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1 Introduction

This statement examines the historical importance of utilizing 3-ary op-
erations with cubic matrices pioneered by Cayley in the 19th century.
Cayley’s contributions marked a significant milestone in the exploration
of n-ary algebraic structures across various fields. N -ary algebras, par-
ticularly focusing on ternary structures, have showcased their versatility
in a wide range of applications including data processing, physics, and
Nambu mechanics for a comprehensive understanding of this matter, it
is advisable to refer to sources for information [15, 23]. In 2008, the work
of Bagger and Lambert [2] involved a detailed investigation into gauge
symmetry and the proposition of a supersymmetric theory for multiple
M2-branes. This study introduced a novel algebra incorporating ternary
operations called Bagger-Lambert algebras. This advancement further
broadened the utilization of ternary algebraic structures in contempo-
rary theoretical physics for more information see [31, 33].

In the year 1940, the notion of the stability problem was brought
to light, questioning when a function that nearly satisfies a functional
equation (FE) must be close to an exact solution of that equation. This
pioneering discussion on the stability of FEs was initiated by Ulam [36].
The subsequent year, in 1941, Hyers [11] offered a positive resolution to
Ulam’s problem, particularly for additive mappings in Banach spaces.
This marked a significant step forward in understanding the stability
of FEs. Building upon Hyers’ work, Rassias [30], in 1978, expanded
the scope by formulating a generalized Hyers-Ulam (HU) stability and
introduced a novel stability concept utilizing a control function

ε(∥u1∥i + ∥u2∥i), ε > 0, i < 1, (1)

specifically for additive mappings. Shortly thereafter, in 1994, Gǎvruta [8]
further refined this model by supplanting Rassias’s control function with
φ(u1, u2) and demonstrated its stability. Continuing this progress, in
2004, Cǎdariu and Radu [4] adopted a fixed-point approach to corrob-
orate the stability of the Cauchy additive FE, thereby contributing to
a deeper understanding and broader application of these stability con-
cepts in FEs. For those interested in diverse FEs across various spaces,
further reading and research can be found in [16, 17, 18, 24, 29, 35]. Ad-
ditional studies have delved deeper into the Hyers-Ulam-Rassias (HUR)
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stability, extending this line of inquiry to Dolinar’s results concerning
isometries, Fibonacci numbers, linear operators and optimization the-
ory [6, 9, 13, 14, 34].

In 1993, an important focus was also directed towards the stabil-
ity of linear differential equations by Obloza [25]. This pivotal work
laid the groundwork for the concept of stability in fractional differential
equations, attracting substantial attention from the research commu-
nity. Researchers have since extended the classical theories of fractional
differential equations to encapsulate the principles of HU stability, with
notable explorations in works referenced by [5, 7, 10, 32]. Moreover, the
overarching theory of fractional calculus has itself seen significant expan-
sions and developments, ensuring stability within the realm of fractional
differential equations [3, 19, 20, 22, 37, 38]. One of the applications of
HU stability is modeling, such as a fractional optimal control model for
COVID-19 and diabetes co-dynamics, demonstrating the positivity and
boundedness of solutions using Laplace transform techniques [26].

In the year 2008, an innovative approach to ternary algebras (TAs)
was presented by the authors in [1], with a specific emphasis on ternary
Banach algebras (TBAs) and their significance in the realms of physics
and quantum mechanics. The framework of a TA A is delineated through
a ternary product (u1, u2, u3) → [u1, u2, u3], mapping from A3 to A.
This algebra, regarded as a complex vector space, exhibits a product
that is C-linear in the outer variables, conjugate linear in the middle
variable, and, crucially, associative by nature. It adheres to specific cri-
teria, such as ∥[u1, u2, u3]∥ ≤ ∥u1∥ · ∥u2∥ · ∥u3∥ and the condition that
∥[u, u, u]∥ = ∥u∥3. Encompassing the properties of a Banach space, a
TA A is recognized within the discipline as a TBAs. Most recently, the
groundbreaking work by Park et al. [28] unveiled the concept of hom-
derivations within BAs. After that, in a significant development, Jahedi
and Keshavarz [12] delved into the realm of ternary hom-derivations for
additive and quadratic mappings in 2022.

In the following, we expand upon this exploration, a comprehensive
and refined generalization of the Jensen ρ-functional (where ρ ̸= 0,±1
denotes a complex number) and ternary hom-derivations between TBAs
is introduced in the subsequent discussions.
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The continuation of the work is as follows: In the Section 2, we define
the concept of the new generalized Jensen ρ-FE where ρ ̸= 0,±1 denotes
a complex number and by utilizing ternary homomorphisms and deriva-
tions, we define the new generalized ternary hom-derivations linked to
this equation within TBAs. In the Section 3, we solve the new gen-
eralized Jensen ρ-FE, demonstrating that any function satisfying this
equation belongs to a specific category known as additive mappings.
Additionally, By employing the method of fixed points, we delve into
ascertaining the HU stability properties associated with the given equa-
tion. Furthermore, we extend our analysis to cover generalized ternary
hom-derivations within the framework of TBAs. In our investigation,
we utilize control functions defined by Gǎvruta and Rassias, which are
specific types of control functions used for stability.

2 Preliminaries

First, utilizing the principles outlined by additive and Jensen mappings,
we will introduce the definition of the generalized Jensen ρ-FE.

Definition 2.1. Consider a mapping f : A → A which satisfies the
following relation:

f
(
a+b
2 + c

)
+ f

(
a+c
2 + b

)
+ f

(
b+c
2 + a

)
− 2f(a)− 2f(b)− 2f(c)

= ρ (f(a+ b+ c)− f(a)− f(b)− f(c)) , (2)

where ρ ̸= 0,±1 denotes a complex number. The aforementioned rela-
tion is referred to as the definition of the generalized Jensen ρ-FE.

Within the context of this elucidation, the framework considers A as
a pivotal TBA. Within this algebraic framework, a mapping h : A → A
called a ternary homomorphism if the mapping h map linearity over the
complex numbers C and the property,

h([a, b, c]) = [h(a), h(b), h(c)]. (3)
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Furthermore, consider a linear map denoted by d : A → A which takes
elements from A to itself. Such a map is termed a ternary derivation if
it satisfies the property

d([a, b, c]) = [d(a), b, c] + [a, d(b), c] + [a, b, d(c)]. (4)

Definition 2.2. Let the mapping h : A → A be established as a ternary
homomorphism as previously defined. We then introduce the concept
of a linear map D : A → A, which is termed a generalized ternary
hom-derivation. This designation requires the existence of a derivation
d : A → A that conforms to the aforementioned derivational property.
For D to be a generalized ternary hom-derivation, it must satisfy the
following condition:

D([a, b, c]) = [D(a), h(b), h(c)]+[h(a), d(b), h(c)]+[h(a), h(b), d(c)]. (5)

Theorem 2.3 ([21]). Consider (A, d) to be a complete generalized met-
ric space and let F : A → A be a strictly contractive mapping with a
Lipschitz constant β such that β < 1. Then, for any given element
u ∈ A, one of the following two scenarios must occur:

I) For every nonnegative integer i, the distance d(F iu, F i+1u) is in-
finite.

II) There exists a positive integer i0 such that the following conditions
hold true:

a) For all integers i ≥ i0, the distance d(F iu, F i+1u) remains
finite;

b) The sequence {F iu} converges to a fixed point v∗ of F ;

c) The point v∗ is the unique fixed point of F within the set

B =
{
v ∈ A : d(F i0u, v) <∞

}
; (6)

d) For each v ∈ B, the inequality d(v, v∗) ≤ 1
1−βd(v, Fv) is sat-

isfied.
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3 Main Results

In the stability section, we consider a TBA denoted by A. Here, λ is
situated within the confines of the unit circle T1, defined as the set of
complex numbers ζ such that |ζ| = 1. Finally, the number ρ embodies
a non-negative real value distinct from 0, 1, and −1.
To establish the main theorems, we need to introduce and utilize the
following proportions. Initially, in the upcoming proportion, we will
demonstrate the property of additivity for the mapping f .

Proposition 3.1. If a mapping f : A → A satisfies Eq. (2), then the
mapping f is additive.

Proof. Assume that the function f mapping from A to A satisfies Eq.
(2). If we substitute a = b = c = 0 into Eq. (2), we obtain f(0) = 0.
Now, by setting b = c = 0 in Eq. (2), we get:

1
2f(a) = f

(
a
2

)
. (7)

Again, putting c = 0 and replacing a by −b in Eq. (2) and using (7), we
get:

−f(a) = f(−a). (8)

In following replacing c by −b and using (7) and (8), we obtain

f
(
a−b
2

)
+ f

(
a+b
2

)
− f(a) = 0 (9)

finally, putting a = a+ b and b = a− b in (9), we have

f(a+ b) = f(a) + f(b). (10)

Hence, f is additive. □

In the proportion that follows next, we demonstrate that the newly
introduced generalized function f is indeed a C−linear mapping under
the specified conditions.

Proposition 3.2. If a mapping f : A → A fulfills Eq. (11) and t ∈ T1,
then the mapping f is C−linear, with Eq. (11) defined as:

f
(
ta+tb

2 + tc
)
+ f

(
ta+tc

2 + tb
)
+ f

(
tb+tc
2 + a

)
− 2tf(a)− 2tf(b)− 2tf(c)

= ρ (f(t(a+ b+ c))− tf(a)− tf(b)− tf(c)) . (11)
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Proof. For proof, we use proportion 3.1 to demonstrate that the func-
tion f is additive. We achieve this demonstration by substituting c = −b
into Eq. (11), resulting in the equation

f
(
ta−tb

2

)
+ f

(
ta+tb

2

)
− f(ta)− 2tf(a) = 0. (12)

Subsequently, by substituting b = a into Eq. (12), we find that f(ta) =
tf(a). By employing analogous reasoning to the demonstration in [27,
Theorem 2.1], we can infer that the function f is C−linear. □

We ascertain the stability of the generalized Jensen ρ-FE under the
HU framework is investigated using the fixed point method. Gǎvruta’s
control function, as a comprehensive control function within the HU sta-
bility context, is employed for this purpose. The integration of fixed
point theory and control functions offers a solid foundation for compre-
hending and demonstrating the stability characteristics of FEs in TBAs.

Before prove main theorem in section, suppose that ψ be mapping
from A3 into [0,∞), such that

ψ(a, b, c) ≤ L
2ψ(2a, 2b, 2c), (13)

holds for some constant 0 < L < 1. If we assign a = b = c = 0, then
ψ(0, 0, 0) = 0. By considering Eq. (13), we deduce that

lim
i→∞

2iψ
(
a
2i
, b
2i
, c
2i

)
= 0. (14)

Theorem 3.3. For a given mapping f : A → A, let there be functions
ψ : A3 → [0,∞) satisfying (13) and∥∥∥f ( ta+tb

2 + tc
)
+ f

(
ta+tc

2 + tb
)
+ f

(
tb+tc
2 + ta

)
− 2tf(a)

− 2tf(b)− 2tf(c)− ρ
(
f(t(a+ b+ c))

− tf(a)− tf(b)− tf(c)
)∥∥∥

≤ ψ(a, b, c), ∀ a, b, c ∈ A. (15)

Then, there exists a unique C−linear mapping T : A → A satisfying

∥f(a)− T (a)∥ ≤ L
1−Lψ(a, 0, 0), ∀ a ∈ A. (16)
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Proof. When substituting t with 1, and b and c with 0 in Eq. (15), the
resulting expression is obtained as:∥∥2f (a2)− f(a)

∥∥ ≤ ψ(a, 0, 0), ∀ a ∈ A. (17)

Let’s now consider the set Ψ of mappings g : A → A where g(0) = 0.
Let the function d be defined on this set Ψ in the following manner:
For any two functions g and h belonging to Ψ, we define d(g, h) as
the infimum of the set of positive values k such that the inequality
∥g(a)−h(a)∥ ≤ kψ(a, 0, 0) holds for all elements a in A. It is evident that
the pair (Ψ, d) forms a generalized metric space, following the definitions
outlined above. Now, we consider the linear mappings Λ : Ψ → Ψ such
that

Λg(a) = 2g
(
a
2

)
, ∀ a ∈ A. (18)

Suppose we are provided with g and h from Ψ such that d(g, h) = ε,
then,

∥g(a)− h(a)∥ ≤ εψ(a, 0, 0), ∀ a ∈ A. (19)

Since

∥Λg(a)− Λh(a)∥ =
∥∥2g (a2)− 2h

(
a
2

)∥∥
≤ 2εψ

(
a
2 , 0, 0

)
≤ 2εL2ψ(a, 0, 0)

= Lεψ(a, 0, 0). (20)

So, we have d(Λg,Λh) ≤ Lε. This expression implies that

d(Λg,Λh) ≤ Ld(g, h), ∀ g, h ∈ Ψ. (21)

Following the relation presented in Eq. (13), we can observe that∥∥f(a)− 1
2f(2a)

∥∥ ≤ 1
2ψ(2a, 0, 0) ≤ Lψ(a, 0, 0). (22)

We have d(f,Λf) ≤ L. Based on Theorem 2.3, it is established that a
function T : A → A exists satisfying the subsequent conditions.
1) T serves as a fixed point for Λ, ensuring the following property:

T (a) = 2T
(
a
2

)
, ∀ a ∈ A. (23)
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The function T represents a distinct fixed point for Λ. This circumstance
suggests the existence of a unique function that satisfies (23), where there
exists a k ∈ (0,∞) that meets the condition.

∥f(a)− T (a)∥ ≤ kψ(a, 0, 0), ∀a ∈ A. (24)

2) The statement d(Λif, T ) → 0 as i → ∞ suggests that the following
equality holds:

lim
i→∞

2if
(
a
2i

)
= T (a), ∀a ∈ A.

3) The inequality d(f, T ) ≤ 1
1−Ld(f,Λf) implies the following result:

∥f(a)− T (a)∥ ≤ L
1−Lψ(a, 0, 0), ∀ a ∈ A.

Subsequent to the equations denoted by (14) and (15), it can be inferred
that∥∥∥T (

a+b
2 + c

)
+ T

(
a+c
2 + b

)
+ T

(
b+c
2 + a

)
− 2T (a)− 2T (b)

− 2T (c)− ρ
(
T (a+ b+ c)− T (a)− T (b)− T (c)

)∥∥∥
= lim

i→∞
2i
∥∥∥f ( a+b

2i+1 + c
2i

)
+ f

(
a+c
2i+1 + b

2i

)
+ f

(
b+c
2i+1 + a

2i

)
− 2f

(
a
2i

)
− 2f

(
b
2i

)
− 2f

(
c
2i

)
− ρ

(
f
(
a+b+c

2i

)
− f

(
a
2i

)
− f

(
b
2i

)
− f

(
c
2i

)) ∥∥∥
≤ lim

i→∞
2iψ

(
a
2i
, b
2i
, c
2i

)
= 0. (25)

So

T
(
a+b
2 + c

)
+ T

(
a+c
2 + b

)
+ T

(
b+c
2 + a

)
− 2T (a)− 2T (b)− 2T (c)

= ρ (T (a+ b+ c)− T (a)− T (b)− T (c)) . (26)

Based on the proportion 3.2, it can be inferred that the mapping T ex-
hibits C−linearity. □

In the corollary that is to follow, our exploration will be centered
around the investigation of HU stability through the application of Ras-
sias’ control function on A.
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Corollary 3.4. Suppose r < 1, s ∈ R+ ∪ {0}, and let f : A → A be a
mapping with the conditions f(0) = 0 and∥∥∥f ( ta+tb

2 + tc
)
+ f

(
ta+tc

2 + tb
)
− f

(
tb+tc
2 + ta

)
− 2tf(a)− 2tf(b)− 2tf(c)

− ρ
(
f (t(a+ b+ c))− tf(a)− tf(b)− tf(c)

)∥∥∥
≤ s(∥a∥r + ∥b∥r + ∥c∥r), ∀ a, b, c ∈ A. (27)

Then, there exists a unique additive mapping T : A → A such that

∥f(a)− T (a)∥ ≤ 2s
2−2r ∥a∥

r, ∀ a ∈ A. (28)

Proof. The proof technique can be obtained by referring to Theorem
3.5 with the establishment of ψ(a, b, c) := s(∥a∥r + ∥b∥r + ∥c∥r) and L
being assigned as 21−r for all elements a, b, and c in A. By following
this approach, the proof methodology can be constructed and verified
within the defined framework. □

The following theorem offers a thorough and detailed explanation of
how ternary hom-derivations on A can be stable. For this work, we the
utilization of Gǎvruta’s control function approach within the context of
the fixed point theorem for HU stability on A.

Theorem 3.5. Consider a function ψ : A3 → [0,∞), where there exists
a value L < 1 such that

ψ(a, b, c) ≤ L
23
ψ(2a, 2b, 2c), (29)

where f , g, and δ : A → A are mappings that satisfy (15), and

∥g[a, b, c]− [g(a), g(b), g(c)]∥ ≤ ψ(a, b, c), (30)

∥d([a, b, c])− [d(a), b, c]− [a, d(b), c]− [a, b, d(c)]∥ ≤ ψ(a, b, c), (31)

∥f([a, b, c]) − [f(a), g(b), g(c)]− [g(a), d(b), h(c)]

−[h(a), h(b), d(c)]∥ ≤ ψ(a, b, c), (32)
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for each a, b, c ∈ A. Then there are a unique ternary homomorphism
H and ternary derivation d on A such that D : A → A is a generalized
ternary hom-derivations and for all a ∈ A,

∥g(a)−H(a)∥ ≤ L
1−Lψ(a, 0, 0), (33)

∥d(a)− δ(a)∥ ≤ L
1−Lψ(a, 0, 0), (34)

∥f(a)−D(a)∥ ≤ L
1−Lψ(a, 0, 0). (35)

Proof. Firstly, we take a = b = c = 0, then ψ(0, 0, 0) = 0 in (29). It
follows from (29) that

lim
i→∞

23iψ
(
a
2i
, b
2i
, c
2i

)
= 0. (36)

By applying the identical procedure as delineated in the proof of Theo-
rem 3.3, it is possible for us to define and establish the mappings H, δ,
and D, which are all mappings from A to A.

H(a) := lim
i→∞

2ih
(
a
2i

)
,

δ(a) := lim
i→∞

2id
(
a
2i

)
,

D(a) : = lim
i→∞

2if
(
a
2i

)
(37)

for all a ∈ A. It follows from (30), (31), (32) and (37), we have

∥H([a, b, c])− [H(a), H(b), H(c)]∥

= lim
i→∞

23i
∥∥∥h ([ a

2i
, b
2i
, c
2i

])
−
[
h
(
a
2i

)
, h

(
b
2i

)
, h

(
c
2i

)] ∥∥∥
≤ lim

i→∞
23iψ

(
a
2i
, b
2i
, c
2i

)
= 0, (38)

∥δ([a, b, c])− [δ(a), b, c]− [a, δ(b), c]− [a, b, δ(c)]∥

= lim
i→∞

23i
∥∥∥d ([ a

2i
, b
2i
, c
2i

])
−
[
d
(
a
2i

)
, b
2i
, c
2i

]
−
[
a
2i
, d

(
b
2i

)
, c
2i

]
−
[
a
2i
, b
2i
, d

(
c
2i

)] ∥∥∥
≤ lim

i→∞
23iψ

(
a
2i
, b
2i
, c
2i

)
= 0 (39)
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and

∥D([a, b, c])− [D(a), H(b), H(c)]− [H(a), δ(b), H(c)]

− [H(a), H(b), δ(c)]∥

= lim
i→∞

23i
∥∥∥f ([ a

2i
, b
2i
, c
2i

])
−
[
f
(
a
2i

)
, h

(
b
2i

)
, h

(
c
2i

)]
−
[
h
(
a
2i

)
, δ

(
b
2i

)
, h

(
c
2i

)]
−
[
h
(
a
2i

)
, h

(
b
2i

)
, δ

(
c
2i

)] ∥∥∥
≤ lim

i→∞
23iψ

(
a
2i
, b
2i
, c
2i

)
= 0. (40)

It follows that

H([a, b, c]) = [H(a), H(b), H(c)],

δ([a, b, c]) = [δ(a), b, c] + [a, δ(b), c] + [a, b, δ(c)],

D([a, b, c]) = [D(a), H(b), H(c)] + [H(a), δ(b), H(c)]

+ [H(a), H(b), δ(c)], ∀ a, b, c ∈ A. (41)

Hence the mappings H, δ : A → A and D : A → A are ternary homo-
morphism, ternary derivation and generalized ternary hom-derivations,
respectively. □

In The statement of Theorem 3.5, if we designate L = 21−r for
0 < r < 1, and define

ψ(a, b, c) := s (∥a∥r + ∥b∥r + ∥c∥r) , (42)

in the context of a, b, c ∈ A and s ∈ R+∪{0}, we reach the resulting con-
clusion following Rassias’ theorem regarding ternary hom-derivations.

Corollary 3.6. Let δ(a, b, c) = s(∥a∥r+∥b∥r+∥c∥r) where r < 1 and s ∈
R+. Suppose that the functions f, h, d : A → A satisfy Eqs. (15), (30),
(31) and (32). Then there are a unique ternary homomorphism H and
ternary derivation d on A such that D : A → A is a generalized ternary
hom-derivations and

∥h(a)−H(a)∥ ≤ 2s
2−2r ∥a∥

r,

∥d(a)− δ(a)∥ ≤ 2s
2−2r ∥a∥

r,

∥f(a)−D(a)∥ ≤ 2s
2−2r ∥a∥

r.

(43)
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In the following, considering the importance, the concept of ternary
Jordan derivations has applications in operator theory, non-associative
algebras, and quantum physics. For instance, a derivation D on ternary
system T can analyze quantum operations’ interaction with ternary
structures. We can investigate the Jordan property of generalized ternary
(Jordan) hom-derivations on TBAs. Next, we can investigate the stabil-
ity of generalized ternary (Jordan) hom-derivations by control functions
of Gǎvruta and Rassias through the theorem of Margolis and Diaz. Be-
fore commencing the stability theorem, we define the concept of gener-
alized ternary (Jordan) hom-derivations.

Definition 3.7. Assume the mapping h : A → A is a ternary homomor-
phism. We then introduce the concept of a linear map D : A → A, which
is termed a generalized ternary (Jordan) hom-derivation. This designa-
tion requires the existence of a derivation d : A → A that conforms
to the aforementioned derivational property. For D to be a generalized
ternary (Jordan) hom-derivation, it must satisfy the following condition,

D([a, a, a]) =
[
D(a), h(a), h(a)

]
+
[
h(a), d(a), h(a)

]
+
[
h(a), h(a), d(a)

]
, ∀ a ∈ A. (44)

Remark 3.8. Consider a function ψ satisfies (29) and the mappings
f, g, δ satisfying (15) and∥∥g[a, b, c]− [g(a), g(b), g(c)]

∥∥ ≤ ψ(a, b, c),∥∥d([a, a, a])− [d(a), a, a]− [a, d(a), a]− [a, a, d(a)]
∥∥

≤ ψ(a, a, a), (45)∥∥f([a, a, a])− [f(a), g(a), g(a)]− [g(a), d(a), h(a)]

− [h(a), h(a), d(a)]
∥∥ ≤ ψ(a, a, a). (46)

Then, the stability conditions analogous to those in Theorem 3.5, hold
for generalized ternary (Jordan) hom-derivations on A.

Remark 3.9. Let δ(a, a, a) = 3s(∥a∥r) where r < 1 and s ∈ R+. sup-
pose that the functions f, h, d : A → A satisfy Eqs. (15), (30), (45),
and (46). Then, the stability conditions analogous to those in Corol-
lary 3.6, hold for generalized ternary (Jordan) hom-derivations on A.
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4 Conclusions

Acknowledging the significance attributed to TBAs, generalized ternary
derivations, and their significant applications in the realm of mathe-
matical physics, our initiative primarily focused on the introduction of
the pioneering concept of generalized ternary hom-derivations within
the framework of TBAs. Through the theorem of Margolis and Diaz,
we have demonstrated the stability associated with generalized ternary
hom-derivations and the generalized Jensen ρ-FE (2) within the context
of stability within TBAs. Finally, we explored the Jordan property to
generalized ternary (Jordan) hom-derivations on A and the stability of
generalized ternary (Jordan) hom-derivations on A by control functions
of Gǎvruta and Rassias.
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