii): If KTRP and PLVP are satisfied at x̂, then TRP holds at x̂.
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Proof.
(i) The result is immediately concluded from(2).

(ii) According to Theorem 2.3, we have

d∗ ∈ {d ∈ H | φc(x̂; d) ≤ 0}
⇐⇒ φc(x̂; d∗) ≤ 0
⇐⇒ max

{
⟨ξ, d∗⟩ | ξ ∈ ∂cφ(x̂)

}
≤ 0

⇐⇒ ⟨ξ, d∗⟩ ≤ 0, ∀ξ ∈ ∂cφ(x̂)

⇐⇒ d∗ ∈ (∂cφ(x̂))⊙ .

Thus,

{d ∈ H | φc(x̂; d) ≤ 0} = (∂cφ(x̂))⊙ .

This inclusion and the PLVP assumption imply that

 L⊙(x̂) =
(
conv

(
 L(x̂)

))⊙
⊆

(
∂cφ(x̂)

)⊙
=

{
d ∈ H | φc(x̂; d) ≤ 0

}
,

which, together with KTRP, yields

 L⊙(x̂) ⊆
{
d ∈ H | φc(x̂; d) ≤ 0

}
⊆ ΓA(S, x̂),

as required. □

The following example shows that the GRP is strictly weaker than
other introduced geometric regularity properties.

Example 3.8. Let T = N, H = R2, x̂ = (0, 0), and for all x = (x1, x2) ∈
R2 the function φ(x)(t) be defined as

φ(x)(t) =


−x1, if t = 1,
−x2, if t = 2,

x1x2 −
1

t
if t ∈ {3, 4, ...}.
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It is easy to see that

S =
(
{0} × [0,+∞)

)
∪
(

[0,+∞) × {0}
)
,

T (x̂) = {1, 2},
 L(x̂) =

{
(−1, 0), (0,−1)

}
,

 L⊙(x̂) = [0,+∞) × [0,+∞),

 L⊖(x̂) = (0,+∞) × (0,+∞),

ΓA(S, x̂) = ΓF (S, x̂)
w

= ΓB(S, x̂) = S,

convw
(
ΓB(S, x̂)

)
= [0,+∞) × [0,+∞).

Thus, φ satisfies the GRP at x̂, but does not satisfy the ARP, ZRP,
TRP, and KTRP at this point.

The following theorems presents the relashionship between the al-
gebraic regularity property CRP and the geometric regularity property
ZRP.

Theorem 3.9. Suppose that the locally Lipschitz C(T )-valued function
φ : H → C(T ) satisfies PLVP at x̂. Then, the CRP implies the ZRP at
x̂.

Proof. Let d ∈  L⊖(x̂). If ξ ∈ conv
(
 L(x̂)

)
is arbirarily given, (1) implies

that there exist some real numbers α1, . . . , αm in [0, 1] and some vectores
ξ1, . . . , ξm in  L(x̂) such that

ξ =
m∑
i=1

αiξi,
m∑
i=1

αi = 1.

Thus,

⟨d, ξ⟩ =
〈
d,

m∑
i=1

αiξi

〉
=

m∑
i=1

αi

<0︷ ︸︸ ︷
⟨d, ξi⟩ < 0,

and so d ∈
(
conv

(
 L(x̂)

))⊖
. This inclusion and the PLVP assumption

at x̂ conclude that d ∈
(
∂cφ(x̂)

)⊖
. So

φc(x̂; d) = max
{
⟨ξ, d⟩ | ξ ∈ ∂cφ(x̂)

}
< 0.
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Consequently, there exists a scalar δ > 0 such that

φ(x̂+ εd) − φ(x̂) < 0, ∀ ε ∈ (0, δ),

and so

φ(x̂+ εd) < φ(x̂) ≤ 0, ∀ ε ∈ (0, δ).

The above inequality and the definition of φ deduce that

φ(x̂+ εd)(t) ≤ φ(x̂+ εd) < 0, ∀ε ∈ (0, δ), ∀t ∈ T.

Therefore, for all ε ∈ (0, δ) we have x̂+ εd ∈ S, which implies
d ∈ ΓF (S, x̂). Thus, we have proved  L⊖(x̂) ⊆ ΓF (S, x̂), and hence

 L⊙(x̂) =  L⊖(x̂)
w
⊆ ΓF (S, x̂)

w
,

and the proof is complete. □
Mutivating by (3), we introduce the following algebraic regularity

property.

Definition 3.10. We say that the locally Lipschitz C(T )-valued func-
tion φ : H → C(T ) satisfies the Slater regularity property (SRP), if

� for all t ∈ T , the function φ(·)(t) : H → R is convex,

� T is a compact metric space,

� φ is a continuous function in H,

� there is a vector x0 ∈ H, named Slater point, such that φ(x0)(t) <
0 for all t ∈ T .

Theorem 3.11. Suppose that the locally Lipschitz C(T )-valued function
φ : H → C(T ) satisfies the SRP and x̂ ∈ S are given. Then,

(i) φ satisfies the CRP at x̂.

(ii)  L(x̂) is a weakly compact set and the PLVP is satisfied for φ at x̂.

(iii) cone
(

 L(x̂)
)

is a weakly closed cone in H.
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Proof.
(i) By the definition of SRP, there is an x0 such that

φ(x0)(t) < 0, for all t ∈ T.

Let t0 ∈ T (x̂) and ξt0 ∈ ∂φ(x̂)(t0). Then, the definition of convex
subdifferential implies than

⟨ξt0 , x0 − x̂⟩ ≤
<0︷ ︸︸ ︷

φ(x0)(t0)−
=0︷ ︸︸ ︷

φ(x̂)(t0) < 0.

This inequality implies that x0− x̂ ∈
(
∂φ(x̂)(t0)

)⊖
, and since t0 ∈ T (x̂)

was chosen arbitrarily, we get

x0 − x̂ ∈
⋂

t∈T (x̂)

(
∂φ(x̂)(t)

)⊖
=

( ⋃
t∈T (x̂)

∂φ(x̂)(t)

)⊖
=  L⊖(x̂).

This means that  L⊖(x̂) ̸= ∅, as required.
(ii) It is Ioffe-Tikhomirov Theorem [13, Theorem 2.4.18]
(iii) If d ∈  L⊖(x̂), by the proof of Theorem 3.9 we have

d ∈
(
conv

(
 L(x̂)

))⊖
. (5)

We claim that

0H /∈ conv
(
 L(x̂)

)
.

Otherwise, we have
(
conv

(
 L(x̂)

))⊖
= ∅, which contradits (5). Thus,

the above claim is true. Therefore, the weakly compactness of  L(x̂) and
Theorem 2.2 conclude the result. □

Theorem 3.12. Suppose that the locally Lipschitz C(T )-valued function
φ : H → C(T ) is given. If the CRP and PLVP are satisfied at x̂ ∈ S,
then KTRP holds at x̂.

Proof. If d∗ ∈  L⊖(x̂), then d∗ ∈
(
conv

(
 L(x̂)

))⊖
by proof of Theorem

3.9. Thus, the PLVP assumption at x̂ implies that d∗ ∈
(
∂cψ(x̂)

)⊖
,
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which concludes that ⟨ξ, d∗⟩ < 0 for all ξ ∈ ∂cψ(x̂). From this and
Theorem 2.3 we obtain that φc(x̂; d∗) < 0, and so{

d ∈ H | φc(x̂; d) < 0
}
̸= ∅.

If d̂ ∈
{
d ∈ H | φc(x̂; d) < 0

}
is given arbitrarily, then φc(x̂; d̂) < 0.

By the definition of Clarke directional derivative and the definition of
sup-function φ, we obtain a δ > 0 such that for all ε ∈ (0, δ) one has

φ(x̂+ εd̂)(t) ≤ φ(x̂+ εd̂) < φ(x̂) ≤ 0, ∀t ∈ T.

Thus, x̂+εd̂ ∈ S for all ε ∈ (0, δ), which yiels d̂ ∈ ΓF (S, x̂). In summary,
we have shown that

{d ∈ H | φc(x̂; d) < 0} ⊆ ΓF (S, x̂).

This inclusion together with the continuity of φc(x̂; ·) implies that

{d ∈ H | φc(x̂; d) ≤ 0} = {d ∈ H | φc(x̂; d) < 0}w ⊆ ΓF (S, x̂)
w ⊆ ΓA(S, x̂),

and the result is proved. □
The following corollary collects Theorems3.7, 3.9, 3.11, and 3.12 in

one diagram.

Corollary 3.13. Suppose that the locally Lipschitz C(T )-valued function
φ : H → C(T ) is given. Then, the implications of the following diagram
hold true at each x̂ ∈ S:

SRP
⇓

[CRP ∧ PLVP] =⇒ [KTRP ∧ PLVP]
⇓ ⇓

ZRP =⇒ TRP =⇒ ARP =⇒ GRP

Example 3.14. Considering Example 3.6, we have cone
(
 L(x̂)

)
= [0,+∞).

So, the converse of the following implications are not true, even when
cone

(
 L(x̂)

)
is weakly closed:

[KTRP ∧ PLVP] =⇒ TRP and [CRP ∧ PLVP] =⇒ ZRP.

This example, also, shows that the compactness condition of T is neces-
sary in the following implication

SRP =⇒ [CRP ∧ PLVP].



REGULARITY PROPERTIES FOR LOCALLY LIPSCHITZ
C(T)-VALUED FUNCTIONS ON HILBERT SPACES 17

The following theorem shows that the Basic constraint qualification
is equivalent to NF (S, x̂) = cone

(
 L(x̂)

)
for convex C(T )-valued function.

This equlity is named “locally Farkas-Minkowski constraint qualificatin”
in [3].

Theorem 3.15. Assume that the locally Lipschitz C(T )-valued function
φ : H → C(T ) and x̂ ∈ S are given. If the real-valued function φ(·)(t) :
H → R is convex for all t ∈ T , then

cone
(

 L(x̂)
)
⊆ NF (S, x̂).

Proof. At the first, according to

S =
⋂
t∈T

{x ∈ H | φ(x)(t) ≤ 0},

and regarding the convexity of level sets of real-valued convex functions
[13, p. 41], we conclude that S is an intersection of convex sets, and
consequently is itself convex. Thus, ΓF (S, x̂)

w
= ΓB(S, x̂).

Now, suppose that ξ ∈  L(x̂) is given. Thus, ξ ∈ ∂cφ(x̂)(t0) for some
t0 ∈ T (x̂), and so φ(x̂)(t0) = 0. If d ∈ ΓF (S, x̂), then x̂ + δd ∈ S for
some δ > 0, and hence φ(x̂ + δd)(t0) ≤ 0. Hence, by the definition of
convex subdifferential we get

0 ≥ 1

δ

(
φ(x̂+ δd)(t0) − φ(x̂)(t0)

)
≥ 1

δ
⟨ξ, δd⟩ = ⟨ξ, d⟩.

Since the above inequality holds for all d ∈ ΓF (S, x̂), we have ξ ∈(
ΓF (S, x̂)

)⊙
. This inclusion and the fact that(

ΓF (S, x̂)
)⊙

=
(
ΓF (S, x̂)

w)⊙
= (ΓB(S, x̂))⊙ = NF (S, x̂),

conclude that ξ ∈ NF (S, x̂), and so

 L(x̂) ⊆ NF (S, x̂).

Taking convex cone in both sides of the above inclusion, we get

cone
(
 L(x̂)

)
⊆ cone

(
NF (S, x̂)

)
= NF (S, x̂),

and the proof is complete. □
As an immediate consequence of Theorem 3.11(ii), Corrolary 3.13,

and Theorems 2.2 and 3.15, we can obtain the following Corollary which
was proved in [3] for special case of H = Rn.
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Corollary 3.16. Suppose that the locally Lipschitz C(T )-valued function
φ : H → C(T ) is given. If the SRP holds at x̂ ∈ S, then

NF (S, x̂) = cone
(

 L(x̂)
)
.
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