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measuring Kullback-Leibler divergence, a key statistical distance met-
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data, Type-I censored variable, and record value data. Furthermore, it
establishes connections between the quantile-based KL divergence and
various stochastic orderings, providing insights into how probability dis-
tributions differ.

AMS Subject Classification: 60XX, 94A17, 62B10
Keywords and Phrases: Entropy Information, Record Values, Type
I Censored data, Stochastic Ordering.

1 Introduction

The Kullback-Leibler (KL) divergence (also called relative entropy) [9]
and quantile function (Qf) of the continuous random variable (r.v) play
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key roles in information theory, and they are widely used in many fields.
is a measure of the difference between two probability distributions. It
quantifies how one distribution diverges from another. In statistical
analysis, the KL divergence is commonly used to compare two proba-
bility distributions, such as comparing an estimated distribution with a
true distribution. This measure is a fundamental quantity of uncertainty
theorems and Qf is more convenient in approximation of the distribu-
tions. There are various issues about the quantile functions and its
relations to KL divergence. For example Mansourvar (2022) introduces
a new way to measure the difference between two probability distri-
butions. This new method is based on something called the ”quantile
function,” which is a way of describing a probability distribution. The
author shows that this new method is related to other well-known meth-
ods, and that it has some nice properties [10].
Sunoj and Saranya (2024) investigated the quantile-based cumulative
Kullback-Leibler divergence within the context of past lifetimes, explor-
ing its properties and demonstrating its applications [20]. Joseph and
Mathew (2025) introduced a quantile-based version of Matusita’s mea-
sure, specifically for residual lifetimes [8]. Al-Labadi et al. (2021) ex-
plored the use of Kullback-Leibler divergence for Bayesian nonparamet-
ric model checking, published in the Journal of the Korean Statistical So-
ciety [3]. Al-Labadi and Tahir (2022) explored the estimation of entropy
and extropy for right-censored data using a Bayesian non-parametric
approach, published in Monte Carlo Methods and Applications [4]. Al-
Labadi, Fazeli-Asl, and Ly (2024) developed a Bayesian non-parametric
approach, based on Kullback-Leibler divergence estimation, to evaluate
model fit for type II censored data, as published in Communications
in Statistics-Simulation and Computation [5]. For more details, we can
review [6, 14, 15, 16, 17, 19, 22].
Letting X and Y be two absolutely continuous, non-negative r.v’s, with
the probability distribution functions, (pdf)’s, g(x) and f(x), also cumu-
lative distribution functions (cdf)’s G(x) and F (x), and survival func-
tions (sf)’s Ḡ(x) and F̄ (x), respectively, the mutual information between
two continuous r.v’s can be indicated in terms of the KL divergence as
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follows:

DKL(X∥Y ) =

∫ ∞

−∞
g(x) log

g(x)

f(x)
dx, (1)

where, g(x) represents the probability distribution function precisely
measured and f(x) represents instead a description or an approxima-
tion of g(x).
The quantile approach to the KL divergence involves estimating the
quantiles of the censored distributions and then computing the KL di-
vergence based on these estimated quantiles. This approach allows for
a more accurate comparison of censored distributions by taking into ac-
count the uncertainty introduced by censoring.
The quantile function of a probability distribution can be specified in
terms of the distribution function G(x) as follow:

Q1(u) = G−1(u) = inf{x|G(x) ≥ u} , 0 ≤ u ≤ 1. (2)

Supporting the definition of quantile function Q1(u) in Equation (2), we
can get G(Q1(u)) = u, where G(x) is increasing function of continuous
variable X. Besides, the differentiation of G(Q1(u)) function implies
g(Q1(u)).q1(u) = 1, where g(Q1(u)) is the density quantile function and

q1(u) =
∂

∂u
Q1(u), is the quantile density function.

Similarly, F (Q1(u)) = F (G−1(u)). Hence, by differentiating of F (G−1(u))
with respect to u we have

∂

∂u
F (G−1(u)) =

∂

∂u
F (Q1(u)) = q1(u).f(Q1(u)). (3)

Then, by taking Q3(u) = F (Q1(u)) we can get

q3(u) =
∂

∂u
Q3(u) =

∂

∂u
Q−1

2 (Q1(u)) =
∂

∂u
F (Q1(u)). (4)

Therefore, by taking q2(u) = f(Q1(u)), hence Equations (3) and (4) can
would yield

q3(u) = q2(u)q1(u) =
f(Q1(u))

g(Q1(u))
. (5)

Thus, according to (1) the quantile-based KL divergence measure is
defined as [16]:

DKL(q1∥q2) = −
∫ 1

0
ln (q3(u)) du. (6)
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The hazard rate function of the non negative continuous r.v X is defined
by [15]:

H3(u) =
1

(1− u)q3(u)
. (7)

where 0 < u < 1 as well as H3(u) stands the quantile based hazard rate
function.
In a recent paper we have obtained a quantile-based KL divergence on
typical data. Section 2, proposes the KL measure on Type-I censored
variable. In this Section we prove some characterization results based
on the quantile-based Type-I censored KL divergence. In Section 3 we
introduce a quantile version of the KL divergence measure for the dis-
tribution of the upper and lower record values. Furthermore, in our
studies, we use some quantile based stochastic orders such as stochastic
dominance, likelihood ratio, the hazard and reversed hazard. Finally,
Section 4 provides a numerical solutions for the models of proportional
hazards and proportional reversed hazards for general data, Type-I cen-
sored variable and record values.

2 Quantile Based Type-I Censored KL Diver-
gence

Type-I censoring is a common technique used in survival analysis when
the exact failure times are not observed but only known to be larger
than a certain threshold. In this type of censoring, the data is right-
censored, meaning that the failure times are only known to be greater
than a specific value. In this case, the KL divergence between two cen-
sored distributions measures how much information is lost when one
distribution is used to approximate another.
The quantile approach to the KL divergence on censored data has been
applied in various fields, including survival analysis and reliability engi-
neering. It provides a useful tool for comparing censored distributions
and assessing the similarity or dissimilarity between them.
Assume that X and Y are two absolutely continuous r.v’s. The density
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function for a Type-I censored variable is defined as

gC(x) =


g(x) if x < C

Ḡ(C) if x = C

0 if x > C.

Where C is the censoring point that is supposed to be a constant [11,
12, 13].
KL divergence between two r.v’s X and Y on Type-I censored variable
can be introduced by

DC−I
KL (g||f) =

∫ C

−∞
g(x) ln

g(x)

f(x)
dx+ Ḡ(C) ln

Ḡ(C)

F̄ (C)
.

In addition, the quantile Type-I censored KL divergence is defined as

DC−I
KL (q1∥q2) = −

∫ P

0
ln q3(u)du− (1− P ) ln(

1−Q3(P )

1− P
), (8)

where P = G(C).
Also, using (7) we have

DC−I
KL (q1∥q2) =

∫ P

0
lnH3(u)du− (1− P ) ln(1−Q3(P ))− P,

Besides, We know that Type-I censored Shannon Entropy (HP (u)) is
defined by

HP (u) =

∫ P

0
ln q1(u)du− (1− P ) ln(1− P ). (9)

Remark 2.1. ∂
∂P D

C−I
KL (q1∥q2) = A(P ) − lnA(P ) − 1, where A(P ) =

(1−P )q3(P )
1−Q3(P ) ≥ 0, that yields the quantile KL divergence on Type-I cen-

sored variable is a monotonous increasing function of P . Hence, Equa-
tion (8) tends to (6) when P tends to 1.

One of the quantile functions that can have useful mathematical
properties is the Q3(u) = 1 − (1 − u)θ function. In the following, we
will examine its characteristics in relation to KL divergence on Type-I
censored variable.
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Proposition 2.2. Suppose that Q3(u) = 1−(1−u)θ. Then, the quantile-
based Type-I censored KL divergence is obtained as

DC−I
KL (q1∥q2) = −P ln θ + (θ − 1)

[
Γ(Λ, 2, 1)− (1− P ) ln(1− P )

]
,

and the quantile-based KL divergence for general data is given by

DKL(q1∥q2) = θ − ln θ − 1.

where Γ(Λ, 2, 1) is uncompleted Gamma distribution and Λ = − ln(1 −
P ).

Proof. Obviously, by substituting ϑ = − ln(1−u) and Λ = − ln(1−P )
it can be transformed to Gamma distribution form and we can yield the
results. □

Proposition 2.3. Let Q3(u) = 1− (1− u)θ. Then

−
∫ P

0
ln q3(u)du ≤ DC−I

KL (q1∥q2) ≤ −
∫ 1

0
ln q3(u)du

Proof. Clearly, from Remark 2.1 the upper bound for KL divergence
on Type-I censored variable is KL divergence on general scheme ((6)).
Furthermore, Q3(P )−P = (1−P )(1−(1−P )θ−1) > 0, 0 < u < 1. Then

−(1− P ) ln
(1−Q3(P )

1−P > −(1− P ) ln
(
1−P
1−P

)
= 0. Thus, this complete the

proof. □ In Table (1), we show some well known lifetime distributions
with quantile function Q3(u) = 1− (1− u)θ.

Proposition 2.4. qX3 (u) ≤ (≥)qY3 (u) ⇒ DC−I
KL (q1, q

X
2 ) ≥ (≤)DC−I

KL (q1, q
Y
2 ).

Proof. Letting qX3 (u) ≤ (≥)qY3 (u) we would have∫ P

0
ln qX3 (u)du ≤ (≥)

∫ P

0
ln qY3 (u)du.

Moreover, it yields 1−QX
3 (u) ≥ (≤)1−QY

3 (u). So we would have

(1− P ) ln
( 1− P

1−QX
3 (u)

)
≤ (≥)(1− P ) ln

( 1− P

1−QY
3 (u)

)
.

Then, from Equation (8) we can get DC−I
KL (q1, q

X
2 ) ≥ (≤)DC−I

KL (q1, q
Y
2 ).

□
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Table 1: Some Quantile functions distributions

Distribution QFs

Pareto I Q1(u) = (1− u)
− 1

λ1 ;λ1 > 0 Q3(u) = 1− (1− u)θ; θ = λ2
λ1

Q2(u) = (1− u)
− 1

λ2 ;λ2 > 0 q3(u) = θ(1− u)θ−1

Pareto II Q1(u) = α
(
(1− u)

− 1
λ1

)
;α > 0, λ1 > 0 Q3(u) = 1− (1− u)θ; θ = λ2

λ1

Q2(u) = α
(
(1− u)

− 1
λ2

)
;α > 0, λ2 > 0 q3(u) = θ(1− u)θ−1

Gompertz Q1(u) =
1

ln c

(
1− ln c. ln(1−u)

λ1

)
;c > 0, λ1 > 0 Q3(u) = 1− (1− u)θ; θ = λ2

λ1

Q2(u) =
1

ln c

(
1− ln c. ln(1−u)

λ2

)
;c > 0, λ2 > 0 q3(u) = θ(1− u)θ−1

Finite Range Q1(u) = b
(
1− (1− u)

1
λ1

)
;λ1 > 0, b > 0 Q3(u) = 1− (1− u)θ; θ = λ2

λ1

Q2(u) = b
(
1− (1− u)

1
λ2

)
;λ2 > 0, b > 0 q3(u) = θ(1− u)θ−1

Exponential Q1(u) = − 1
λ1

ln(1− u);λ1 > 0 Q3(u) = 1− (1− u)θ; θ = λ2
λ1

Q2(u) = − 1
λ2

ln(1− u);λ2 > 0 q3(u) = θ(1− u)θ−1

Example 2.5. We could have an illustration of Proposition 2.4 in the
well-known distributions of Table 1. Furthermore the following proof is
an extension sample for exponential distribution. Suppose that Q1(u) =
−1

θ ln(1− u); θ > 0, and X and Y represent two exponential r.v’s with
QFs respectively by QX

2 (u) = − 1
λ1

ln(1−u); λ1 > 0, QY
2 (u) = − 1

λ2
ln(1−

u); λ2 > 0, where λ1 > λ2. Then QX
3 (u) = 1 − (1 − u)

λ1
θ , QY

3 (u) =

1− (1−u)
λ2
θ . Hence ln qX3 (u) = ln λ1

θ + λ1−θ
θ and ln qY3 (u) = ln λ2

θ + λ2−θ
θ

that yields qX3 (u) > qY3 (u) and implies DC−I
KL (q1, q

X
2 ) < DC−I

KL (q1, q
Y
2 ).

Example 2.6. Let Q2(u) = u; 0 < u < 1. Furthermore
(a) q1(u) = kuν(1−u)A+ν ; k > 0. Then Q3(u) = k.B(u, ν+1, A+ν+1),
where B(P, ν + 1, A+ ν + 1) is the Beta incomplete function.
(b) q1(u) = k(1−u)A

(
− ln(1−u)

)ν
. Then Q3(u) = k.Γ(u, ν+1, A+1),

where Γ(u, ν + 1, A+ 1) is the Gamma incomplete function.
Using (a) in (8) we would have

DC−I
KL (q1, q2) = −

∫ P

0

ln
(
kuν(1− u)A+ν)du− (1− P ) ln

(1− kB(P, ν + 1, A+ ν + 1)

1− P

)
= P (ν − ln k − 1)− νP lnP − (A+ ν + 1)− (1− P ) ln

(1− k.B(P, ν + 1, A+ ν + 1)

1− P

)
,
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Similarity, using (b) in (8) we have

DC−I
KL (q1, q2) = −

∫ P

0
ln

(
k(1− u)A

(
− ln(1− u)

)ν)
du− (1− P ) ln

(
1− k

Γ(u, ν + 1, A+ 1)

1− P

)
,

= −k
W ν

(
W (A+ 1)

)−ν(
Γ(ν + 1)− Γ(W, ν + 1, (A+ 1))

)
A+ 1

− (1− P ) ln
(1− kΓ(u, ν + 1, A+ 1)

1− P

)
.

where W = − ln(1− P ).

Definition 2.7. Let X and Y be two non negative r.v’s such that
H1(u) ≥ H2(u) or equivalently q1(u) ≤ q2(u) for all u ∈ (0, 1). Then X
is said to be smaller than Y in hazard quantile function order denoted

by X
HQ
≤ Y .

Proposition 2.8. Let X
HQ
≤ Y . Then

DC−I
KL (q1∥q2) ≤ −2

∫ P

0
ln q1(u)du (10)

DC−I
KL (q1∥q2) ≤ −2

(
HP (u)− (1− P ) ln(1− P )

)
. (11)

Proof. Let us H1(P ) ≥ H2(P ) for all P ∈ (0, 1) that is 1
(1−u)q1(u)

≥
1

(1−u)q2(u)
and implies respectively q1(u) ≤ q2(u) and Q1(u) ≤ Q2(u).

Therefore Q3(u) ≤ u. That yields (1 − P ) ln
(1−Q3(P )

1−P

)
≥ 0. Besides,

from (5) we have q3(u) = q2(u)q1(u). This implies q3(u) ≥ q21(u) and∫ P
0 ln q3(u)du ≥ 2

∫ P
0 ln q1(u)du. So, we can obtain (10). Furthermore,

combining Relations (10) and (9) can obtained (11) and the proof is
completed. □

Proposition 2.9. If X
st
≤ Y then DC−I

KL (q1∥q2) ≤ −
∫ P
0 ln q3(u)du.

Proof. If X
st
≤ Y then Q1(u) ≤ Q2(u) for all u ∈ (o, 1) [18], that implies

Q3(P ) ≤ P . The proof is complete. □

Proposition 2.10. Let us X and Y be two different continuous r.v’s.
Then the quantile KL divergence on Type-I censored variable is not a
constant.
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Proof. Suppose that DC−I
KL (q1∥q2) = k. Then by differentiating both

sides of this equation we would have A(P ) − ln
(
A(P )

)
− 1 = 0, that

implies A(P ) = 1. Hence q3(P )
1−Q3(P ) =

1
(1−P ) , or equivalently

∂ ln(1−Q3(P ))

∂P
=

∂ ln(1− P )

∂P
. (12)

Integrating (12) with respect to P between the limits 0 and P , we have
Q3(P ) = P . Therefore we can get F (Q1(P )) = G(Q1(P )) = P , that
yields k = 0, which completes the proof of the proposition. □

Proposition 2.11. Let X and Y are continuous r.v’s, also a and b are
constant, then DC−I

KL (q1∥q2) = a+ b.P , if and only if X and Y stand ph
model.

Proof. Suppose that DC−I
KL (q1∥q2) = a + b.P . Then by differentiating

both sides of this equation and by taking k = b+1 we would have A(P )−

ln
(
A(P )

)
= k. SoA(P ) = θ is a constant that implies

(1− P )q3(P )

1−Q3(P )
= θ.

This means that Q3(u) = 1− (1−u)θ, that yields F̄ (x) = (Ḡ(x))θ which
completes the proof of the proposition. For reverse proof is clear. Hence,
it is omitted for brevity. □

3 Quantile Based Record Value KL Divergence

Quantile-based record value KL divergence is a statistical measure used
to compare two pdf’s by quantifying the difference between their quan-
tiles. The quantile-based record value KL divergence is particularly
useful when dealing with heavy-tailed distributions or when comparing
extreme values. It provides a way to assess the dissimilarity between two
distributions in terms of their extreme values rather than their overall
shape. This measure has applications in various fields such as finance,
environmental sciences, and risk analysis. It can be used to compare ex-
treme value distributions, assess tail dependence in multivariate models,
and evaluate risk measures for rare events.
Record values obtained from a sequence of r.v’s are closely related to
order statistics. It was first proposed by Chandler[7] and has a major
contribution when obtaining observation is difficult or observations are
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being destroyed in an experimental test [21]. See Ahsanullah[1, 2] for
more details.
Let X1, X2, · · · , Xn, n ≥ 1, is a sequence of independent and iden-
tically distributed r.v with a non-increasing survival function, Yn =
max{X1, X2, · · · , Xn} and Zn = min{X1, X2, · · · , Xn}. Then XU(i)

is the ith upper record statistic of X1, X2, · · · , Xn if Yi ≥ Yi−1, i ≥ 1. In
a similar way XL(i) is the ith lower record statistic of X1, X2, · · · , Xn if
Zi ≤ Zi−1, i ≥ 1.
So the pdf functions of the XU(i) and XL(i) in respectively are given by

fXU(i)
(x) =

[− ln(F̄X(x))]i−1fX(x)

Γ(i)
, i = 1, 2, · · · , n, (13)

fXL(i)
(x) =

[− ln(FX(x))]i−1fX(x)

Γ(i)
, i = 1, 2, · · · , n,

where Γ(i) = (i− 1)!.
Then the quantile KL divergence function between the upper (lower)
record values respectively is defined by

DKL(q
(ui)
1 ∥q(ui)

2 ) = −
∫ 1

0

[− ln(1− u)]i−1

Γ(i)
ln(q

(ui)
3 (u))du, (14)

DKL(q
(li)
1 ∥q(li)2 ) = −

∫ 1

0

[− ln(u)]i−1

Γ(i)
ln(q

(li)
3 (u))du,

where

q
(ui)
3 (u) =

[− ln(1−Q3(u))]
i−1q3(u)

[− ln(1− u)]i−1
, and q

(li)
3 (u) =

[− ln(Q3(u))]
i−1q3(u)

[− ln(u)]i−1
.

Proposition 3.1. If Q3(u) = 1− (1− u)θ. Then,

q
(ui)
3 (u) =

[−θ ln(1− u)]i−1

[− ln(1− u)]i−1
θ(1− u)θ−1 =

(
θ
)i
(1− u)θ−1.

Hence, from (14) and substituting − ln(1 − u) with φ the quantile KL
divergence function between the upper record value is obtained by

DKL(q
(ui)
1 ∥q(ui)

2 ) = −
∫ 1

0

[− ln(1− u)]i−1

Γ(i)
ln
(
(θ)i(1− u)θ−1

)
du

= −
∫ ∞

0

φi−1

Γ(i)
ln
(
(θ)ie−φ(θ−1)

)
e−φdφ = i

(
θ − ln(θ)− 1

)
.
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Remark 3.2. If Q3(u) = 1− (1− u)θ. Then,

• DKL(q
(ui)
1 ∥q(ui)

2 ) is a monotonous increasing function of i, ∀ i =
1, 2, ..., n.

• DKL(q
(ui)
1 ∥q(ui)

2 ) is a monotonous increasing function of θ, ∀ θ > 1.

• DKL(q
(ui)
1 ∥q(ui)

2 ) is a monotonous decreasing function of θ, ∀ 0 <
θ < 1.

Example 3.3. Assume that X and Y follow Cox ph model. Then under
the assumption of relation (14), we have

q
(ui)
3 (u) =

[− ln(1− u)θ]i−1θ(1− u)θ−1

[− ln(1− u)]i−1
= θi(1− u)θ−1,

and

q
(li)
3 (u) =

[− ln(1− (1− u)θ]i−1θ(1− u)θ−1

[− ln(u)]i−1
.

Then

DKL(q
(ui)
1 ∥q(ui)

2 ) = −
∫ 1

0

[− ln(1− u)]i−1

Γ(i)
ln(θi(1− u)θ−1)du

= −(−1)i−1(θ − 1)

Γ(i)

∫ 1

0

(
ln(1− u)

)i
du− i ln(θ).

Furthermore, from
∫ 1
0

(
ln(1− u)

)i
du = i(−1)iΓ(i), we would have

DKL(q
(ui)
1 ∥q(ui)

2 ) = −(−1)2i−1(θ − 1)− i ln(θ) = i(θ − 1− ln(θ)). (15)

Besides,

DKL(q
(li)
1 ∥q(li)2 ) = −

∫ 1

0

[− ln(u)]i−1

Γ(i)
ln(q

(li)
3 (u))du.

Example 3.4. In the case of prh model, we have

q
(ui)
3 (u) =

[− ln(1− uθ)]i−1θuθ−1

[− ln(1− u)]i−1
,
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and

q
(li)
3 (u) =

[− ln(uθ)]i−1θuθ−1

[− ln(u)]i−1
= θiuθ−1.

Then,

DKL(q
(ui)
1 ∥q(ui)

2 ) = −
∫ 1

0

[− ln(1− u)]i−1

Γ(i)
ln(q

(ui)
3 (u))du,

and

DKL(q
(li)
1 ∥q(li)2 ) = −

∫ 1

0

[− ln(u)]i−1

Γ(i)
ln(θiuθ−1)du

= −(−1)i−1(θ − 1)

Γ(i)

∫ 1

0

(
ln(u)

)i
du− i ln(θ),

where from
∫ 1
0

(
ln(1 − u)

)i
du = i(−1)iΓ(i) and similar to (15) we can

get

DKL(q
(li)
1 ∥q(li)2 ) = i(θ − 1− ln(θ)).

Proposition 3.5. The KL divergence measure between ith and jth record
values from an arbitrary distribution is given by

DKL(q
(uj)
1 ∥q(ui)

1 ) = −
∫ 1

0

[− ln(1− u)]j−1

Γ(j)
ln(

Γ(j)

Γ(i)

[
− ln(1− u)

]i−j
)du,

DKL(q
(lj)
1 ∥q(li)1 ) = −

∫ 1

0

[− ln(u)]j−1

Γ(j)
ln(

Γ(j)

Γ(i)

[
− ln(u)

]i−j
)du,

Proof. The proof is clear. □

4 Application

In this section, we illustrate the previous examples of general data, Type-
I censored variable and record values based on ph and prh models. Ex-
ample 4.1 shows the KL measure on the rate values in ph and prh models
for general data. Furthermore, Example 4.2 compares the KL divergence
for the quantile censored points and the rate values in ph and prh mod-
els. Finally, Example 4.3 presents KL measure in ph and prh models on
the upper and lower record values.
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Example 4.1. Let X and Y are continuous r.v and θ=0.25, 0.75,...,4.25.
Then, considering ph, and prh models, KL measure is calculated in Table
2. From the results of Table 2 it can be concluded that KL value is equal
for upper and lower record values under the various values of θ.

Table 2: KL measure for ph and prh models with the various θ in range
0.25-4.2, with steps 0.45, corresponding to Example 4.1

θ 0.25 0.70 1.15 1.50 1.95 2.40 2.85 3.30 3.75 4.20
PH, PRH 0.6363 0.0567 0.0102 0.0945 0.2822 0.5245 0.8027 1.1061 1.4282 1.7649

Example 4.2. Table 3 shows KL measure for proportional hazard and
proportional reversed hazard models on Type-I censored variable with
the censored quantile points P = 0.1, 0.3, ..., 0.9 and taking θ = 0.25, 0.5, 2, 3.
Table 3 shows that KL value increases as the censored quantile point in-
creases. Comparing the values of θ, it is suggested that KL measure
increases whenever the distance between θ and 1 increases.

Table 3: LW divergence measure for ph and prh models of θ =
0.25, 0.5, 2, 3, on Type-I censored variable with the censored quantile
points P = 0.1, 0.3, ..., 0.9 in Example 4.2

Quantile Point: P = 0.1 P = 0.3 P = 0.5 P = 0.7 P = 0.9

θ PH model

0.25 0.0636 0.1909 0.3181 0.4459 0.5727
0.50 0.0193 0.0579 0.0966 0.1352 0.1738
2 0.0307 0.0921 0.1534 0.2148 0.2762
3 0.0901 0.2704 0.4507 0.6310 0.8112

θ PRH model

0.25 0.5398 0.6135 0.6307 0.6354 0.6363
0.50 0.1515 0.1831 0.1907 0.1928 0.1931
2 0.1752 0.2696 0.2973 0.3053 0.3068
3 0.4567 0.7623 0.8640 0.8951 0.9012

Example 4.3. Let X be a continuous r.v from a distribution with c.d.f.,
G(x), and pdf, g(x). According to Examples 3.3 and 3.4 on ph and prh
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models respectively, the KL divergence measure can be expressed by
Table 4. As this table suggests, there is a direct relationship between
the KL measure and the record values. We expect the KL value to
increase as the distance between θ and 1 increases.

Table 4: LW divergence measure for upper and lower record values
based on ph and prh models of θ = 0.25, 0.5, 2, 3, in Example 4.3

Upper record value Lower record value

ith record value θ ph model PRH model ph model PRH model

1 0.25 0.6363 0.6363 0.6363 0.6363
0.50 0.1931 0.1931 0.1931 0.1931
2 0.3069 0.3069 0.3069 0.3069
3 0.9014 0.9014 0.9014 0.9014

2 0.25 1.2726 0.4628 0.4628 1.2726
0.50 0.3863 0.1380 0.1380 0.3863
2 0.6137 0.2132 0.2132 0.6137
3 1.8028 0.6239 0.6239 1.8028

3 0.25 1.9089 0.3492 0.3492 1.9089
0.50 0.5794 0.1017 0.1017 0.5794
2 0.9206 0.1487 0.1487 0.9206
3 2.7042 0.4280 0.4280 2.7042

4 0.25 2.5452 0.2735 0.2735 2.5452
0.50 0.7726 0.0779 0.0779 0.7726
2 1.2274 0.1078 0.1078 1.2274
3 3.6056 0.3041 0.3041 3.6056

Remark 4.4. The KL integral for record data after value 4 can be
calculated divergently.

5 Concluding Remarks

This article proposed an alternative approach to Kullback-Leibler diver-
gence measurement using the quantile function on general type data,
Type-I censored variable, and record values. This study presents the
quantile Kullback-Leibler divergence value for the various well-known
models such as hazard rate and proportional hazard rate models. Quan-
tile function applications were examined for characteristic results on
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Type-I censored variable and the distribution of record values. Vari-
ous properties and boundaries of the quantile based Kullback-Leibler
divergence have been derived. For this purpose, we focused on stochas-
tic orders including stochastic dominance, likelihood ratio order, haz-
ard rate and dispersive orders as well as hazard rate and reversed haz-
ard rate situations on general type data and Type-I censored variable.
We have shown that the quantile based Kullback-Leibler measure is a
monotonously increasing function of probability P corresponding to the
censored point and the distribution of the ith upper and lower record
values.
The proposed quantile-based Kullback-Leibler divergence approach has
several limitations, including its complexity in implementation, reliance
on specific data distribution assumptions, sensitivity to outliers, limited
applicability to non-continuous data, and inadequate handling of various
censoring types. Future research could focus on extending the method
to other censoring types, developing robust versions to mitigate out-
liers sensitivity, adapting it for discrete data, conducting comparative
studies with other divergence measures and creating efficient numerical
estimation methods for large datasets.
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