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1 Introduction

This statement examines the historical importance of utilizing 3-ary op-
erations with cubic matrices pioneered by Cayley in the 19th century.
Cayley’s contributions marked a significant milestone in the exploration
of m-ary algebraic structures across various fields. N-ary algebras, par-
ticularly focusing on ternary structures, have showcased their versatility
in a wide range of applications including data processing, physics, and
Nambu mechanics for a comprehensive understanding of this matter, it
is advisable to refer to sources for information [15, 23]. In 2008, the work
of Bagger and Lambert [2] involved a detailed investigation into gauge
symmetry and the proposition of a supersymmetric theory for multiple
M2-branes. This study introduced a novel algebra incorporating ternary
operations called Bagger-Lambert algebras. This advancement further
broadened the utilization of ternary algebraic structures in contempo-
rary theoretical physics for more information see [31, 33].

In the year 1940, the notion of the stability problem was brought
to light, questioning when a function that nearly satisfies a functional
equation (FE) must be close to an exact solution of that equation. This
pioneering discussion on the stability of FEs was initiated by Ulam [30].
The subsequent year, in 1941, Hyers [1 1] offered a positive resolution to
Ulam’s problem, particularly for additive mappings in Banach spaces.
This marked a significant step forward in understanding the stability
of FEs. Building upon Hyers’ work, Rassias [30], in 1978, expanded
the scope by formulating a generalized Hyers-Ulam (HU) stability and
introduced a novel stability concept utilizing a control function

e(flurl]” + [Juz]h),  e>0,i<1, (1)

specifically for additive mappings. Shortly thereafter, in 1994, Gavruta [8]
further refined this model by supplanting Rassias’s control function with
o(u1,u2) and demonstrated its stability. Continuing this progress, in
2004, Cadariu and Radu [1] adopted a fixed-point approach to corrob-
orate the stability of the Cauchy additive FE, thereby contributing to
a deeper understanding and broader application of these stability con-
cepts in FEs. For those interested in diverse FIEs across various spaces,
further reading and research can be found in [16, 17, 18, 24, 29, 35]. Ad-
ditional studies have delved deeper into the Hyers-Ulam-Rassias (HUR)
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stability, extending this line of inquiry to Dolinar’s results concerning
isometries, Fibonacci numbers, linear operators and optimization the-
ory [0, 9, 13, 14, 34].

In 1993, an important focus was also directed towards the stabil-
ity of linear differential equations by Obloza [25]. This pivotal work
laid the groundwork for the concept of stability in fractional differential
equations, attracting substantial attention from the research commu-
nity. Researchers have since extended the classical theories of fractional
differential equations to encapsulate the principles of HU stability, with
notable explorations in works referenced by [5, 7, 10, 32]. Moreover, the
overarching theory of fractional calculus has itself seen significant expan-
sions and developments, ensuring stability within the realm of fractional
differential equations [3, 19, 20, 22, 37, 38]. One of the applications of
HU stability is modeling, such as a fractional optimal control model for
COVID-19 and diabetes co-dynamics, demonstrating the positivity and
boundedness of solutions using Laplace transform techniques [20].

In the year 2008, an innovative approach to ternary algebras (TAs)
was presented by the authors in [1], with a specific emphasis on ternary
Banach algebras (TBAs) and their significance in the realms of physics
and quantum mechanics. The framework of a TA 2l is delineated through
a ternary product (ui,us,us3) — [ur,us,u3], mapping from A3 to 2.
This algebra, regarded as a complex vector space, exhibits a product
that is C-linear in the outer variables, conjugate linear in the middle
variable, and, crucially, associative by nature. It adheres to specific cri-
teria, such as ||[u1, ug, us]|| < ||ui]| - |Jue|| - |Jus|| and the condition that
I[u, u,u]|| = ||ul]®>. Encompassing the properties of a Banach space, a
TA 2 is recognized within the discipline as a TBAs. Most recently, the
groundbreaking work by Park et al. [28] unveiled the concept of hom-
derivations within BAs. After that, in a significant development, Jahedi
and Keshavarz [12] delved into the realm of ternary hom-derivations for
additive and quadratic mappings in 2022.

In the following, we expand upon this exploration, a comprehensive
and refined generalization of the Jensen p-functional (where p # 0, £1
denotes a complex number) and ternary hom-derivations between TBAs
is introduced in the subsequent discussions.
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The continuation of the work is as follows: In the Section 2, we define
the concept of the new generalized Jensen p-FEE where p # 0, 1 denotes
a complex number and by utilizing ternary homomorphisms and deriva-
tions, we define the new generalized ternary hom-derivations linked to
this equation within TBAs. In the Section 3, we solve the new gen-
eralized Jensen p-FE, demonstrating that any function satisfying this
equation belongs to a specific category known as additive mappings.
Additionally, By employing the method of fixed points, we delve into
ascertaining the HU stability properties associated with the given equa-
tion. Furthermore, we extend our analysis to cover generalized ternary
hom-derivations within the framework of TBAs. In our investigation,
we utilize control functions defined by Gavruta and Rassias, which are
specific types of control functions used for stability.

2 Preliminaries

First, utilizing the principles outlined by additive and Jensen mappings,
we will introduce the definition of the generalized Jensen p-FE.

Definition 2.1. Consider a mapping f : 2 — 2 which satisfies the
following relation:

P +0) + 1 (352 0) £ £ (4 )
—2f(a) —2f(b) — 2f(c)
=p(fla+b+c)— fla) = f(b) = f(c)), (2)

where p # 0, £1 denotes a complex number. The aforementioned rela-
tion is referred to as the definition of the generalized Jensen p-FE.

Within the context of this elucidation, the framework considers 2 as
a pivotal TBA. Within this algebraic framework, a mapping h : A — A
called a ternary homomorphism if the mapping A map linearity over the
complex numbers C and the property,

h([a, b, ¢]) = [h(a), h(b), h(c)]- (3)
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Furthermore, consider a linear map denoted by d : % — 2 which takes
elements from 2 to itself. Such a map is termed a ternary derivation if
it satisfies the property

d([a,b,c]) = [d(a),b,c] + [a,d(b), c] + [a, b, d(c)]. (4)

Definition 2.2. Let the mapping h : 2 — 2 be established as a ternary
homomorphism as previously defined. We then introduce the concept
of a linear map D : 2l — 2, which is termed a generalized ternary
hom-derivation. This designation requires the existence of a derivation
d : A — A that conforms to the aforementioned derivational property.
For D to be a generalized ternary hom-derivation, it must satisfy the
following condition:

D(la, b, c]) = [D(a), h(b), h(c)]+ [h(a), d(b), h(c)]+[h(a), h(b),d(c)]. (5)

Theorem 2.3 ([21]). Consider (A,d) to be a complete generalized met-
ric space and let ' : A — A be a strictly contractive mapping with a
Lipschitz constant 8 such that 8 < 1. Then, for any given element
u € A, one of the following two scenarios must occur:

I) For every nonnegative integer i, the distance d(F'u, F*1u) is in-
finite.

IT) There exists a positive integer iy such that the following conditions
hold true:

a) For all integers i > ig, the distance d(F'u, F**lu) remains
finite;

b) The sequence {F'u} converges to a fived point v* of F;

c) The point v* is the unique fized point of F within the set

B:{’UGA : d(Fiou,v)<oo}; (6)

d) For each v € B, the inequality d(v,v*) < ﬁd(v,FU) is sat-
isfied.
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3 Main Results

In the stability section, we consider a TBA denoted by 2. Here, A is
situated within the confines of the unit circle T', defined as the set of
complex numbers ¢ such that |[¢| = 1. Finally, the number p embodies
a non-negative real value distinct from 0,1, and —1.

To establish the main theorems, we need to introduce and utilize the
following proportions. Initially, in the upcoming proportion, we will
demonstrate the property of additivity for the mapping f.

Proposition 3.1. If a mapping f : A — A satisfies Eq. (2), then the
mapping f is additive.

Proof. Assume that the function f mapping from 2 to 2 satisfies Eq.
(2). If we substitute a = b= ¢ = 0 into Eq. (2), we obtain f(0) = 0.
Now, by setting b = ¢ = 0 in Eq. (2), we get:

3f@)=1(3)- (7)
Again, putting ¢ = 0 and replacing a by —b in Eq. (2) and using (7), we
get:

—fla) = f(—a). (8)
In following replacing ¢ by —b and using (7) and (8), we obtain

)+ (54) = 1(0) =0 ®

finally, putting a =a+band b=a — b in (9), we have

fla+b) = f(a)+ f(b). (10)
Hence, f is additive. O

In the proportion that follows next, we demonstrate that the newly
introduced generalized function f is indeed a C—linear mapping under
the specified conditions.

Proposition 3.2. If a mapping f : A — 2 fulfills Eq. (11) and t € T*,
then the mapping f is C—linear, with Eq. (11) defined as:
(5 1 10+ F (52 418) + (%5 +)
—2tf(a) — 2tf(b) — 2tf(c)
=p(fltla+b+c)) —tf(a) —tf(b) —tf(c)).  (11)
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Proof. For proof, we use proportion 3.1 to demonstrate that the func-

tion f is additive. We achieve this demonstration by substituting ¢ = —b
into Eq. (11), resulting in the equation
f(tas) + f (et — f(ta) — 2tf(a) = 0. (12)

Subsequently, by substituting b = a into Eq. (12), we find that f(ta) =
tf(a). By employing analogous reasoning to the demonstration in |
Theorem 2.1], we can infer that the function f is C—linear. u

We ascertain the stability of the generalized Jensen p-FE under the
HU framework is investigated using the fixed point method. Gavruta’s
control function, as a comprehensive control function within the HU sta-
bility context, is employed for this purpose. The integration of fixed
point theory and control functions offers a solid foundation for compre-
hending and demonstrating the stability characteristics of Fl&s in TBAs.

Before prove main theorem in section, suppose that 1 be mapping
from 23 into [0, 00), such that

¥(a,b,¢) < §4(2a,2b,2¢), (13)

holds for some constant 0 < L < 1. If we assign a = b = ¢ = 0, then
1(0,0,0) = 0. By considering Eq. (13), we deduce that

lim 29 (&, %, £) = 0. (14)

1—00

Theorem 3.3. For a given mapping f : A — A, let there be functions
Y A3 — [0, 00) satisfying (13) and

|7 (1252 4 te) + 7 (U5t + t0) + £ (45 + ta) — 2t/ (@)
—2tf(b) = 2tf(c) — p(f(t(a + b +0))
— tf(a) = t£(5) —£())|
<la,bc),  Va,bcel (15)

Then, there exists a unique C—linear mapping T : A — A satisfying

1f(a) = T(a)|| < t££¢(a,0,0),  Vae2A (16)
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Proof. When substituting ¢ with 1, and b and ¢ with 0 in Eq. (15), the
resulting expression is obtained as:

H2f (%) — f(a)” < (a,0,0), Vaed (17)

Let’s now consider the set U of mappings g : 2 — 2 where ¢g(0) = 0.
Let the function d be defined on this set ¥ in the following manner:
For any two functions g and h belonging to ¥, we define d(g,h) as
the infimum of the set of positive values k such that the inequality
llg(a)—h(a)| < Ekp(a,0,0) holds for all elements a in 2. It is evident that
the pair (¥, d) forms a generalized metric space, following the definitions
outlined above. Now, we consider the linear mappings A : ¥ — ¥ such
that

Ag(a) =2g (%), Vae (18)

Suppose we are provided with g and h from ¥ such that d(g,h) = ¢,
then,
lg(a) — h(a)|| < ev(a,0,0),  Vaec (19)

Since

1Ag(a) — Ah(a)ll = [|2¢ (5) —
<2 (30
= Ley(a, ) (20)

So, we have d(Ag, Ah) < Le. This expression implies that
d(Ag,Ah) < Ld(g, h), Vg,heW. (21)
Following the relation presented in Eq. (13), we can observe that
| f(a) = 5(20)|| < 5¢(2a,0,0) < Li)(a,0,0). (22)

We have d(f,Af) < L. Based on Theorem 2.3, it is established that a
function T : 2 — A exists satisfying the subsequent conditions.
1) T serves as a fixed point for A, ensuring the following property:

T(a)=2T (%), Vae A (23)
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The function T represents a distinct fixed point for A. This circumstance
suggests the existence of a unique function that satisfies (23), where there
exists a k € (0,00) that meets the condition.

|f(a) —T(a)|l < kt(a,0,0), Va € 2. (24)

2) The statement d(A’f,T) — 0 as i — oo suggests that the following
equality holds:

Zli>110102 f (%) =T(a), Va € 2.
3) The inequality d(f,T) < ﬁd(f, Af) implies the following result:
IIf(a) —T(a)l §% (a,0,0), VaeA

Subsequent to the equations denoted by (14) and (15), it can be inferred
that

|7 (252 4 ) + T (252 4+ ) + T (5 + ) — 2T(a) - 27(1)
—2T(c) — p(T(a+b+c)—T(a) — T(b) — T(c)) H
= lim 2°\[f (5% + 5) + F (535 + %)

+F (B 8) -2 (3) -2 (8) - 21 (5)

—p (P () = £ (5) = 1 (20) = 1 (57)
< lim 2%y (&, 2, &) =o0. (25)

So
T (% +c)+ T (%4 +b) + T (%< +a)
— 27(a) — 2T (b) — 27°(c)
=p(T(a+b+c)—T(a)—T(b)—T(c)). (26)

Based on the proportion 3.2, it can be inferred that the mapping 7" ex-
hibits C—linearity. ]

In the corollary that is to follow, our exploration will be centered
around the investigation of HU stability through the application of Ras-
sias’ control function on 2.
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Corollary 3.4. Suppose r < 1, s € Rt U {0}, and let f : 2 — A be a
mapping with the conditions f(0) =0 and
Hf(# +te) + f (19 +1b) — f (P + ta)
~94f(a) — 26£(b) — 24£(c)
— p(f (Ha+b+ ) — t(a) — t£(b) — t£(0))
< s(llall” + 61" + flell),  Va,beed (27)

Then, there exists a unique additive mapping T : A — A such that

If(a) = T(a)ll < Zllal”,  Vae (28)

Proof. The proof technique can be obtained by referring to Theorem
3.5 with the establishment of ¥ (a,b,c) := s(||a||” + ||b]|” + ||c||") and L
being assigned as 2!~7 for all elements a, b, and c in 2. By following
this approach, the proof methodology can be constructed and verified
within the defined framework. ]

The following theorem offers a thorough and detailed explanation of
how ternary hom-derivations on 2 can be stable. For this work, we the
utilization of Gavruta’s control function approach within the context of
the fixed point theorem for HU stability on 2.

Theorem 3.5. Consider a function 1 : A3 — [0, 00), where there exists
a value L <1 such that

¥(a,b,c) < H(2a,2b,2c), (29)

where f, g, and & : A — A are mappings that satisfy (15), and
lgla, b, c] = [g(a), g(b), g(O)]l| < ¢ (a,b,c), (30)
ld(la, b, c]) — [d(a), b, c] — [a, d(b), ] — [a, b, d(c)]]| < ¥(a,b,c), (31)

1f([a, b, ¢]) = [f(a),g(b), g(c)] = [g(a), d(b), h(c)]
—[h(a), h(b), d(c)]]| < ¥(a,b,c), (32)
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for each a,b,c € A. Then there are a unique ternary homomorphism
H and ternary derivation d on A such that D : A — 2 is a generalized
ternary hom-derivations and for all a € 2,

lg(a) — H(a)|| < 1£71(a,0,0), (33)
ld(a) = 6(a)l| < t££%(a,0,0), (34)
If(a) = D(a)|| < t££¢(a,0,0). (35)

Proof. Firstly, we take a = b = ¢ = 0, then ¢(0,0,0) = 0 in (29). It
follows from (29) that

lim 2% (&, L5, &) =0. (36)

1—00
By applying the identical procedure as delineated in the proof of Theo-

rem 3.3, it is possible for us to define and establish the mappings H, ¢,
and D, which are all mappings from 2 to 2.

H(a) == lim 2' (%),
d(a) := zliglo2 d(%),
D(a) : = Jim. 2'f (%) (37)

for all a € 2. It follows from (30), (31), (32) and (37), we have
[1H ([a, b, ¢]) — [H(a), H(b), H(c)]|

= Tim 2% |0 ([5, 4. 5])
S EORICOMICH]

(52 5]) - [4(£) . 4. 5]
~[Fd() 5] - 5 4d(2)] |
< Jim 29 (55, 51 57) = (39)

11
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and

1D([a, b, ¢]) = [D(a), H(b), H(c)] — [H(a),5(b), H(c)]
— [H(a), H(b),6(c)l]

= 1im 2|7 ([%. 2. 5]) - [F (8) 5 (£) .k (5)]
~[n($) .0 (%) 1 ($)]
UG RIORIEN

< Jim 29 (g, 37, 57) = 0. (40)

It follows that
H([a,b,c]) = [H(a), H(b), H(c)],
d(la, b, c]) = [6(a),b,c] + [a,d(b), c] + [a,b,0(c)],
D([a, b, c]) = [D(a), H(b), H(c)] + [H(a),5(b), H(c)]
+ [H(a), H(b),d(c)], Va,b,ce (41)
Hence the mappings H,6 : 2 — A and D : 2l — 2 are ternary homo-

morphism, ternary derivation and generalized ternary hom-derivations,
respectively. O

In The statement of Theorem 3.5, if we designate L = 27" for
0 < r < 1, and define

Pla,b,¢) = s ([lall" + oI + [lell") (42)

in the context of a,b,c € A and s € RTU{0}, we reach the resulting con-
clusion following Rassias’ theorem regarding ternary hom-derivations.

Corollary 3.6. Let 6(a,b,c) = s(||la]|"+||b||"+]|c||") wherer < 1 and s €
Ry. Suppose that the functions f,h,d : A — A satisfy Eqs. (15), (30),
(31) and (32). Then there are a unique ternary homomorphism H and
ternary derivation d on 2 such that D : A — 2 is a generalized ternary

hom-derivations and
[h(a) — H(a)|| < 525 lall",

ld(a) — 8(a)ll < 525 [lall", (43)
I£(a) = D(a)|| < 525 lal"-
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In the following, considering the importance, the concept of ternary
Jordan derivations has applications in operator theory, non-associative
algebras, and quantum physics. For instance, a derivation D on ternary
system T can analyze quantum operations’ interaction with ternary
structures. We can investigate the Jordan property of generalized ternary
(Jordan) hom-derivations on TBAs. Next, we can investigate the stabil-
ity of generalized ternary (Jordan) hom-derivations by control functions
of Gavruta and Rassias through the theorem of Margolis and Diaz. Be-
fore commencing the stability theorem, we define the concept of gener-
alized ternary (Jordan) hom-derivations.

Definition 3.7. Assume the mapping h : 2 — 2( is a ternary homomor-
phism. We then introduce the concept of a linear map D : A — 2, which
is termed a generalized ternary (Jordan) hom-derivation. This designa-
tion requires the existence of a derivation d : A — 2 that conforms
to the aforementioned derivational property. For D to be a generalized
ternary (Jordan) hom-derivation, it must satisfy the following condition,

D(la,a,a]) = [D(a), h(a), h(a)] + [h(a),d(a), h(a)]
+ [h(a), h(a),d(a)], Va el (44)

Remark 3.8. Consider a function ¢ satisfies (29) and the mappings
f,g,0 satisfying (15) and

lgla, b,c] = [g(a), g(b), g(c)]|| < ¥(a,b,0),
|d(la, a, a]) — [d(a),a,a] — [a,d(a),a] — [a,a,d(a)]]|

< (a,a,a), (45)
| £([a,a,a]) = [f(a), g(a), g(a)] = [9(a), d(a), h(a)]
— [h(a), h(a), d(a)]|| < ¥(a,a,a). (46)

Then, the stability conditions analogous to those in Theorem 3.5, hold
for generalized ternary (Jordan) hom-derivations on 2.

Remark 3.9. Let §(a,a,a) = 3s(]|a||”) where r < 1 and s € Ry. sup-
pose that the functions f,h,d : %A — 2 satisfy Eqgs. (15), (30), (45),
and (46). Then, the stability conditions analogous to those in Corol-
lary 3.6, hold for generalized ternary (Jordan) hom-derivations on 2.
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4 Conclusions

Acknowledging the significance attributed to TBAs, generalized ternary
derivations, and their significant applications in the realm of mathe-
matical physics, our initiative primarily focused on the introduction of
the pioneering concept of generalized ternary hom-derivations within
the framework of TBAs. Through the theorem of Margolis and Diaz,
we have demonstrated the stability associated with generalized ternary
hom-derivations and the generalized Jensen p-FE (2) within the context
of stability within TBAs. Finally, we explored the Jordan property to
generalized ternary (Jordan) hom-derivations on 20 and the stability of
generalized ternary (Jordan) hom-derivations on 2 by control functions
of Gavruta and Rassias.
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