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1 Introduction

It is well-established that the fuzzy concepts hold significant importance
in multiple disciplines such as engineering, medicine, management, and
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mathematics. Two topics from fuzzy theory that can be very relevant
are t-norm and fuzzy norm. In this paper, we will present specific infor-
mation to one of the fuzzy definitions called fuzzy norm, that is a basic
notion in fuzzy functional analysis.
In 1965, Zadeh [11] introduced fuzzy sets to the world of science through
a scientific paper. The fuzzy sets serve as a uncertain mathematical
model in the field of analysis. First time, A .K. Katsaras, defined a
concept called fuzzy norm in [4]. Also, some analytical and topologi-
cal definitions using fuzzy norm are stated in [10]. In later years, T.
Bag and S. K. Samanta in [1], gave a newer definition of fuzzy norm,
working with that definition facilitated the procedure of proving theo-
rems. R. Saadati and J. H. Park in [7] by using t-norms and continuous
t-conorms, have reached to intuitionistic fuzzy normed spaces. O. Grig-
orenko, J. Minana, and O. Valero [3], introduced a method for making a
fuzzy metric. T. Binzar, F. Pater, and S. Nadaban [2] investigated the
relationship between fuzzy normed algebras.
The main motivation of this paper is to identify new fuzzy norms and
new algebra fuzzy norms. In this paper, we state that a new CATN can
be obtained from additive and multiplicative generators of a previous
CATN. This method shows that countless of unknown CATN can be
obtained.
The rest of the paper is organized as follows : In Section 2, we mention
the definitions of t-norm, additive generator, multiplicative generator,
pseudo-inverse, fuzzy norm, and etc. Some new results are stated in
section 3.

2 Definitions

Definition 2.1. [3] A triangular norm (briefly, t-norm) is a function
⋆ : [0, 1]2 −→ [0, 1] that for each (α, β, γ) ∈ [0, 1]3 we have :

1) α ⋆ β = β ⋆ α,

2) α ⋆ (β ⋆ γ) = (α ⋆ β) ⋆ γ,

3) α ⋆ β ≥ α ⋆ γ, for β ≥ γ,

4) α ⋆ 1 = α.
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Definition 2.2. [5] A t-norm ⋆ : [0, 1]2 −→ [0, 1] is called Archimedean
t-norm if for each (α, β) ∈ (0, 1)×(0, 1) there is k ∈ N such that α(k) < β
where

α(k) =

k−times︷ ︸︸ ︷
α ⋆ α ⋆ · · · ⋆ α .

Also, a continuous t-norm is Archimedean iff α⋆α < α for all 0 < α < 1
[5].

Example 2.3. If ⋆L : [0, 1]2 −→ [0, 1] and ⋆p : [0, 1]2 −→ [0, 1] are
defined by α ⋆L β = max {α+ β − 1, 0} and α ⋆p β = αβ, then ⋆L and
⋆p are Archimedean t-norm.

Definition 2.4. [5] Let Ψ : [0, 1] −→ [0,∞] be a decreasing function.
Then Ψ(−1) : [0,∞] −→ [0, 1] is pseudo-inverse of Ψ that is defined by

Ψ(−1) (γ) = sup{ζ ∈ [0, 1] : Ψ (ζ) > γ}

where we assume that sup ∅ = 0. Also if Ψ is continuous and strictly
decreasing, then we have :

Ψ(−1) (γ) =


1, 0 ≤ γ < Ψ(1)

Ψ−1 (γ) , Ψ(1) ≤ γ < Ψ(0)
0, Ψ(0) ≤ γ ≤ ∞

.

In particular, if Ψ is continuous, strictly decreasing, and Ψ(1) = 0, then

Ψ(−1) (γ) =

{
Ψ−1 (γ) , 0 ≤ γ < Ψ(0)

0, Ψ(0) ≤ γ ≤ ∞ .

Definition 2.5. [5] Let Ψ : [0, 1] −→ [0, 1] be an increasing function.
Then Ψ(−1) : [0, 1] −→ [0, 1] is pseudo-inverse of Ψ that is defined by

Ψ(−1) (γ) = sup{ζ ∈ [0, 1] : Ψ (ζ) < γ}

where we assume that sup ∅ = 0. Also if Ψ is continuous and strictly
increasing, then we have :

Ψ(−1) (γ) =


0, 0 ≤ γ < Ψ(0)

Ψ−1 (γ) , Ψ(0) ≤ γ < Ψ(1)
1, Ψ(1) ≤ γ ≤ 1

.
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In particular, if Ψ is continuous, strictly increasing, and Ψ(1) = 1, then

Ψ(−1) (γ) =

{
0, 0 ≤ γ < Ψ(0)

Ψ−1 (γ) , Ψ(0) ≤ γ ≤ 1
.

Definition 2.6. [5] A multiplicative generator (MG) of a t-norm ⋆ is a
strictly increasing function ϱ : [0, 1] −→ [0, 1] which is right-continuous
at ζ = 0 and ϱ (1) = 1 such that for each (ζ, γ) ∈ [0, 1]× [0, 1],

ϱ (ζ) ϱ (γ) ∈ Ran (ϱ) ∪ [0, ϱ (0)]

and

ζ ⋆ γ = ϱ(−1) (ϱ (ζ) ϱ (γ)) .

Corollary 2.7. [5] Let ϱ : [0, 1] −→ [0, 1] be a strictly increasing
function which is right-continuous at ζ = 0, ϱ (1) = 1 and for each
(ζ, γ) ∈ [0, 1]× [0, 1],

ϱ (ζ) ϱ (γ) ∈ Ran (ϱ) ∪ [0, ϱ (0)] .

If ⋆ : [0, 1]2 −→ [0, 1] is defined by

ζ ⋆ γ = ϱ(−1) (ϱ (ζ) ϱ (γ)) ,

then ⋆ is a t-norm.

Corollary 2.8. [5] Let ⋆ : [0, 1]2 −→ [0, 1] be a t-norm. Then ⋆ is a
CATN iff there exists a continuous multiplicative generator (CMG) of
⋆.

Definition 2.9. [3] An additive generator (AG) of a t-norm ⋆ is a
strictly decreasing function ξ⋆ : [0, 1] −→ [0,∞] which is also right-
continuous at ζ = 0 and ξ⋆ (1) = 0. Also for all (ζ, γ) ∈ [0, 1] × [0, 1],
The following are valid :

ξ⋆ (ζ) + ξ⋆ (γ) ∈ Ran (ξ⋆) ∪ [ξ⋆ (0) ,∞]

and

ζ ⋆ γ = ξ
(−1)
⋆ (ξ⋆ (ζ) + ξ⋆ (γ)) .
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Proposition 2.10. [3] Let ξ : [0, 1] −→ [0,∞] be a strictly decreasing
function with ξ (1) = 0 and

ξ (ζ) + ξ (γ) ∈ Ran (ξ) ∪ [ξ (0) ,∞]

for all (ζ, γ) ∈ [0, 1]× [0, 1]. Then ⋆ : [0, 1]2 −→ [0, 1] defined by

ζ ⋆ γ = ξ(−1) (ξ (ζ) + ξ (γ))

is a t-norm.

Theorem 2.11. [3] A t-norm ⋆ is a CATN iff there exists a CAG such
as ξ⋆ such that for each (ζ, γ) ∈ [0, 1]× [0, 1],

ζ ⋆ γ = ξ
(−1)
⋆ (ξ⋆ (ζ) + ξ⋆ (γ)) .

In the following, we will state that by using a CAG and a CMG of
CATN ⋆, a new CAG and consequently a new t-norm can be obtained.

Corollary 2.12. Let ⋆ be a CATN and ξ⋆ and ϱ⋆ be CAG and CMG
of ⋆ respectively. If ξ⋆ (0) = ∞, then h : [0, 1] −→ [0,∞] where h (ζ) =
ξ⋆ (ζ)− ϱ⋆ (ζ) + 1 is a CAG of ⋆′ where

ζ ⋆′ γ = h(−1) (h (ζ) + h (γ))

for all (ζ, γ) ∈ [0, 1]× [0, 1].

Proof. Since ξ⋆ and ϱ⋆ are continuous, h is continuous. As ξ⋆ is strictly
decreasing and ϱ⋆ is strictly increasing, h is strictly decreasing. Also
h (1) = 0 and h (0) = ∞. Hence the continuity of h implies that
Ran (h) = [0,∞]. Therefore h (ζ) + h (γ) ∈ Ran (h) for all ζ, γ ∈ [0, 1].
Applying Proposition 2.10, we can conclude that h is a CAG of ⋆′. □

Definition 2.13. [9] Let Z be a linear space and ⋆ be a t-norm. A
function ℵ : Z × R −→ [0, 1] is named a fuzzy norm on Z if for all
ζ, γ ∈ Z and all s, t ∈ R, we have :

1) ℵ (ζ, t) = 0 for all t ≤ 0.

2) ℵ (ζ, t) = 1 for all t > 0 iff ζ = 0.
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3) ℵ (µζ, t) = ℵ
(
ζ, t

|µ|

)
for all µ ̸= 0 and t ∈ R.

4) ℵ (ζ + γ, s+ t) ≥ ℵ (ζ, s) ⋆ ℵ (γ, t) for all s, t ∈ R.

5) ℵ (ζ, .) is increasing on R and limt→∞ ℵ (ζ, t) = 1.

Considering the above definition, (Z,ℵ, ⋆) is called a fuzzy normed
space.

3 Main Results

In this section, let ⋆ be a CATN and ξ⋆ be the corresponding CAG of ⋆.

Also let ξ
(−1)
⋆ be the pseudo-inverse of ξ⋆.

Theorem 3.1. Let (Z, ∥·∥) be a normed space, ⋆ be a CATN and ξ⋆
be a CAG of ⋆. Then (Z,ℵ⋆, ⋆) is a fuzzy normed space which for each
ζ ∈ Z and each t ∈ R is defined as follows :

ℵ⋆ (ζ, t) =

ξ
(−1)
⋆

(
∥ζ∥
t

)
, t > 0

0, t ≤ 0
.

Proof. If ξ⋆ (0) = ∞, then by Definition 2.4 we have

ℵ⋆ (ζ, t) =

ξ−1
⋆

(
∥ζ∥
t

)
,

∥ζ∥
t

≥ 0

0, t ≤ 0
.

In this case, we only prove part 4 of Definition 2.13. Let ζ, γ ∈ Z and
s, t ∈ R. If s ≤ 0 or t ≤ 0, then ℵ⋆ (ζ, s) = 0 or ℵ⋆ (γ, t) = 0. Hence

ℵ⋆ (ζ + γ, s+ t) ≥ ℵ⋆ (ζ, s) ⋆ ℵ⋆ (γ, t) = 0.

If s > 0 and t > 0, then

∥ζ + γ∥
s+ t

≤ ∥ζ∥+ ∥γ∥
s+ t

≤ ∥ζ∥
s

+
∥γ∥
t

.
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Hence

ℵ⋆ (ζ + γ, s+ t) = ξ−1
⋆

(
∥ζ + γ∥
s+ t

)
≥ ξ−1

⋆

(
∥ζ∥
s

+
∥γ∥
t

)
= ξ−1

⋆

(
ξ⋆

(
ξ−1
⋆

(
∥ζ∥
s

))
+ ξ⋆

(
ξ−1
⋆

(
∥γ∥
t

)))
= ξ

(−1)
⋆

(
ξ⋆

(
ξ
(−1)
⋆

(
∥ζ∥
s

))
+ ξ⋆

(
ξ
(−1)
⋆

(
∥γ∥
t

)))
= ξ

(−1)
⋆

(
∥ζ∥
s

)
⋆ ξ

(−1)
⋆

(
∥γ∥
t

)
= ℵ⋆ (ζ, s) ⋆ ℵ⋆ (γ, t) .

Now, we prove the theorem for ξ⋆ (0) < ∞. In this case

ℵ⋆ (ζ, t) =

ξ
(−1)
⋆

(
∥ζ∥
t

)
, t > 0

0, t ≤ 0

=


ξ−1
⋆

(
∥ζ∥
t

)
, 0 ≤ ∥ζ∥

t
< ξ⋆ (0) , t > 0

0, ξ⋆ (0) ≤
∥ζ∥
t

, t > 0

0, t ≤ 0

.

For each t ≤ 0, clearly ℵ⋆ (ζ, t) = 0. To prove the second property, if for

each t > 0, ℵ⋆ (ζ, t) = 1. Then ξ−1
⋆

(
∥ζ∥
t

)
= 1. Hence

∥ζ∥
t

= ξ⋆ (1) = 0

for all t > 0. Then ζ = 0. Conversely, if ζ = 0, then for each t > 0,

ℵ⋆ (0, t) = ξ−1
⋆ (0) = 1.
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To prove the third part, let ζ ∈ Z, t ∈ R and α ̸= 0. We have :

ℵ⋆ (αζ, t) =


ξ−1
⋆

(
∥αζ∥
t

)
, 0 ≤ ∥αζ∥

t
< ξ⋆ (0) , t > 0

0, ξ⋆ (0) ≤
∥αζ∥
t

, t > 0

0, t ≤ 0

=



ξ−1
⋆

∥ζ∥
t

|α|

 , 0 ≤ ∥ζ∥
t

|α|

< ξ⋆ (0) , t > 0

0, ξ⋆ (0) ≤
∥ζ∥
t

|α|

, t > 0

0, t ≤ 0

=



ξ−1
⋆

∥ζ∥
t

|α|

 , 0 ≤ ∥ζ∥
t

|α|

< ξ⋆ (0) ,
t

|α|
> 0

0, ξ⋆ (0) ≤
∥ζ∥
t

|α|

,
t

|α|
> 0

0,
t

|α|
≤ 0

= ℵ⋆

(
ζ,

t

|α|

)
.

To prove the fourth part, let ζ, γ ∈ Z and s, t ∈ R. If s ≤ 0 or t ≤ 0, then
ℵ⋆ (ζ, s) = 0 or ℵ⋆ (γ, t) = 0. Since a ⋆ 0 = 0 ⋆ b = 0 for all a, b ∈ [0, 1],

ℵ⋆ (ζ + γ, s+ t) ≥ ℵ⋆ (ζ, s) ⋆ ℵ⋆ (γ, t) = 0.

Now we suppose that s, t ∈ (0,∞). If ξ⋆ (0) ≤
∥ζ∥
s

or ξ⋆ (0) ≤
∥γ∥
t

, then

ℵ⋆ (ζ, s) = 0 or ℵ⋆ (γ, t) = 0. Hence

ℵ⋆ (ζ + γ, s+ t) ≥ ℵ⋆ (ζ, s) ⋆ ℵ⋆ (γ, t) = 0.
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If 0 ≤ ∥ζ∥
s

< ξ⋆ (0) and 0 ≤ ∥γ∥
t

< ξ⋆ (0), then

ℵ⋆ (ζ, s) = ξ
(−1)
⋆

(
∥ζ∥
s

)
= ξ−1

⋆

(
∥ζ∥
s

)
and

ℵ⋆ (γ, t) = ξ
(−1)
⋆

(
∥γ∥
t

)
= ξ−1

⋆

(
∥γ∥
t

)
.

Since ξ
(−1)
⋆ is decreasing on [0,∞] and

∥ζ + γ∥
s+ t

≤ ∥ζ∥
s

+
∥γ∥
t

,

ℵ⋆ (ζ + γ, s+ t) = ξ
(−1)
⋆

(
∥ζ + γ∥
s+ t

)
≥ ξ

(−1)
⋆

(
∥ζ∥
s

+
∥γ∥
t

)
= ξ

(−1)
⋆

(
ξ⋆

(
ξ−1
⋆

(
∥ζ∥
s

))
+ ξ⋆

(
ξ−1
⋆

(
∥γ∥
t

)))
= ξ

(−1)
⋆

(
ξ⋆

(
ξ
(−1)
⋆

(
∥ζ∥
s

))
+ ξ⋆

(
ξ
(−1)
⋆

(
∥γ∥
t

)))
= ξ

(−1)
⋆

(
∥ζ∥
s

)
⋆ ξ

(−1)
⋆

(
∥γ∥
t

)
= ℵ⋆ (ζ, s) ⋆ ℵ⋆ (γ, t) .

This shows that for each ζ, γ ∈ Z and s, t ∈ R,

ℵ⋆ (ζ + γ, s+ t) ≥ ℵ⋆ (ζ, s) ⋆ ℵ⋆ (γ, t) .

To prove the fifth part, suppose that ζ ∈ Z, t1, t2 ∈ R and t1 < t2. If
t1 ≤ 0, then

0 = ℵ⋆ (ζ, t1) ≤ ℵ⋆ (ζ, t2) .

If t1 > 0, then
∥ζ∥
t2

≤ ∥ζ∥
t1

.

In this case, if 0 ≤ ∥ζ∥
t1

< ξ⋆ (0), then 0 ≤ ∥ζ∥
t2

< ξ⋆ (0) and as a result

ξ
(−1)
⋆

(
∥ζ∥
t2

)
= ξ−1

⋆

(
∥ζ∥
t2

)
≥ ξ−1

⋆

(
∥ζ∥
t1

)
= ξ

(−1)
⋆

(
∥ζ∥
t1

)
.
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If ξ⋆ (0) ≤
∥ζ∥
t1

, then

ξ
(−1)
⋆

(
∥ζ∥
t2

)
≥ 0 = ξ

(−1)
⋆

(
∥ζ∥
t1

)
.

This means that ℵ⋆ (ζ, t2) ≥ ℵ⋆ (ζ, t1). Therefore, ℵ⋆ is increasing with

respect to t. Now since limt−→∞
∥ζ∥
t

= 0, there exists an M > 0 such

that for each t ≥ M ,
∥ζ∥
t

< ξ⋆ (0). Hence,

ξ
(−1)
⋆

(
∥ζ∥
t

)
= ξ−1

⋆

(
∥ζ∥
t

)
.

So

lim
t−→∞

ℵ⋆ (ζ, t) = lim
t−→∞

ξ
(−1)
⋆

(
∥ζ∥
t

)
= lim

t−→∞
ξ−1
⋆

(
∥ζ∥
t

)
= ξ−1

⋆

(
lim

t−→∞

∥ζ∥
t

)
= ξ−1

⋆ (0)

= 1.

□

Example 3.2. Let (Z, ∥·∥) be a normed space, α ⋆p β = αβ, ξ⋆p (α) =
−Ln (α) for all α, β ∈ [0, 1], where Ln (0) = −∞. If ℵ⋆p : Z×R −→ [0, 1]
is defined by

ℵ⋆p (ζ, t) =

e
−
∥ζ∥
t , t > 0

0, t ≤ 0

for all ζ ∈ Z and t ∈ R, then
(
Z,ℵ⋆p , ⋆p

)
is a fuzzy normed space.
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Example 3.3. Let Z be a topological space and Cb (Z) be the set of all
complex valued, bounded and continuous functions on Z equipped with
the norm

∥f∥∞ = sup {|f (ζ)| , ζ ∈ Z}

for all f ∈ Cb (Z). If

α ⋆E β =
αβ

1 + (1− α) (1− β)

and ξ⋆E (α) = ln
2− α

α
for each (α, β) ∈ [0, 1]× [0, 1] such that ξ⋆E (0) =

∞, then for each t ∈ R and g ∈ Cb (Z),

ℵ⋆E (g, t) =


2

e

∥g∥∞
t


+ 1

, t > 0

0, t ≤ 0

is a fuzzy norm on functional space Cb (Z).

Theorem 3.4. [6] Let Z be a linear space and suppose that (Z,ℵ1, ⋆1)
and (Z,ℵ2, ⋆2) are fuzzy normed spaces. If there exist c1, c2 > 0 such
that

ℵ2 (c1ζ, t) ≤ ℵ1 (ζ, t) ≤ ℵ2 (c2ζ, t)

for each ζ ∈ Z and t ∈ R, then ℵ1 and ℵ2 are equivalent fuzzy norms on
Z.

Proposition 3.5. Let Z be a linear space and ∥ · ∥1 and ∥ · ∥2 be two
norms on Z such that c1 ∥·∥2 ≤ ∥·∥1 ≤ c2 ∥·∥2. Also let ⋆ : [0, 1]2 −→
[0, 1] be a CATN. Define ℵ(1)

⋆ and ℵ(2)
⋆ by

ℵ(1)
⋆ (ζ, t) =

ξ
(−1)
⋆

(
∥ζ∥1
t

)
, t > 0

0, t ≤ 0
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and

ℵ(2)
⋆ (ζ, t) =

ξ
(−1)
⋆

(
∥ζ∥2
t

)
, t > 0

0, t ≤ 0
.

Then, ℵ(1)
⋆ and ℵ(2)

⋆ are equivalent fuzzy norms.

Proof. We show that

ℵ(2)
⋆ (c2ζ, t) ≤ ℵ(1)

⋆ (ζ, t) ≤ ℵ(2)
⋆ (c1ζ, t) (1)

for all ζ ∈ Z and t ∈ R. Clearly

ℵ(2)
⋆ (c1ζ, t) =

ξ
(−1)
⋆

(
c1 ∥ζ∥2

t

)
, t > 0

0, t ≤ 0

and

ℵ(2)
⋆ (c2ζ, t) =

ξ
(−1)
⋆

(
c2 ∥ζ∥2

t

)
, t > 0

0, t ≤ 0

for all ζ ∈ Z and t ∈ R. Since for each ζ ∈ Z, c1 ∥ζ∥2 ≤ ∥ζ∥1,
c1 ∥ζ∥2

t
≤

∥ζ∥1
t

for all t > 0. By decreasing property of ξ
(−1)
⋆ we have

ξ
(−1)
⋆

(
c1 ∥ζ∥2

t

)
≥ ξ

(−1)
⋆

(
∥ζ∥1
t

)
, t > 0.

Therefore,

ℵ(2)
⋆ (c1ζ, t) ≥ ℵ(1)

⋆ (ζ, t)

for all t > 0. Similarly, it can be shown that

ℵ(1)
⋆ (ζ, t) ≥ ℵ(2)

⋆ (c2ζ, t)

for all t > 0. Hence inequality (1) hold for all ζ ∈ Z and t ∈ R. □
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Definition 3.6. [9] Let (Z,ℵ, ⋆) be a fuzzy normed space. A sequence
{ζn}n≥1 in Z is said to be fuzzy convergent, if there exists ζ ∈ Z such
that for each 0 < α < 1 and t > 0, there exists K ∈ N such that for all
n ≥ K,

ℵ (ζn − ζ, t) > 1− α.

Definition 3.7. [9] Let (Z,ℵ, ⋆) be a fuzzy normed space. A sequence
{ζn}n≥1 in Z is said to be a fuzzy Cauchy sequence if for each 0 < α < 1
and t > 0, there exists K ∈ N such that for all n > m ≥ K,

ℵ (ζn − ζm, t) > 1− α.

Definition 3.8. [8] A fuzzy normed space (Z,ℵ, ⋆) is said to be a fuzzy
Banach space, if every fuzzy Cauchy sequence, is fuzzy convergent in Z.

Proposition 3.9. Let (Z, ∥·∥) be a Banach space and ⋆ be a CATN.
Then (Z,ℵ⋆, ⋆) is a fuzzy Banach space.

Proof. Suppose that {ζn}n≥1 is a fuzzy Cauchy sequence in Z. We
show that {ζn}n≥1 is a Cauchy sequence with respect to the norm ∥·∥.
Let ϵ > 0 be given. Since ξ⋆ : [0, 1] −→ [0,∞] is continuous at α0 = 1
and ξ⋆ (1) = 0, there exists 0 < α1 < 1 such that ξ⋆ (1− α1) < ϵ. By
Definition 3.7, for α1 and t = 1, there exists K ∈ N such that for all
n > m ≥ K

ℵ⋆ (ζn − ζm, 1) = ξ
(−1)
⋆

(
∥ζn − ζm∥

1

)
> 1− α1 > 0.

So ξ
(−1)
⋆ (∥ζn − ζm∥) = ξ−1

⋆ (∥ζn − ζm∥) and consequently

ξ−1
⋆ (∥ζn − ζm∥) > 1− α1.

Because ξ⋆ is strictly decreasing, we obtain

∥ζn − ζm∥ < ξ⋆ (1− α1) < ϵ

for all n > m ≥ K. This shows that {ζn}n≥1 is a Cauchy sequence. The

completeness of Z implies that there exists ζ ∈ Z such that ζn
∥·∥−→ ζ.
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For t > 0, since limn−→∞
∥ζn − ζ∥

t
= 0, there exists n0 ∈ N such that

∥ζn − ζ∥
t

< ξ⋆ (0) for all n ≥ n0. Hence

lim
n−→∞

ℵ⋆ (ζn − ζ, t) = lim
n−→∞

ξ
(−1)
⋆

(
∥ζn − ζ∥

t

)
= lim

n−→∞
ξ−1
⋆

(
∥ζn − ζ∥

t

)
= ξ−1

⋆

(
lim

n−→∞

∥ζn − ζ∥
t

)
= ξ−1

⋆ (0)

= 1.

So {ζn}n≥1 is fuzzy convergent to ζ. This shows that Z is a fuzzy Banach
space. □

Definition 3.10. [2] Let Z be an algebra, ⋆1, ⋆2 be t-norms and (Z,ℵ, ⋆1)
be a fuzzy normed space. If

ℵ (ζγ, st) ≥ ℵ (ζ, s) ⋆2 ℵ (γ, t) (2)

for all ζ, γ ∈ Z and s, t ∈ R, then (Z,ℵ, ⋆1, ⋆2) is called a FNA (Fuzzy
normed algebra).

Corollary 3.11. Let (Z, ∥ · ∥) be a normed algebra and ⋆H and ⋆p be
defined as follows :

α ⋆H β =

0, α = β = 0
αβ

α+ β − αβ
, o.w.

and α ⋆p β = αβ for all (α, β) ∈ [0, 1]× [0, 1]. Then (Z,ℵ⋆H , ⋆H , ⋆p) is a
FNA.

Proof. To prove, we only check inequality (2) for ℵ⋆H . Since ξ⋆H (α) =
1− α

α
which ξ⋆H (0) = ∞ and ξ

(−1)
⋆H (α) = ξ−1

⋆H
(α) =

1

1 + α
, by Theorem
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3.1 we have

ℵ⋆H (ζ, t) =


t

t+ ∥ζ∥
, t > 0

0, t ≤ 0
.

If s ≤ 0 or t ≤ 0, then inequality

ℵ⋆H (ζγ, st) ≥ ℵ⋆H (ζ, s) ⋆P ℵ⋆H (γ, t)

is obvious. If s > 0 and t > 0, we show that

st

st+ ∥ζγ∥
≥

(
s

s+ ∥ζ∥

)(
t

t+ ∥γ∥

)
. (3)

But

∥ζγ∥ ≤ ∥ζ∥ ∥γ∥
≤ ∥ζ∥ ∥γ∥+ s ∥γ∥+ t ∥ζ∥ .

So

st+ ∥ζγ∥ ≤ st+ ∥ζ∥ ∥γ∥+ s ∥γ∥+ t ∥ζ∥
= (s+ ∥ζ∥) (t+ ∥γ∥)

and consequently

st

st+ ∥ζγ∥
≥ s

s+ ∥ζ∥
· t

t+ ∥γ∥
.

Therefore inequality (3) holds. □

Proposition 3.12. Let Z be a normed algebra, ⋆ be a CATN and ξ⋆ be
a CAG of ⋆ such that ξ⋆ (0) ≤ 1. Then (Z,ℵ⋆, ⋆, ⋆) is a FNA.

Proof. We only prove inequality (2) for ℵ⋆. Let ζ, γ ∈ Z and s, t > 0. If

ξ⋆ (0) ≤
∥ζ∥
s

or ξ⋆ (0) ≤
∥γ∥
t

, then ℵ⋆ (ζ, s) = 0 or ℵ⋆ (γ, t) = 0. Hence

ℵ⋆ (ζγ, st) ≥ ℵ⋆ (ζ, s) ⋆ ℵ⋆ (γ, t) = 0.
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If 0 ≤ ∥ζ∥
s

< ξ⋆ (0) ≤ 1 and 0 ≤ ∥γ∥
t

< ξ⋆ (0) ≤ 1, then

∥ζγ∥
st

≤ ∥ζ∥
s

∥γ∥
t

≤ ∥ζ∥
s

+
∥γ∥
t

.

Hence,

ℵ⋆ (ζγ, st) = ξ
(−1)
⋆

(
∥ζγ∥
st

)
≥ ξ

(−1)
⋆

(
∥ζ∥
s

+
∥γ∥
t

)
= ξ

(−1)
⋆

(
ξ⋆

(
ξ−1
⋆

(
∥ζ∥
s

))
+ ξ⋆

(
ξ−1
⋆

(
∥γ∥
t

)))
= ξ−1

⋆

(
∥ζ∥
s

)
⋆ ξ−1

⋆

(
∥γ∥
t

)
= ξ

(−1)
⋆

(
∥ζ∥
s

)
⋆ ξ

(−1)
⋆

(
∥γ∥
t

)
= ℵ⋆ (ζ, s) ⋆ ℵ⋆ (γ, t) .

□
We will show further that for a CAG of ⋆ where ξ⋆ (0) > 1, it is

possible to reach an algebra fuzzy norm.

Lemma 3.13. Suppose that ⋆ is a CATN and ξ⋆ is a CAG of ⋆. Then

1) (kξ⋆)
(−1) (λ) = ξ

(−1)
⋆

(
λ

k

)
, 0 < k < ∞.

2) α ⋆ β = ξ
(−1)
⋆ (ξ⋆ (α) + ξ⋆ (β)) = (kξ⋆)

(−1) (kξ⋆ (α) + kξ⋆ (β))

for each 0 ≤ α ≤ 1, 0 ≤ β ≤ 1 and 0 < k < ∞.

Proof. 1) Suppose that λ ∈ [0,∞] and 0 < k < ∞. Therefore

(kξ⋆)
(−1) (λ) = sup {0 ≤ α ≤ 1, kξ⋆ (α) > λ}

= sup

{
0 ≤ α ≤ 1, ξ⋆ (α) >

λ

k

}
= ξ

(−1)
⋆

(
λ

k

)
.
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2) Let (α, β) ∈ [0, 1]× [0, 1] and 0 < k < ∞. Therefore by part 1 we
have,

(kξ⋆)
(−1) (kξ⋆ (α) + kξ⋆ (β)) = ξ

(−1)
⋆

(
kξ⋆ (α) + kξ⋆ (β)

k

)
= (ξ⋆)

(−1) (ξ⋆ (α) + ξ⋆ (β))

= α ⋆ β.

□
Lemma (3.13) states that t-norms produced by ξ⋆ and kξ⋆ are the

same.

Remark 3.14. Let ⋆ be a CATN and 0 < k < ∞. Then the fuzzy norm
ℵ⋆ generated by kξ⋆ as a CAG on a norm space (Z, ∥ · ∥) is as follows :

ℵ⋆ (ζ, t) =

(kξ⋆)
(−1)

(
∥ζ∥
t

)
, t > 0

0, t ≤ 0

=


(kξ⋆)

−1

(
∥ζ∥
t

)
, 0 ≤ ∥ζ∥

t
< kξ⋆ (0) , t > 0

0, kξ⋆ (0) ≤
∥ζ∥
t

, t > 0

0, t ≤ 0

for all ζ ∈ Z and t ∈ R.
Proposition 3.15. Let (Z, ∥ · ∥) be a normed algebra, ⋆ be a CATN and
ξ⋆ be a CAG of ⋆ such that 1 < ξ⋆ (0) < ∞. If ℵ⋆ is the fuzzy norm

generated by kξ⋆ where k =
1

ξ⋆ (0)
, then (Z,ℵ⋆, ⋆, ⋆) is a FNA.

Proof. By Lemma 3.13, kξ⋆ is a CAG of ⋆. Since kξ⋆ (0) = 1, by
applying Proposition 3.12 the proof is trivial. □

Proposition 3.16. Let ⋆ be a CATN and ξ⋆ be a CAG of ⋆ such that
ξ⋆ (0) = ∞. If h : [0, 1] −→ [0,∞] is defined by h (a) = ξ⋆

(
e(a−1)

)
for

each 0 ≤ a ≤ 1, then

h(−1) (b) =


h−1 (b) , 0 ≤ b < ξ⋆

(
1

e

)
0, b ≥ ξ⋆

(
1

e

)
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where h−1 (b) = Ln
(
ξ−1
⋆ (b)

)
+ 1 for all b ∈

[
0, ξ⋆

(
1

e

)]
. Moreover

⋆′ : [0, 1]2 −→ [0, 1] defined by

α ⋆′ β = h(−1) (h (α) + h (β))

is a CATN.

Proof. Since h is a CAG of ⋆′, by Theorem 2.11, ⋆′ is a CATN. □

Proposition 3.17. Let (Z, ∥ · ∥) be a normed algebra, ⋆ be a CATN and
ξ⋆ be a CAG of ⋆ such that ξ⋆ (0) = ∞. If h (a) = ξ⋆

(
e(a−1)

)
for all

0 ≤ a ≤ 1, α ⋆′ β = h(−1) (h (α) + h (β)) for all (α, β) ∈ [0, 1] × [0, 1]

and ℵ⋆′ is the fuzzy norm generated by kh where k =
1

ξ⋆

(
1

e

) , then

(Z,ℵ⋆′ , ⋆
′, ⋆′) is a FNA.

Proof. Since kh (0) = 1, by Proposition 3.12, the proof is obvious. □
By Propositions 3.12, 3.15 and 3.17 and using a CATN ⋆, a FNA

can be produced. Within the next proposition, we are going appear that
with each CATN, a new CATN can be made.

Proposition 3.18. Let ⋆ be a CATN and ξ⋆ and ϱ⋆ be the corresponding
CAG and CMG of ⋆ respectively. If h : [0, 1] −→ [0,∞] is defined by

h (a) = (ξ⋆ ◦ ϱ⋆) (a)

for all 0 ≤ a ≤ 1, then h is a CAG of ⋆′ where

α ⋆′ β = h(−1) (h (α) + h (β))

for all (α, β) ∈ [0, 1]× [0, 1].

Proof. Since h is a CAG of ⋆′, by Theorem 2.11, ⋆′ is a CATN. □

Corollary 3.19. Let ⋆ be a CATN and ξ
(1)
⋆ , ξ

(2)
⋆ be two CAGs of ⋆. If

ℵ(1)
⋆ and ℵ(2)

⋆ are fuzzy norms generated by ξ
(1)
⋆ and ξ

(2)
⋆ on a normed

space (Z, ∥ · ∥) respectively, then there exists α ∈ (0,∞) such that

ℵ(2)
⋆ (ζ, t) = ℵ(1)

⋆ (ζ, αt)
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for all ζ ∈ Z and t ∈ R. In particular if α ≤ 1, then

ℵ(2)
⋆ (ζ, t) ≤ ℵ(1)

⋆ (ζ, t)

for all ζ ∈ Z and t ∈ R. If α > 1, then

ℵ(2)
⋆ (ζ, t) ≥ ℵ(1)

⋆ (ζ, t)

for all ζ ∈ Z and t ∈ R.

Proof. Since for each CATN ⋆, a CAG of ⋆ is uniquely determined up
to a positive multiplicative constant [5], then we assume that

ξ
(2)
⋆ = αξ

(1)
⋆

for some α ∈ (0,∞). Hence

ℵ(2)
⋆ (ζ, t) =


(
ξ
(2)
⋆

)(−1)
(
∥ζ∥
t

)
, t > 0

0, t ≤ 0

=


(
αξ

(1)
⋆

)(−1)
(
∥ζ∥
t

)
, t > 0

0, t ≤ 0

=


(
ξ
(1)
⋆

)(−1)
(
∥ζ∥
αt

)
, t > 0

0, t ≤ 0

=


(
ξ
(1)
⋆

)(−1)
(
∥ζ∥
αt

)
, αt > 0

0, αt ≤ 0

= ℵ(1)
⋆ (ζ, αt)

for all ζ ∈ Z and t ∈ R. Since ℵ⋆ (ζ, ·) is increasing on R, the remain of
the proof is obvious. □

Conclusion

In this paper, we conclude that it is possible to reach a fuzzy norm and
an algebra fuzzy norm on a normed space (Z, ∥ · ∥) by applying a CATN
⋆ using the mentioned methods.
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