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Abstract. In this paper, we show that for a nonempty finite set U
and a power mapping T : U — P*(U), where P*(U) is set of all non-
empty subsets of U, there exists a nonempty subset F' of U such that
T'(F) = F and for any K C U, T'(K) = U, T(x). Also for a power
mapping T : U — P(U), we get an equivalent condition for having a
nonempty fixed points set. Finally, we present a method to obtain all
of fixed points of T.
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1 Introduction

In mathematics, a fixed-point theorem is a result saying that a function F' will have
at least one fixed point (a point z for which F(z) = x), under some conditions on F
that can be stated in general terms. In the other words, a fixed point, also known as
an invariant point, is a value that does not change under a given transformation. Any
set of fixed points of a transformation is also an invariant set. There exist various
types of fixed point theorems, such as Brouwer fixed point theorem, Atiyah-Bott fixed
point theorem, Banach fixed point theorem, etc [3, 2, 11, 9, 10].
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A power mapping is a mathematical function that maps elements from one set,
the domain of the function, to subsets of another set. Power mappings are used in
a variety of mathematical fields, including optimization, control theory and game
theory [1, 8, 14, 15].

Let U is a nonempty finite set and 7' : U — P*(U) is a power mapping,
then there exists a nonempty subset F' of U such that T'(F) = F. Also for a power
mapping T : U — P(U), we get a necessary and sufficient condition for having a
nonempty fixed point. We know that it is very hard to calculate fixed points by direct
method, for example if |[U| = 100, then to determine all the fixed points necessary
to check the number of |[P*(U)| = 2'%° — 1 ~ 1.26765 x 10°° subsets of U. In this
paper, we present a new method to obtain all fixed points of the power mapping
T:U — P(U), where U is a finite set. In addition, we state and investigate the
three main fixed point theorems on the power mappings.

2 Basic Concepts

In this paper, we introduce a new concept of a power mapping. Let U and W be
sets and T : U — P(W) be a mapping, then we call T a power mapping, where
P(W) is set of all subsets of W. We denote the set of all power mapping from U in to
P(W) by (U, W)o = Map(U, P(W)). Also, we set (U, W) = Map(U, P*(W)), where
P*(W) is set of all non-empty subsets of W. We write for simplicity (U, U)o = (U)o
and (U,U) = (U). This type of mappings, appear in many mathematical theories,
such as algebraic hyperstructures theory, T-rough sets theory numbers theory and
graph theory [ L] ’ s by ]

In this section, we present several examples about fixed points of finite algebraic
hyperstructures.

Example 2.1. 1. Let G be agraph and g is a vertex of G, then T : G — P(G) is

a power mapping, where T'(g) = V, and Vy; = {z : gandzare adjacent vertices}.

2. Let N = {1,2,3,---} be the set of natural numbers. Then the mapping T :
N — P*(N), where T'(n) = {d € N : d|n} is a power mapping.

3. The mapping ® : N — P*(N), where ®(n) = {m € N: m < n and(m,n) = 1}
is a power mapping.

4. Let (A,-) be a finite algebraic structure. For any u € A define Ty, (a) = {z €
A : a-z=wu}. Then T is a power mapping.

5. Let (H,*) be a finite hyperstructure and h € H. Then T, : H — P*(H) is a
power mapping, where T} (a) = a * h.

6. Let (X, 7) be a topological space and u € X. Suppose that for any = € X,
T.(z) is an open subset, such as O, € 7, such that x € O, and y ¢ O,. Then
Ty is a power mapping.

Now, we show, if U is a nonempty finite set and 7" : U — P*(U), where P*(U)
is set of all non-empty subsets of U is a power mapping, then there exists a nonempty
subset F' of U such that T'(F) = F.
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Definition 2.2. Let U and W be sets, and T : U — P(W) be a power mapping.
We define 7" : P(U) — P(W), such that T"(K) =, x T(x).

It is clear that T"(0) = (), and Ty = T if and only if Ty = Tj.

Definition 2.3. Let U be a set, T' € (U)o and K be a subset of U.
1. A subset F of U is called a fixed point of T, if and only if T'(F) = F.
2. fizg(T)={Ko CK|Ko#0 and T'(Ko) = Ko}
3. Fizg(T) ={Ko C K|T'(Ko) = Ko}
4. fiz(T) = fizu(T).
5. Fiz(T) = Fizy(T).
6

. If F C U is a fixed point of T and for any = € F', T(x) # (), then F is called a
normal fized point of T.

7. If F is not a normal fixed point of T, then F is called an abnormal fixed point.
Example 2.4. Let U = {z,y, z,u,v, w,t} and

z = {y},
y = {z,w},
z = {u,w},
T:qu—{z},
v {wh,
w — {y},
t— {z}.

Then T'({z,y,w}) = {z,y,w}, so {z,y,w} is a fixed point of T.

Definition 2.5. Let T' € (U) and F' be a fixed point of T'.

F is called a minimal fized point, if F' # () and if F’ is a nonempty fixed point of T'
and F' C F, then F/ = F. F is called a mazimal fized point of T if there is not a
fixed point such as F’ such that F C F’.

Definition 2.6. Let T : U — P(U) be a power mapping and K C U. Then
1) (1")(K) = K.
(2) (T)(K) =T'(K).

(3) (TH"Y(K) =T'(T")"(K)) for n € Ny. We write for simplicity (7)™ by T'™
and T ({z1,x2, - ,Tn}) by T (z1, 72, -+ ,2y) for any x1,22, -+ , 2, € U.
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3 Fixed Point Theorem

In this section, we will prove the main theorem 1 on a power mapping.
Lemma 3.1. Let T € (U)o.

(1) If K C K' and n € Ny, then T""(K) C T"™(K).

(2) If for any a € I, Ko C U and n € No, then T™ (U, c; Ka) = Upe; T (Ka).
Proof. It is straitforward. O

Lemma 3.2. LetT € (U)o and K CU. Then the Fixzk (T) is closed under operation

U
Proof. It follows from Lemma 3.1. O

Example 3.3. Suppose that U = {z,y, z,t} and T € (U), such that

{x7 y} u = x?
oo u=y

T(u) ) u—- (1
{y,t} w=t

Then {z,y,z} and {y, 2, t} are fixed points, so U = {z,y, 2} | U{y, 2, t} is a fixed point
by Lemma 3.2, but {y, 2} = {z,v,2}({y, 2, t} is not a fixed point.

Lemma 3.4. Let U be a nonempty set and T € (U). If there exists a nonempty finite
subset K of U such that K D T'(K), then there exists a nonempty subset Ko of K
such that T'(Ko) = Ko.

Proof. Since T"(K) C K, therefore
K 2T'(K) 2 (T')*(K) 2 (T")"(K) 2+ D0, 2)

by Lemma 3.1. Since K is finite, so in (2), there exists a n € Ny such that (T")"(K) =
(TH"(K). Set Ko = (T")"(K), then Ko is a nonempty subset of K such that
T'(Ko) = Ko. O

Lemma 3.5. Let U be a nonempty finite set and T € (U)o. If there exists a nonempty
subset K C U such that K C T'(K), then there ezists a subset K1 of U such that
Kl 2 K and T/(Kl) = K1.

Proof. We have
KCT(K)C(T)(K)C---C

U, ®3)
by Lemma 3.1. Since U is a finite set, hence the chain (3) has a finite length, hence
there exists a n € No, such that (T7)"(K) = (T")" T (K). Set K1 = (T")"(K), then
T'(K,) = K;. O
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Theorem 3.6 (Main Theorem 1: Fixed Point Theorem). If U is a nonempty finite
set and T € (U), then there erists a nonempty subset F' of U such that T'(F) = F.

Proof. Since T"(U) C U, hence the claim follows from Lemma 3.4. [
If the conditions of Fixed Point Theorem are not established, then it is not
necessary that the assertion to be established. See the following examples.

Example 3.7. (1) Suppose that U = {z,y}, T(z) = {y} and T(y) = 0. Then T
does not have any nonempty fixed point.

(2) Let N be the set of natural numbers, and T : N — P*(N) be a power mapping,
where T'(n) = {n + 1}. Then T does not have any nonempty fixed point.

Example 3.8. Suppose that (H, %) is a finite algebraic hyperstructure. for any h € H
define Ty, (z) = hxz. Then for any h € H, there exists a nonempty subset Fj of H,
such that Tj,(F}) = Fy, by Fixed Point Theorem.

4 Obtaining the Fixed Points

Suppose that T : U — P*(U) is a power mapping, therefore T" : P*(U) — P*(U)
is a mapping. If we want to obtain all of fixed points, directly, then it means that we
have to test 2!Vl — 1 members of P*(U), this is a very difficult task.

Definition 4.1. Let T € (U)o and K be a subset of U. K is called a T-small subset
(or a small subset of U), if K C T'(K). K is called a T-big subset (or a big subset
of U), if K D T'(K). The subset K of U is called a T-normal subset (or a normal
subset of U) if K is a T-small subset or a T-big subset of U.

Example 4.2. Suppose that U = {z,y, z,u, v, w,t} and

z—{y}

y — {y, 2},
z — {z},
T=qu— {u,v},
v — {u},
w — {u},
t— 0.

We have T"({z,y, z}) = {v, 2}, hence {z,y, 2} is a big subset of U. Since T'({u}) =
{u,v}, hence {u} is a small subset of U. Therefore the sets {z,y,z} and {u} are
normal subsets of U. Also {z} is a normal subset of U. The sets {v}, {w}, {v,w},
and {v,w,t} are not a normal subset of U.

According to Lemma 3.4, Lemma 3.5, and Definition 4.1, we have:

Corollary 4.3. Let T € (U), then
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(1) any nonempty finite big subset of U, contains a nonempty fized point;

(2) if U is a finite set, then any nonempty small subset is contained in a nonempty
fized point.

Definition 4.4. Let T' € (U)o and K be a normal subset of U. If n is the smallest
number such that (77)"(K) = (T")"T!(K), then we write or(K) = n.

Lemma 4.5. Let U be a finite set, T € (U)o and K be a subset of U, then
(1) if K is a big subset of U, then or(K) < |K|;
(2) if K is a small subset of U, then or(K) < |K€|.

Proof. It is obvious. O

Lemma 4.6. Let U be a nonempty finite set and K be a normal subset of U.
(1) If T € (U), then T°T®)(K) is a nonempty fized point.
(2) If T € (U)o, then T°TF)(K) is a fized point.

Proof. It is obvious. O

Example 4.7. Let U = {z,y, z,u,v,w}. Define

v (), & {2y, 2,
y — {z}, y — 0,

T z = {z,u}, A z — {z},
u— {z}, u— {v},
v — {v}, v — 0,
w— {u}. w — {v,w}.

Then {2z} is a T—small subset. So {z} C {z,u} = T'(z) = (T")*(z). Therefore
or({z}) = 1 and {z,u} is a fixed point by Lemma 4.6. Also {z.u.w} is a T—big
subset and or({z,u,w}) = 1.

The subset {z,y} is a A—small subset, and oar({z,y}) = 1. Thus A'{z,y} =
{z,y, z} is a nonempty fixed point, by Lemma 4.6. Also {u,v,w} is a A—big subset
and ox ({u, v, w}) = 1. We have A'{v.v,w} = {v,w}.

Definition 4.8. Let T € (U)o, S is a small subset and B is a big subset of U. We
define (77)*(S) = U,.5o(T")"(S) and (T")*(B) = ,50(T")"(B).
Corollary 4.9. Let T € (U)o.
(1) If S is a small subset of U and or(S) < oo, then (T')*(S) = (T")°T %) (S).
(2) If B is a big subset of U and or(B) < co, then (T")*(B) = (T")°T®)(B).
Corollary 4.10. Let U be a finite set and K be a normal subset of U.
(1) If T € (U), then (T')*(K) is a nonempty fized point.
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(2) If T € (U)o, then (T")*°(K) is a fized point.

Lemma 4.11. Let U be a finite set and T € (U)o.

(1) If K is a small subset of U, then T'°(K) is the smallest fized point, such that
contains K.

(2) If K is a big subset of U, then T'*°(K) is the biggest fized point, such that is

contained in K.
Proof.

(1) If T'(K) = K, then it is clear. Suppose that K C T'(K) and F is a fixed

point, such that K C F C T'"°(K). Then
T'(K) CT'*°(F)=F Cc T"(K).

It is a contradiction.

(2) It is similar to (1).

O

Definition 4.12. Let T' € (U)o and K be a subset of U. We define K= Unso(T)"(K),

and [K] = (T’)"O(I—()). For any z1,z2, -+ ,x, € U, we show [{z1,z2, -+ ,zn}] by
[.’L‘l,.'lfg,”' ,.’En].

Theorem 4.13. Let U be a nonempty finite set and K be a nonempty subset of U.
Then

(1) I_g is a big subset of U.

(2) If T € (U), then [K] is a nonempty fized point.

(8) If T € (U)o, then [K] is a fized point of T.

Proof. By Lemma 3.1, we have
T(KUT(K)UT?*(K)U---) =T (K)UT*(K)UT?*(K)---
CKUT(K)UT?*(K)UT?(K)---.

Therefore |, (7")"(K) is a big subset of U. Now the proof follows from Corollary
4.10. 0

Example 4.14. In Example 4.7, we have

o} = @) (@) = {2} U {y} = {w.y}.

n=0

Hence {z,y} is a big subset of U by Theorem 4.13. Since T ({z,y}) = {=,y},
therefore {z, y} is a fixed point of T' by Theorem 4.13.
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Example 4.15. Assume that U = N and T : N — P*(N) is a power mapping,
where
{2} n=1,
T(n) = ¢ {3} n=2,3,
{Ln+1} n=4,56,--.

Let K = {1,2,3,4}, then K =N and [K] = {1,2,3}. It is obvious that [K] is not a
fixed point and [[K]] = {3} is a fixed point of T'.

= =
Lemma 4.16. IfT € (U)o and K1 C K», then K1 C Ky and [K,] C [K?2].
Proof. It follows from Lemma 3.1. O

Lemma 4.17. Let U be a nonempty finite set, T € (U)o and F CU. Then F is a
fized point of T if and only if ? =[F]=F.

Proof. It is obvious. O

Lemma 4.18. Let U be a nonempty finite set, T € (U)o and K CU. Then ? - K

and (K] = [K] = [[K]) = [K].
Proof. It follows from Theorem 4.13 and Lemma 4.17. O

ggrolgry 4.19. Let U be a nonempty finite set, T € (U)o and K1,Ko C U. If
K1 = Ka, then [Kl} = [Kz]
Proof. We have [K;] = [I?;] = [I?;] = [K3], by Lemma 4.18. O

Lemma 4.20. Let U be a nonempty finite set and T € (U)o. If K is a subset of U,
then there exists a number n > 0 such that

E=KUT(K)U-- (T')"(K).
Proof. Assume that
KCcKUT(K)Cc KUT'(K)UT?*(K)C---cU.

This chain can not be strict, forever. Therefore there exists the smallest number
n > 0, such that

KCKUT(K)C---CKUT'(K)U---(T")"(K)
=KUT'(K)U---U(T)"(K)U(T)""(K).

Then for any m > n,
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Definition 4.21. Let U be a nonempty finite set, 7' € (U)o and K be a subset of U.
We write Or(K) = n, if n is the smallest number, such that

KUT'(K)U---UT™(K)=KUT'(K)U---UT"™(K)UT" " (K).

Example 4.22. Let U be a nonempty finite set and 7" € (U)o. Then

(1) Or(0) =0r(U)=0.

(2) If K is a normal subset of U, then Or(K) < or(K).
Lemma 4.23. Let U be a nonempty finite set, T € (U)o and K1, K2 C U, then

(1) KiUK> :R—;UR—Q)‘

(2) [K1U K] = [Ki] U[K2].
Proof.

(1) It follows from Lemma 3.1 and Lemma 4.20.

(2) It follows from (1) and Lemma 3.1.

O

Lemma 4.24. Let U be a nonempty finite set, T € (U)o and K be a subset of U.
Then the following statements are equivalent.

(1) K C K],
(2) K =[K],
(3) K € Fiz(T).
Proof.
o (1=2)If K C[K], then K Cc [Fj = [K] by Lemma 4.16 and Lemma 4.17.

e (2= 3) It is obvious.
e (3= 4) It follows from Theorem 4.13.

o (4=1) It is clear that K C K. Since K is a fixed point of T, hence [I_g] e
Therefore K C K= [[4()] = [K] by Lemma 4.18.

O

Lemma 4.25. Let U be a nonempty finite set, T € (U)o, K C U and F be a fized
point of T. If F C ? then F C [K].

Proof. It follows from Lemma 4.16 and Lemma 4.18. O

Lemma 4.26. Let U be a nonempty finite set, T € (U) and F be a minimal fized
point of T. If K is a nonempty subset of F, then [K] = K=F.

Proof. It follows from Lemma 4.16 and Theorem 4.13. O
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Corollary 4.27. Let U be a nonempty finite set and T € (U). If F is a minimal
fized point and x € F, then F = [z].

Definition 4.28. Let T' € (U)o and F be a fixed point. F is called a principal fized
point of T if and only if there exists € U such that F = [z].

By Corollary 4.27, any minimal fixed point is a principal fixed point. But it is
not necessary that a principal fixed point is a minimal fixed point. For example:

Example 4.29. Let U = {z,y, z,t,v,w} and

{.’E,y} u=ux,

{v,2} u=y,

S lE w=s
T {z,2z} u=t,
{z} u=uv,

{z,y} u=w.

We have [z] = {z,y, 2}, [y] = {y, 2z} and [z] = {z}. Therefore
b clz] ClylClz]=[U]

Lemma 4.30. Let U be a nonempty finite set and T € (U)o. Then O and [U] are
minimum and mazimum fized point, respectively.

Proof. It is obvious. O

Lemma 4.31. Let U be a nonempty finite set and T € (U)o. If F is a fized point,
then there exist x1,z2,- - xn € [U] such that F' = [x1] U [z2] U - -+ U [zn].

Proof. There exist z1,z2, -z, € [U], such that F = {z1,22, -+ ,z,} by Lemma
4.16 and Lemma 4.17. Hence F' = |J,.p{z}. Therefore F' = [F] = [J,cp{z}] =
Uzerlz] by Lemma 4.17 and Lemma 4.23. O

Theorem 4.32 (Main Theorem 2). Let U be a nonempty finite set and T € (U)o.
Set PF(T) = {[z] | = € [U]}, then Fiz(T) = {Ujeslz] | £ C PF(T)}.

Proof. Let Q = {Ucxlz] | © C PF(T)}. Then Q C Fiz(T') by Theorem 4.13 and
Lemma 3.2. And we have Fiz(T) C © by lemma 4.31. Therefore Q = Fixz(T). d

Assume that [U] = {z,2',2",y,v, z,u}, [z] = [#'] = [2"] and [y] = [y’]. Then

PE(T) = {[x], [yl [2], [u]} = {[=], W], [2]; [u]} = {[="], '], [=], [l } = - -

Proposition 4.33. Let U be a nonempty finite set and T € (U)o. Then |Fiz(T)| <
ol PF(T)]

Proof. It is obvious. O
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Example 4.34. Suppose that U = {z,y, z, u, v, w,r,t} and

z —{y},
y —{z},
z— {u},
u— {2z},
v — {v,u},
w — {u},
r— {rt},
t— {r}.

Then [U] = {z,u,v,r,t}, [z] = [u] = {u, 2z}, [v] = {u,v, 2} and [r] = [t] = {r,t}. Hence
PE(T) = {[z], [v], ']}, And Fiz(T) = {0, [2], [v], [], [] U [], [v] U [r], [2] U [v] U [r]} by
Theorem 4.32. Therefore

sz(T) = {07 {’LL, 2}7 {Tv t}7 {’LL, v, Z}7 {’LL, 2T, t}7 {U, v,z,T, t}}

and |Fiz(T)| = 6. Also we have

(1) ¢ [z].

(2) [v] is not a minimal fixed point.
(3) u € [u].

(4) [#] C [v].

(5) [V [v] = [v].

Example 4.35. Assume that U = Za4, where (Z24, +) is the group of integers modulo
24. Let T : Zos — P*(Z24) be a power mapping, such that T'(7) = 2-7+1. Since Za4
is a big subset, hence [Z24] = T'°°(Z24) = {7,15,23}. We have [7] = [15] = {7,15}
and [23] = {23}. By Theorem 4.32, we have PF(T) = {[7],[23]} and therefore
Fiz(T) = {0,[7],[23], [7]U[23]} = {0,{7,15},{23},{7,15,23}}.
Example 4.36. Let (H,x) be an algebraic hyperstructure, where H = {a,b,c, d}
and:

axa={b}, axb={a,b}, axc={b,c},

bxa={a}, bxb={b}, bxc={a},

cka={a,b,c}, cxb={b}, cxc={c},

zxy = {a} ifx=dor y=d.
For any h € H define T, (z) = h * x. Since H is a nonempty finite set and T), € (H),

therefore there exists a nonempty subset F}, of H, such that T}, (F,) = Fj, by Fixed
Point Theorem. For example:

a — a*xa={b},
T — b— axb={a,b},
“ le—axc={bc}

d— a*xd={a}.

11
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Use Theorem 4.32. We have [H] = {a,b,c}. [a] = [b] = {a,b} and [¢] = {a,b,c}.
Hence PF(T,) = {{a,b},{a,b,c}}. Therefore Fiz(T,) = {0,{a,b},{a,b,c}}. The set
{a, b} is a minimal fixed point.

Theorem 4.37 (Main Theorem 3). Let U be a nonempty finite set and T : U —
P(U) be a power mapping. Then T has a nonempty fized point, if and only if [U] # 0.

Proof. («) It follows from Theorem 4.13.
(=) Assume that F is a nonempty fixed point. Hence ) # F = [F] C [U] by Lemma
4.16 and Lemma 4.17. ]

Example 4.38. Suppose that U = {z,y,2,¢} and T : U — P(U) is a power
mapping, where

{yvz} u=1x,
R i
0 u=-t.

Since [U] = 0, therefore T' does not have a nonempty fixed point by Theorem 4.37.
Example 4.39. In Example 4.36, define T'(z) = ¢ * z — x * c. Hence:

a — {a},
b— {b},
c— 0,
d— 0.

T =

Since [H] = {a,b} # 0, hence T has a nonempty fixed point, by Theorem 4.37.
By Theorem 4.32, we have PF(T') = {[a], [b]}, where [a] = {a} and [b] = {b}. There-
fore Fix(T) = {0, {a}, {b},{a,b}}.

Assume that ¥ is a nonempty set, |X| =n, A = {f : ¥ — X | f is a mapping},
B={fe€eA | 3z €X: f(x) =z} and C = A— B. Then |A] = n", |B| =

n"™ — (n—1)" and |C]| = (n — 1)". Therefore lim (=) =c¢e €

li == d
|Z]—o0 C) ’ \E\lgoo B e—1 an

im — =e — 1, where e is the Napier’s number.
IS|=oo C

5 Conclusion

In this paper, we introduced a new concept called of a power mapping. We showed
that if U is a nonempty finite set and T': U — P*(U) is a power mapping, then there
exists a nonempty subset F of U such that T"(F) = F and F is called a fixed point.
We proved if U is a nonempty finite set, then the power mapping 7' : U — P(U) has a
nonempty fixed point, if and only if [U] # 0. We showed that if PF(T) = {[z]|z € [U]}
then Fiz(T) = {U,exlz] | X € PF(T)}.
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