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1 Introduction

In this paper, R will always denote a non-trivial commutative Noetherian ring and
N will denote an R-module. By a finite R-module, we mean an R-module which
is finitely generated. For the set of non-negative integers and the category of all
R-modules and R-homomorphisms we shall use Ng and Mod(R), respectively.

It is well known that for each i > 0, for the i-th local cohomology R-module N
relative to the ideal b, there is a natural R-isomorphism as follows:

H(N) = lim Exty (R/6",N).
neN

Let @ # 0 be a set of ideals of R. Recall that ® is called a system of ideals if
the multiplication of any two ideals of ®, always, contains an ideal of ®. For such a
system and for any R-module N, we consider the following submodule

I's(N):={x € N|bz =0 for someb € ®}.

Then I'p is a covariant, R-linear and left exact functor from Mod(R) to Mod(R).
When @ is taken as the power of an ideal, say b , then H&(—) is naturally equivalent
to the ordinary functor H¢(—). As of now, we refer to Hs(N) as the general local
cohomology module. The ordinary local cohomology and its generalization on a
system of ideals, have been studied in [7, 8, 9, 12].

Also, it is well known that, Faltings’ Local-global Principle for the finiteness of
local cohomology modules, [11, satzl], states that for any integer m > 0, Hg (N) is
a finite R-module for every j < m if and only if HgRF (Ny) is a finite Rp-module
for every j < m and any p € Spec(R). Hence, another formulation of fs(N), the
finiteness dimension of N with respect to b, (see [9, Theorem 9.6.2]), is as follows:

fo(N) = inf{j € No| H{(N) is not a finite R-module}
= inf{fer, (INp)|p is a prime ideal of R}.

Then, for any n € Ny, Bahmanpour et al., in [5], presented the n-th finiteness
dimension fi'(N) of N relative to b by

fi'(N) = inf{for, (Np)|p € Supp(N/bN), dim R/p > n}.
As some applications of this notion, it is shown that
inf{i € No|H¢(N) is not minimax (weakly Laskerian)},

is equal to fi (N) (f2(N)). An R-module N is called a minimax R-module, if N/N is
Artinian module for some finite submodule N’ of N. The class of minimax modules
has been studied by Zink [21], Zoschinger [22, 23] and Rudlof [18]. Moreover, an
R-module N is called skinny or weakly Laskerian module, if Assg N/N' is a finite
set, for any submodule N’ of N (cf. [10] or [14]).

The class of in dimension < n modules is presented in [4]. The authors generalized
Faltings’ Local-global Principle on a complete local ring R, for any finite R-module
N and ideal b of R, as:
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fE(N) = hi(N) := inf{i > 0| H.(N)is not in dimension < n}.

Then Mehrvarz et al., in[15] showed that the equality f¢' (N) = hy (N) is true on
an arbitrary Noetherian (not necessarily complete and local) ring, too.

On the other hand, Tang in [20] proved a similar Local-global Principle for the
Artinianness of local cohomology modules. He proved that, for any m € N, the nec-
essary and sufficient condition for H{(N) to be Artinian for every i < m is H[pr (Ny)
to be Artinian for every ¢ < m and any p € Spec(R), in which R is an arbitrary
Noetherian ring, b is an ideal of R and N is an finite R-module (see [20, Theorem
2.2]).

In section 2, we deal with the Serre subcategories which satisfy the conditions
Cs and RF (see Definitions 2.7, 2.13) and the situations that the general local co-
homology modules belong to these Serre subcategories. Let S be a subcategory of
Mod(R). Let 0 = M’ — M — M" — 0 be an exact sequence in Mod(R). S is
said to be a Serre subcategory, whenever M € S if and only if M, M"” € S. Assume
that S is a Serre subcategory of Mod(R) satisfying the condition Cs and ¢ € Ng. As
an important achievement in this section, in Proposition 2.12, we show that HS (N)
belongs to S for every i < t if and only if H(N) belongs to S for every b € ® and
every ¢ < t.

Section 3, is about Local-global Principles. As another important result about
the ordinary local cohomology modules, Theorem 3.1, shows that if N is an R-module,
b an ideal of R and ¢ € Ny are such that H{(N) is b-cofinite Artinian R-module for
every i < t, then H{(N) € S for every i < t and for any Serre subcategory S, which
satisfies the conditions Cy and RF. An application of Theorem 3.1, we present some
equivalent conditions to the Local-global Principle for Artinianness (see Proposition
3.2). In sequel, assume that S is an arbitrary Serre subcategory that satisfies the
conditions Cs and RF, N is a finite R-module and ¢ is a non-negative integer. Set
Sa as the class of Artinian R-modules. In Corollary 3.3, we show that if Hj(N)
belongs to S for every i < t, then Hj(N) belongs to S for every i < t. Then, in
Proposition 3.7, we show that inf{i € No| Hs(N)is not Artinian} is a lower bound
for all S-depthg (V) (see Definition 3.5), i.e.,

f-depthg (V) < S-depthg (N).

As the last important result of this paper, we conclude that fg(N) = hg(N),
for any n € Ny (see Theorem 3.10). This generalizes the main results of [4, Theorem
2.5] for an arbitrary Noetherian (not necessary complete local) ring and [15, Theorem
2.10] for an arbitrary system of ideals of R.

2 General local cohomology modules and con-
ditions Cy and RF

We begin this section with one of the results of [19] which is used in most results of
this paper. Let F,T be two left exact covariant functors from Mod(R) to itself. For
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any j > 1, we shall use the j-th right derived functors of F, H and the composition
FH by F?, T and (FT)’, respectively.

Proposition 2.1. (see[/Y, Proposition2.2]) Assume that S is a Serre subcategory of
Mod(R), b is an ideal of R and N is an R-module. Let T be a covariant and left exact
functor of Mod(R) to itself such that (0 :x b) = (0 :p(x) b) for any R-module X.
Assume that T(E) is an injective R-module for any injective R-module E. Letn € N
and let Ext'; 7 (R/b,T7(N)) € S fort = n,n+ 1 and every j < n. Then Keryp € S
and Cokery € S, in which

¥ Extr(R/b, N) = Hompg(R/b, T"(N))
is the natural homomorphism. Thus
Extk(R/b,N) € § if and only if Homgr(R/b,T"(N) € S.

Proof. The assertion follows from [3, Proposition 3.1], by taking F'(—) = Homg(R/b, —).
Because FT(N) = F(N) for any R-module N. O

Corollary 2.2. Assume that S is a Serre subcategory of Mod(R), ® is a system of
ideals of R and N is an R-Module. Let n € Ny be such that Extl,(R/b, H3(N)) € S
for every i,j < n. Then Extk(R/b,N) € S if and only if Homgr(R/b, Hy(N)) € S.

Proof. Apply Proposition 2.1 for F(N) = Homg(R/b,N) and T(N) =T's(N). O

As it is mentioned in the introduction, the authors in [4], presented the class
of R-modules in dimension < n for an arbitrary integer n € Ng. An R-module N
is said to be in dimension< n, if dim Supp,(N/N’) < n, for some finite submodule
N’ of N (also see the definition of the class of FD<, in [l, Definition 2.1]). It is
obvious that, the class of in dimension < n modules is a generalization of the class of
finitely generated, Artinian, and minimax modules for some n € Ny (see [15, Remark
2.2]). Moreover, it is clear that, the class of in dimension < n modules are a Serre
subcategory of Mod(R).

Corollary 2.3. Assume that ® is a system of ideals of R and s,n € Ng are such
that the R-modules N and H%(N) are in dimension < n for every i < s. Thus, the
R-module Hompg(R/b, H3(N)/N') is in dimension < n for any in dimension < n
submodule N' of H3(N) and all b € ®. Consequently, (Assr(H3(N)/N") ﬂV(b))>n
is a finite set. B

Proof. As N is in dimension < n, one can see that the R-module Ext%(R/b, N) is
in dimension < n for every i > 0. Now, for any in dimension < n submodule N’
of H3(N), use Corollary 2.2 and the short exact sequence 0 — N’ — H3(N) —
Hi(N)/N'—0. O

‘We shall use Proposition 2.4 for some further results.

Proposition 2.4. For a Serre subcategory S of Mod(R), an ideal b of R and an
R-Module X, we have the following:
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(i) bX € S if and only if X/(0:x b) € S.
(ii) X € S if and only if there is k € No such that (0:x b*) € S and b*X € S.

Proof. (i) Let b = > Rb; where b; € R and n € N. Suppose that bX € S. Consider
i=1

the homomorphism g : X — (bX)™ by g(z) = (bjx)i=; for every x € X. Thus, the
R-module X/(0:x b) is isomorphic to a submodule of (6X)". Conversely, consider

the homomorphism f : X" — bX given by f((x;)i=;) = Y. biz;. Then f is surjective
=1

and (0 :x b)" C Ker f, so bX is a homomorphic image of (X/(0 :x b))". Now, the
assertion follows from (X/(0:x b))" € S.
(ii) This part is immediately followed by part (i) and the short exact sequence

0— (0:x b") = X = X/(0:x b*) = 0.
O

Proposition 2.5. Assume that S is a Serre subcategory of Mod(R), ® is a system
of ideals of R and N is an R-module. Suppose that b € ® and k,t € N, are such
that B*HL(N) € S for every i < t. Thus H5(N) € S for every i < t, if one of the
following statements satisfies:

(i) Ta(N) €S and Exth(R/b*, N) € S for every i < t.
(i) NeS.
(iii) Tas(N) € S and there ezists n € No such that b"N € S.

Proof. First, suppose that condition (i) holds and use induction on ¢. For ¢t = 0,1,
we do not have anything to prove. Now, assume that ¢ > 1 and the assertion is valid
for every i < t — 2 i.e., the R-modules H}(N), H3(N), -+, H5 ?(N) belong to S.
We show that Hi ' (N) € S. Since Extl; '(R/bF,N) € S and H;(N) € S, for every
i <t—1, we have (0 THLT(N) bk) € S, by Corollary 2.2. On the other hand, by the

assumption, b* H, ' (N) € S. Now, the result holds by Proposition 2.4 (ii). Under
each condition (ii) and (iii), use part (i) and Proposition 2.4 (ii). O

As a corollary of Proposition 2.5, we achieve the following result that generalizes
[9, Proposition 9.1.2].

Corollary 2.6. Assume that S is a Serre subcategory of Mod(R), N is an R-module
such that N € S and t € No. Let b be an ideal of R such that b C \/0: H{(N) for
every i < t. Then Hy(N) belongs to S for every i < t.

Assume that b is an ideal of R and S is a Serre subcategory of Mod(R). The
authors in [2], studied the Serre subcategories which satisfy the condition Cy. It is
said that S satisfies the condition Cp, if for any b-torsion R-module X, the condition
(0 :x b) € S implies that X € S (see [2, Definition 2.1]). The Examples 2.4 and
2.5 of [2], show that all the classes of zero R-modules, Artinian modules, modules
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with finite support, b-cofinite Artinian modules and the class of all R-modules M
with dim M < s, where s € Ny, satisfy the condition Cy. Recall that an R-module
X is said to be b-cofinite whenever Suppp(X) C V(b) and Exth(R/b, X) is a finite
R-module for every ¢ € Noy (see [13]).

Now, in this position, for an arbitrary system of ideals ¢ of R, we introduce the
condition Cs and then we shall conclude some results on the general local cohomology
modules. An R-module X is said to be a ®-torsion module if I'¢(X) = X and it is
said to be a ®-torsion-free module if I's(X) = 0.

Definition 2.7. Assume that S is a Serre subcategory of Mod(R) and @ is a system
of ideals of R. We say that S satisfies the condition Cg, precisely when for every
®-torsion R-module X, the condition (0 :x b) € S for some b € ® implies that
XeS.

Remark 2.8. By Proposition 2.4 (ii), it can be said that, S satisfies the condition
Cg, whenever for any ®-torsion R-module N, the condition (0 :n ak) € S for some
a € ® and k € Ny, implies that a* N € S. In addition, it is easy to see that if S
satisfies the condition Cg, then S satisfies the condition Cly, for any b € ®.

Example 2.9. Let R be a Noetherian ring of finite dimension d. Let ® be an
arbitrary system of ideals of R and S = {M € Mod(R)| dimM < d}. Then, it is
clear that S satisfies the condition Cs.

The next examples show that the class of Artinian R-modules does not satisfy
the condition Cg, for some system of ideals ®.

Example 2.10. ([6, Example 3.7]) Let R be a Gorenstein ring of finite dimension d
such that has infinite maximal ideal m with htm = d. Let

¥ = {m € Max(R)| ht m = d} and ® = {a| ais an ideal of R and dim R/a < 0}.
Then, it is easy to see that ® is a system of ideals of R and ¥ C &. By [6, Example

3.7], we have

_ { @D E(R/m) ifi=d
H(ZI)(R): mew
0 if i #d.

Thus, HE(R) is not Artinian R-module. On the other hand, since Ext%(R/a, R) is an
Artinian R-module for all a € ®, s0 (0 :5¢ () a) = Homg(R/a, HZ(R)) is Artinian
R-module for all a € ®, by Corollary 2.2. Hence, the class of Artinian R-modules
does not satisfy the condition Cs.

Example 2.11. Let Z be the ring of integers and let p be a prime number of Z. Set
® = {(0),pZ}. Then, ¥ is a system of ideals of Z. It is clear that I'¢(Z) = Z and
so H5(Z) = 0 for all i > 1, by [12, Lemma 2.4]. Since Homgz(Z/pZ,7Z) is Artinian
Z-module and Z is not Artinian, thus the class of Artinian Z-modules does not satisfy
the condition Cg.
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As a generalization of [2, Theorem 2.9] and [0, Corollary 2.14], we present the
following proposition which is one of the useful results in this article.

Proposition 2.12. Assume that ® is a system of ideals of R and t € No. For any
Serre subcategory S of Mod(R) which satisfies the condition Co and any R-module
N the following conditions are equivalent:

(i) HL(N) € S for everyi < t;

(i) Extl(R/b, H5(N)) € S for any b € ® and every i,j < t.

(iii) Exth(R/b, N) €S for any b € ® and everyi < t;

(iv) H{(N) €S for any b € ® and everyi < t.

Proof. (i) = (ii) Let b € ® and consider the following resolution of R/b

Aeioiv — Ag — A1 — - — A1 — Ag — 0,

in which A; are free R-modules with finite ranks for every i > 0.

Then Ext?, (R/b,H5(N)) = H? (Hompg(Al, H5(N)) is a subquotient of direct
sum of finite copies of Hg (V) for every 4, j. Now, the assertion holds by the fact that
S is a Serre subcategory.

(if) = (iii) Use Corollary 2.2.

(iii) = (iv) As S satisfies the condition C} for every b € @, thus this implication
is true, by Remark 2.8 and [2, Theorem 2.9].

(iv) = (i) We show that H%(N) € S by induction on ¢. For ¢t = 0, we do not
have anything to show. Suppose that ¢ = 1. By hypothesis, T'v(N) = HJ(N) € S,
and 5o (0 :pg vy b) = (0:x b) = (0 :p, () b) €S. Therefore, the assertion follows as
S satisfies the condition Cs. Now, let ¢ > 1 and assume that the assertion is settled
for every i <t — 2. We prove that HL'(N) € S. Since, by hypothesis, Hi(N) € S
for any ideal b in ® and every i < t — 1, Extih(R/b,N) € S for every i < t — 1,
by [2, Theorem 2.9]. By using inductive hypothesis, Hs(N) € S for every i <t — 2.
Therefore (0 HEL() b) € S, by Corollary 2.2. Now, the assertion holds as S satisfies
the condition Cg. O

Definition 2.13. Let R be a Noetherian ring. A Serre subcategory S of Mod(R) is
said to satisfy the Residual Fields condition (briefly RF condition) if R/n € S for
any n € Max(R).

Example 2.14. (i) It is obvious that all of the classes of Noetherian R-modules,
Artinian R-modules, R-modules with finite support and the class of all R-modules X
with dimgr X < n, where n € Ny , satisfy the RF condition.

(ii) Assume that R is a non-local Noetherian ring and b is an ideal of R. Let
n € Max(R) be such that n ¢ V(b). Set

S :={M € Mod(R) | M is an b-torsion R-module}.
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Clearly, S does not satisfy the RF condition. However, the next lemma, (part iii),
shows that when (R,n) is a local ring, any non-zero Serre subcategory S of Mod(R)
satisfies the RF condition.

Lemma 2.15. Assume that S is an arbitrary Serre subcategory and that Srr is the
class of the finite length R-modules. Then

(i) S is non-zero if and only if there is n € Max(R) such that R/n € S.
(i1) Src C S if and only if S satisfies the condition RF.
(iii) If R is a local ring and S is non-zero, then S satisfies the condition RF.

Proof. (i)(=) Let 0 # M € S and 0 # « € M. Thus, there exists n € Max(R) such
that (0 :r Rz) C n. Now, as Rz € S, considering the natural epimorphism

Rz =2 R/(0:r Rz) = R/n,

we get R/n € S.
(<) It is obvious.

(ii) Assume that Srz C S and n is an arbitrary maximal ideal of R. Since R/n
has finite length, R/n belongs to S. For inverse, let L € S, have the length I. Thus,
there exists a chain

0=LoCLiC---CLi=L

of R-submodules of N in which L;/L;_1 is isomorphic to R/n for some n € Max(R)
and all 1 < j <. Therefore, the proof is completed by induction on .

(iii) The assertion follows from (i) and (ii). O

3 Faltings’ Local-global Principles

We begin this section with the following theorem, as an important result of the article.
This is applied in the proof of Proposition 3.2.

Theorem 3.1. Assume that b is an ideal of R, N is an R-module and t € No. Thus
a necessary and sufficient condition for H{(N) to be a b-cofinite Artinian R-module
is that HL(N) € S for every i < t and any Serre subcategory S satisfies the conditions
Cpy and RF.

Proof. (=) Suppose that Hi(N) is b-cofinite Artinian R-module for every i < ¢ and
S is an arbitrary Serre subcategory such that satisfies the conditions Cy and RF.
Using induction on t, we prove that Hi(N) € S for every i < t. When t is zero, we do
not have anything to prove. Let ¢t = 1. Since £r(0 :r,(n) b) < 00, (0:r,(n) b) €S,
by Lemma 2.15 (ii). Thus, I'y(IV) € S as S satisfies the condition C.

Now, assume that ¢ > 1 and the result is true for ¢+ = 0,--- ,t — 2. Using
Proposition 2.12 and Corollary 2.2 for the category of b-cofinite Artinian R-modules
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and & = {b7| j > 0}, since H;(N) is b-cofinite Artinian R-module for every i <t — 2,
Lr(0 H () b) < oo and so similar to the argument of the case t = 1, we get
(0 :Hz_l(N) b) e S.

(<) Choose S as the category of b-cofinite Artinian R-modules. O

The following result presents more equivalent conditions to the Local-global Prin-
ciple for the Artinianness of ordinary local cohomology modules than those have been
proven in [20, Theorem 2.2].

Proposition 3.2. Assume_that b is an ideal, N is an R-module and t € Ny s
such that the R-module ExtR(R/b, N) is finite for every i < t. Then the following
conditions are equivalent:

i) H{(N) is Artinian for every i < t;
ii)

(i) Hy
(ii) HL(N) is b-cofinite Artinian for every i < t;

(iii) (HE(N))p is Artinian for every i <t and any prime ideal p of R;
(

(

iv) Supp(H¢(N)) C Max(R) for every i < t;

v) HE(N) belongs to S for every i < t and any Serre subcategory S, which satisfies
the conditions Cys and RF;

(vi) Exth(R/b, N) belongs to S for every i < t and any Serre subcategory S which
satisfies the conditions Cy and RF.

Proof. The conditions (i) to (iv) are equivalent by [6, Theorem 3.2]. Also, conditions
(ii) and (v) are equivalent by Theorem 3.1. Finally, (v) and (vi) are equivalent by
Proposition 2.12, considering ® = {b*|¢ > 0}.

]

Corollary 3.3. Assume that ® is a system of ideals of R, N is a finite R-module
and Sa 1is the subcategory of Artinian R-modules of Mod(R). Lett € No be such
that Hy(N) € Sa for every i < t. Then H5(N) € S for every i < t and any Serre
subcategory S of Mod(R), which satisfies the conditions Co and RF. Specially, for
® = {b%]i > 0}, where b is an arbitrary ideal of R.

Proof. Since H5(N) € Sa for every i < t, Hi(N) € Sa for every i < t and any
b € @, by applying [6, Corollary 2.7] for the class of Artinian R-modules. Therefore,
Propositions 3.2 (part i = v) implies that H{(N) € S for every i < t and any b € ®.
Now, the assertion follows from Propositions 2.12 (part iv = i). 0

Corollary 3.4. Assume that b is an ideal of R such that dim R/b =0 and N is a
finite R-module. Then Hy(N) € S for any Serre subcategory S satisfies the conditions
Cy and RF and every i € Np.

Proof. As Suppr(H{(N)) C Max(R) for every i > 0, the result holds easily by
Proposition 3.2. |
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Let M be an R-module. As an interesting generalization of various regular se-
quences on M to a Serre subcategory S of Mod(R), the authors in [2, Definition 2.6],
introduced the concept of S-sequences on M. Then, in [2, Lemma 2.14 and Definition
2.15], for an ideal a of R and a Serre subcategory S satisfying the condition Cy with
M/aM ¢ S, they showed that the lengths of all maximal S-sequences on M in a, are
equal. They denoted this number by S-depth,(M) and in [2, Theorem 2.18], they
proved that

S-depth, (M) = min{i > 0| Hi(M) ¢ S}.

In this stage, we first introduce the concept of S-depthg (NN), in which N is an R-
module, @ is a system of ideals of R and S is a Serre subcategory of Mod(R) satisfies
the condition Cs. Then, in Proposition 3.7, we show that for any Serre subcategory
S satisfying the conditions Cs and RF, the following inequality holds:

inf{j € No| H3(N) is not Artinian } < S-depthg(N).

Definition 3.5. Assume that ® is a system of ideals of R, N is an R-module and S is
a Serre subcategory of Mod(R) satisfying the condition C's. We define S-depthg (N)
as:

S-depthy (N) = inf{j > 0| H}(N) ¢ S}
if the infimum exists, oo otherwise.

Remark 3.6. Let S be mentioned in Definition 3.5. According to Proposition 2.12
and the paragraph before Definition 3.5, it is obvious that if N is a finite R-module
and b € @ is such that N/bN does not belong to S, then S-depthg(N) € Ng and

S-depthg (V) = min{S-depth,(N)|b € ®}.

In addition, for an arbitrary ideal b of R, with choosing suitable Serre subcategories S
which satisfy the condition C and ® = {b‘|s > 0} in Definition 3.5, we can obtain the
concepts of depthy (N), f-depth, (V) and g-depth, (). Recall that, by [20, Theorem
3.4], [16, Theorem 3.1] and [17, Proposition 5.2], we have

f-depth, (N) = inf{i > 0| H{(N) is not Artinian},
and
g-depth, (N) = inf{i > 0| Suppr H¢(N) is not a finite set}.
The next result indicates that f-depthg (NV), i.e., the least integer j € Ny that

HJ(N) is not Artinian, is a lower bound for S-depthg(N), for all Serre subcategory
S of Mod(R) satisfying the conditions Cy and R.F.

Proposition 3.7. Assume that ® is a system of ideals of R and N is a finite R-
module. Let Sa be the category of Artinian R-modules and S be a Serre subcategory
of Mod(R) satisfying the conditions Co and RF. Then
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f-depthg (N) = inf{j > 0| HL(N) ¢ Sa} < S-depthy(N).
Specially, for any ideal b of R that N/bN ¢ S,
f-depth, (N) = inf{j € No| Ext}(R/b, N) ¢ Sa} < S-depth,(N).
Proof. The assertions are obtained from Corollary 3.3 and Proposition 3.2. (]

Corollary 3.8. Suppose that (R,n) is a local ring. Let N be a finite R-module and b
be an ideal of R. Then for any non-zero Serre subcategory S satisfying the condition
Cy and N/bN ¢ S, we get

f-depth, (N) < S-depth, (N).
Specially,
depth, (V) < f-depth,(N) < g-depth,(N).

Proof. The assertions will be obtained from Proposition 3.7 and Lemma 2.15 (i).
d

As it is mentioned in the introduction, the most important result of [15] is its
Theorem 2.10, which shows that the equality fg'(N) = hy(N) holds for any finite
R-module N and any ideal b on an arbitrary Noetherian ring R. Following, Theorem
3.10, as the last important result of this article, generalizes the main results of [4,
Theorem 2.5], [15, Theorem 2.10] and [19, Theorem 2.17]. To do this, the following
definition is needed.

Definition 3.9. Assume that ® is a system of ideals of R and N is an R-module.
Let n € Ng and @, := {bR,| b € ®} for any p € Spec(R). We define

hig(N) := inf{j > 0| H}(N) is not in dimension < n}
and
fo(N) = inf{fs,(Ny)|p € Suppr(N) and dim R/p > n}.

Theorem 3.10. Assume that R is a Noetherian ring and that ® is a system of ideals
of R. Let n € Ny be such that the R-module N is in dimension < n. Suppose that

the set (Assg Hgg(N)(N))>n is finite. Then hE(N) = fZ(N).

Proof. Put s := h(N). For every i < s, dim Supp(H%(N)/N’) < n for some finite
submodule N’ of H4(N). So for any q € (Spec(R))>n, we obtain (H&(N)/N'), is
zero. Consequently, Héq(Nq) is a finite Rq-module. Hence s < f§(N). Now, we
prove that s = f§(N). On the contrary, suppose that s < fg(NN). Assume that

(ASSR Hg(N))Zn = {Clh g2, - qT}



12

M.Y. SADEGHI, KH. AHMADI AMOLI AND R. ARIAN FAZEL

For any 1 < j < r, q; € (Spec(R))>n. Thus, as s < fg(N), (Hz(N))q, is a finite
Rg;-module. So that for every 1 < j < 7, there exists a finite R-submodule M; of
Hg(N) such that (Hg(N))g; = (Mj)q;- Put Ly := My + Mz + ... + M,. Then L, is
a finite R-submodule (and ®-torsion) of Hg () and we get

(ASSR H%(N)/[q)zrn n (ASSR H(%(N))Zn =0.

Next, we prove that the set (Assg H3(N)/L1)>» is finite, too. According to [7,
Lemma 2.1] and since the set (Assg H3(N))>n» is finite, there are ideals by, ba, ..., b, €
® such that

(Assr Hy(N))zn C | J(Assr Hi, (N))zn C (J(V(8)))2n-
As @ is a system of ideals of R, there is b € ® such that b C [[;_, b; and thus
(Assr Hy(N))zn S [J(V(0)))zn C (V(0))30-

j=1

We claim that (Suppg H$(N))>n C (V(b))>n. For this purpose, let q be an
arbitrary element of (Suppr H$(N))>n. Then, there is p € (Assg Hg(N))>n such
that p C q. Sop € (V(b))>n. Since b Cp C q and dimR/q > n, we get q € (V(b))>n
as required. Therefore

(Assp Hy(N)/L1)>n C (Suppg He(N)/L1)>n C (Suppg He(N))>n € (V(0))2n.

Also, as for every i < s, Hy(N) is an R-module in dimension < n, by Corollary 2.3,
(Assr(Hg3(N)/L1)NV(b))>, is a finite set and so, (Assg H3(N)/L1)>n is a finite set
as well. Now, as

(ASSR H%(N)/[q)zn N (ASSR H%(N))Zn = @,
from [15, Lemma 2.5], we conclude that
Mac(assr 13 (V)50 9% Mac(assn 11, (n)/21)5, O

Using a similar argument, there exists a submodule Ly/Lq of H3(N)/L1 such
that

(Assg Hy(N)/L2)>n N (Assg Hy(N)/L1)>n = 0,

and so

C
Mac(assr HY(N)/L1)sp 9 Z ﬂqemsSRH;;(N)/Lz)Zn g-

Proceeding in the same way, we can find a strictly chain of ideals of R as follows:

Naeassr 15 (V)20 §F Nacassy 1y (30 /00)5, §F Naeassy 1y (3)/02)5, 4 F
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which is not stable and this is a contradiction. Therefore s = f3(N). O

Corollary 3.11. Assume that R is a Noetherian ring and that b is an ideal of R.
Let N be a finite R-module. Then for every n € No, fo'(N) = hg(N).

Proof. Apply ® = {b7|j > 0} and s = (M) in Theorem 3.10 and Corollary 2.3.

d
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