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1 Introduction

Consider the distributed-order time and Riesz space fractional Schrodinger

equation (DOT-RSFSE) as follows:

: yw (o) 0% _ _ 2 _ _
iD; wtut)+58mpﬁd%wi> v(@, )Y (@, t) =AY (z, 1) ["p(z, t)—2(z,t) =
(1)

with the initial and Dirichlet boundary conditions
¥(x,0) = f(z), x¢€lab],

P(a,t) =¢(b,t) =0, te]0,1],

where parameter ¢ is a real constant, z, f and unknown function v are
. ) 26 . .
complex-valued, v is general potential, % < B <1, ﬁﬁ is the Riesz frac-

tional derivative, D,’ (®) denotes the distributed-order fractional deriva-
tive and the function w satisfies 0 < folw(oz)da < oo [22]. Also, the
Caputo fractional derivative and the Riesz fractional derivative are de-
fined as follows, respectively

Cnha _ 1 ! _ —aaj
S vtant) = gy | (=9 G
O t) = 0¥y + D)
Olz|28 "7 2cos(Bm) £ RS

where the left-side and right-sided Riemann-Liouville derivatives on z
are defined as

26 - 1 ‘972 ’ _ \1-28
DY v(e.t) =t gz gz | (2= ) bl

2 _ 1 372 b o 1-28
D) = gz ez [ (=0 el

The fractional Schrodinger equations (FSEs) play an important role in
describing physical phenomena, such as quantum mechanics, optics, seis-
mology, and plasma physics [6, 11, 12, 21, 25]. Extensive theoretical
research has been carried out on the FSEs that interested readers can
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refer to [5, 23]. Several numerical methods and their analysis for the
linear and nonlinear fractional Schrédinger equations have been inves-
tigated [7, 8]. Bhrawy [2] used the Jacobi spectral collocation method

to solve FSEs and their coupled kind. In [l], a fully spectral collo-
cation approximation was developed to solve multi-dimensional time
FSEs. Li et al. [17] applied the Galerkin finite element method for
nonlinear space fractional Schrodinger equations. In [19], Li and Zhao
considered a fast energy-conserving finite element method for nonlin-
ear space fractional Schrodinger equations with wave operator. In [25],
Mustafa and Almushaira presented a fast implicit difference scheme
for solving high-dimensional time-space fractional nonlinear Schrodinger
equation. Qayyum et al. [29] studied new solutions of time-space
fractional coupled Schrodinger systems. Yin et al. [27] developed the
structure-preserving difference scheme with fast algorithms for high di-
mensional space fractional Schrodinger equations. Li et al. studied
a relaxation-type Galerkin FEM for nonlinear fractional Schrodinger
equations in [16]. An unconditionally convergent L1-Galerkin FEMs
is studied for nonlinear time fractional Schrédinger equation [15]. A
fast L2-l, Galerkin FEMs is presented for generalized nonlinear cou-
pled time fractional Schrodinger equation with Caputo derivative and
obtained optimal order error estimate [18]. Wang et al. [20] considered
the second-order and linear numerical schemes for the multi-dimensional
nonlinear time fractional Schrédinger equation.

Although numerous numerical methods have been proposed for time-
space fractional Schrédinger equations, most of them have limited to
time fractional Schrodinger equations on uniform meshes. Recently,
Heydari [9] presented a computational approach for a system of cou-
pled distributed-order time fractional Klein-Gordon Schrédinger equa-
tions. Bhrawy and Zaky [3] developed an efficient spectral solution for
distributed-order time fractional Schrodinger equations. Effective nu-
merical methods and supporting error analysis for the time-space frac-
tional Schrodinger equations with distributed order are still limited.
The main contribution of this work is to establish an optimal error es-
timate of the proposed linearized numerical scheme for nonlinear DOT-
RSFSE without any step size restriction. We use the time-space error
splitting argument presented in [13] for unconditionally error estimates.
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In this paper, we develop a fast finite difference scheme based on graded
time meshed in time. An optimal error estimate of this fully discrete sys-
tem is obtained using the Galerkin finite element approximation in space.
To the best of our knowledge, in the previous works, we mainly paid
attention to established unconditionally stable and convergence results
for time-space fractional Schrodinger equations using L1-FEM. How-
ever, there are few papers focusing on convergence analysis of numerical
methods DOT-RSFSE.

A brief outline of the paper is as follows: In Section 2 the definitions
and properties of fractional derivatives, fast finite difference method,
and fractional Sobolev space are recalled. A semi-discrete variational
scheme for Eq (1) is given in Section 3. Also, an implicit L1- Galerkin
finite element method for the fully discrete system based on the stan-
dard Galerkin finite element method in space and the fast L1 algorithm
in time are given. Section 4 is devoted to the semi-discrete system’s
unconditional stability and optimal error estimate. Moreover, L?-norm
and HP-norm error estimates of the fully discrete scheme are presented
for the DOT-RFSEs. In Section 5 some numerical examples are given
to confirm our theoretical results. Finally, a brief conclusion is given in
Section 6.

2 Preliminaries
In this section, we recall some definitions and lemmas needed in the
numerical analysis of the presented algorithm.

Definition 2.1. Let p > 0 and Q = [a,b]. Define the left and right
norms as

N|=

110y = (10l Z2) + 191500))2
1911 0y = (1N Z 20 + |¢|?7;g(9)) ,

in which, ||y = [IDz¥llL2() and [¥]m ) = |[DR¥llrz@) are the
semi-norms. Also, we denote J7(Q) and J5(Q) as the closure of C*°(Q)
with respect to H.HJZ(Q) and H.HJ%(Q), respectively.

N

Definition 2.2. (Fractional Sobolev space). Let > 0 and F be the
Fourier transform of ¢ defined on §Q, i.e. F() = [q P(x)e Wrdx, with
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the variable w. Define the semi-norm of ¥ as
U]y = wl*F(@)| 20
and the norm
1
1l = (11172 (@) + [¥1Em() 2
where HH be the closure of C*°(§2) with respect to ||| gu(q)-

Lemma 2.3. [1/] For p > 0, the following results hold

a) J5(Q), JZ(Q) and H*(Q) are equal with equivalent semi-norm and
norm, respectively.

b) the following property in L?-sense holds

(D, D) = cos(um) || D172y
¢) For ¢ € HY(Q) and 0 < r < p, we have
[Vl 2y < Clblany,  1¥llar @) < ClYlae@),
d) If0 < p<1,¢ e HMQ) and ¢ € HY(), then
(D, ¢) = (D, Dipg), (DR, ) = (Dig, Dlpo).

2.1 Fast L1 method

This part introduces a fast evaluation method for the time fractional
derivative. Let ¢, = T(NLT)T (n=0,1,2,3,..., Np) and choose the mesh
parameter r > 1 and 7,11 = tpy1 — tn-

Splitting the convolution integral Caputo derivative into a sum of the
local part and history part results in

6D (t) [1=t,=

L ) L W),
T(l—a) /tnl =52 T T —a) /0 (i —5)0"
= C[(tn) + Ch(tn), (2)
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where C; and C}, are local and history parts, respectively. For the local
part, the function v’(s) will be approximated by linear interpolation as
follows,

Y(tn) — Y(tn-1) /tnl 1 P(tn) — P(tn-1)
tn) = —ds= :
)= Fi-a) f G=sp ™" mfi-a = &
Also, for the history part using the integration by parts to eliminate
Y'(s) and Theorem 2.1 in [24], one obtains
1 [eltey)  ¥(to) /tnl W(s)
o) = oy | o g
L [Ulta) _ blt) RE
n—1 0
= — — iUhi 4
F(l — a) I: 7o o « ; wzwhzst,z(tn>:|7 ( )

where Yp;sti(tn) = fot"’l e_(t"_s)siw(s)ds (n=1,2,3,...,Np). So, it is
easy to get

tn—1
'L/}hist,i(tn) = eisﬂnwhist,i(tn—l) + / 67(tn78)3i¢(8)dsa
tn—2

where tp;s:i(t1) = 0. Besides, interpolation 1 via a linear function on
[tn—Zv tn—l] yields

tn—1 e
/ e~ =%y (5)ds ~

2
tn—2 Si Tn

—S8iTn

[(65””‘1 =1+ 5iTp-1)Y(tn-1)

+ (1 — e i1 e_SiTn_lsiTn—l)w(tn—2):| .

Substituting (3) and (4) in (2), implies that

1 tn o e
08 U(t) = o= [T (1 + vl )
n—2
- Z (Coiim+ CZ—Z—Q,n)%ZJ(tl) - (CZ_M + (%)Q)T/)(to)
=1 n
1

T eT(1-a) jzzzoagjw(tj)’ ®)
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where the coefficients O‘Q? are given by the following formula

ﬁ’ .] =n,
g _ ) (1% ). j=n-1,
’ ( nj 1n+gn32n) J=L1L2..,n-2
( n— 2n a)? ,7 = 07
in which
Nexp
n = QT Z wie” i(tn—tn— J)Ezln s
Nexp
]n—on' Zwe iltn—tn— J)E?n o
e_siTn
glln == (e_sﬂ"_l -1+ SiTn_l),
’ 8 Tn—1
e_siTn
E?n = 55— (1 —e ™ — g7y _1e” %),
’ S;Tn—1
Then,
1 n
C AT Fr
o Di(tn) = 7oT(1—a) ZOC]' V(L)) == DY (tn).
Using Lemma 2.5 in [24], the following error estimate for the presented

fast L1 method will be obtained.
Remark: Assume that 0 < a < d, and let

(o

n7aw(tn) = CD?#’(%) - 5®?¢(tn)v n = 1’ 2737 cey NT7

then,
(PEmgs(1,)] < n-minC-ar(etD) | (6)

where € is the tolerance error.
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3 The Proposed Numerical Scheme

At first, we decompose the complex-valued functions ¢ and z by their
real and imaginary parts as ¥(z,t) = ¢Yr(z,t) + r(z,t) and z(x,t) =
zr(x,t) +izr(x,t). Inserting these complex forms in Eq (1), one obtains
a coupled system of equations as

{Df(‘")qm —5%¢R+>\W\2¢R+U¢R+2R =0, o

DY pp + 852 mmir — Mo Por — vibr(a,t) — 21 = 0,
with the initial and boundary conditions as follows
’(bR(:E’O) :fR(x)a ’QDI(:E?O) :fl(x)a

Yr(a,t) = Yr(b,t) =0, r(a,t) =(bt) =0,

in which indices R and I point to the real and imaginary parts, respec-
tively.

By the Lemma 2.3.(d), we can derive the weak form of system (7) for
any pr,@r € H()B, as

{(Df‘%, or) — O(r, or) + A|U[*Vr, ©r) + (VYR + 28, PR) = 0,
(DY g, 1) + O(br, 1) — A|W|20r, ¢1) — (vior — 21, 01) = 0,
(8)

with the initial and boundary conditions
Yr(z,0) = fr(z), vi(z,0) = f(z),
Vr(a,t) = Pr(b,t) =0, r(a,t) =(b,t) =0,
where O(.,.) is defined by
08

O, ) = d(grmzt.¢) = CL (D, Dre) + (Dr¥, D)), (9)

in which C’f = —2COS‘5( )
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3.1 Semi-discrete scheme

To obtain the numerical solution of Eq (1), let o, = M%x and o, = (m+
%)Jawhere m=0,1,2,..., Mo-1, ap < a1 < ... < aypy, and w € C?[0,1].
At first, we discretize the distributed-order time fractional derivative by
midpoint rule [10], as follows

Ma—1

1
D¥ sy (1) = / w(@)§DEY (2, o~ 00 S wlanm)SDE i,
0

m=0

May—1

1
“O () = /O (@)D YR, o ~ 00 Y w(am)§DI™ .

m=0

Substituting these relations in (8), yields

{ (Ja Z%aal (,4.)( )CDamwla <;DR) + :(va QDR) + (zRv SOR) = E(})(a)a
(00 S Mo w(n)§DE™ YR, 1) + 21, 01) — (21, 01) = Z®),

where J(.,.) is defined by
(r, ¢r) = —O(Ur, ¢r) + M|Y[*¢R, or) + (VR ¥R),

(1, 1) = O, 1) — MY 1?1, 1) — (w1, ¢1).

Choosing Y7 (w(a)§D{™ 1)) := o4 Z%‘lo Y w(0n)§D2™ 4, this system can
be written as

{(T;<w<a>€D3%>, or) + YR, or) + (2, 0R) = E5,

10
(XLA@§D br)sir) + Aron) — Gropn) ==, 1

Now, we consider the discretization of time Caputo fractional derivative
of order 0 < o < 1 by fast L1 method. Applying relation (5) in system
(10), we get the following semi-discrete time of Eq (1) as follows

{(Tg<w<a>5©?w?>, or) + Wk or) + (2 or) = B4 + g,
(T;(w(a)ggfmwﬁ)7 CPI) + W, 1) — (27, 1) = Hoé(a) i F:%
(11)
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where
2k, or) = —OWh, or) + A" Pk, or) + (V" VR, ©R),
:(w?7 QDI) = @("P?, SOI) - )\(|¢n71‘2¢?’ 901) - (Un¢?7 @I))
and
Ma—1
=@ = DYy — 0 S wlam)§DImY = 0(0?),
m=0

FEa _ CD?mw(tn) o OFCD?mw(tn) _ O(nfmin(Qfa,r(a+1))).

3.2 Fully discrete scheme

Let T}, be a family of subdivisions of 2 = [a, b], Qp, = {en| en € Ty} and
X,f = {pn € Hoﬁ NC%N); pnle, € Pulen), en € Qi) where Py(ep) is
a set of polynomials with degree at most ¢, and h be the step size in
space.

Assume that 1/1}1%7}1 and Vi € X ,’? are the approximation of 9% and 7.
So, we have

(To (@)D 7 ), o) + Wk prA) — (28 0RA) =0,
Yorn € X)),

(Ta(w(@)§DF™ %k 1), ern) + Wy, orn) + (21 rn) = 0,
V(Pf,h c X}’?

(12)

4 Error Analysis

4.1 Stability and convergence of the semi-discrete scheme

First, we recall the following lemma to analyze the stability and conver-
gence of the presented numerical scheme.

Lemma 4.1. [//. (Gronwall inequality) Assume that {k; ?:_01 and {e;}7_g
be the non-negative sequences such that pg > 0, €9 < pg and

n—1

En Spo-l-zkj&?j, n =1,
=0
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then

n—1

en < po.exp(ij), n > 1.
=0

In the following to simplify the notations, we denote the norms of
L% and HP by |.|| and |.||g. Now, we discuss some of the properties of
the bilinear form, stability, and convergence of the scheme (11).

Lemma 4.2. The bilinear form ©(y, p) is continuous and coercive i.e.

O, 9) < C8 o llvlls-llels,
O, ) > 202 11012,

where C’T'Bnaz and CP.  are positive constants.

Proof. According to the definition of bilinear form in (9), we have
01, ¢) = C} ((Dﬁzm D) + (D, Dﬁsa)) <
Gl (1020, Do) + (D0, D))

Using the Cauchy-Schwartz inequality and the norm of fractional Sobolev
space, one obtains

01, ¢) < [Craal (HD@/)!\ID%P!HI!D%%&HHD%I) < 2Chaall¥lsl N5,

thus
O, @) < 2|C . llIvlsllels,

and
Oy, v) = 202 (D, D) = 2|C2||(DLw, D).

Also, by the fractional Poincare-Friedrichs inequality, we get

ey, v) >20° .

DI [| DS > 2C2 1|12

Therefore, bilinear form O(.,.) is continuous and coercive.
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Theorem 4.3. The proposed numerical scheme (11) is unconditionally
stable, in other words, we have

k k
IER 1% + [1n* 1 < 1% + 11>,

Proof. Suppose that ¢7 and ¢ are another solution of the semi-
discrete formulation (11), which means that

{(T;<w<a>5@?m¢?m> + (e on) — (21, or) = B2 4 Fag.

(Ya(@(@FDi™6h). er) + 367, 01) + (1 01) = _R< Y+ 15
(13)
Subtracting (11) from (13), implies that

{(mw(a)é’@?m (WF = 07)or) + 0k~ Ohoom) =0, 1)
(Ta (@ (@)D (V5 — o)) or) + W] — dF 1) = 0.

Set " = YR — ¢ and " = Y} — ¢} in (14). Also, let ¢; = 1™ and
r=¢&". So we get

{(T; (@)FDem), €v) + (™, ")
(Yo (w(a)EDgmn™), n™) + 3(E™, ")
Due to J(¢",n") =

(YL (w(@)§@yme™), ") + (Ta(w(@)§D™n™), ") = 0.

0,
0 (15)

—3(n™, &™), summing equations (15) implies that

Since QQ? <0, for j =(0,1,2,....,n—1) and QQ? > 0, for j = n, we have

Oq mzz:o w(am)ﬂ?[m]r(l B am)CCZ(gn’gn)
Mq—1 1 "

+ 0q mz_:o w(am)rﬁ'”F(l “a )CCn(nnvnn) =
n—1My—1 1 "

—Uajgo TnE:O w(am)TamF(l_a )acj (gjagn)
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Set X = 0q Z%aol (U(Olm)WaQn, then
n—1My—1 1
XIE P + Xl 1P = —oa Y D wl m) mrd —ay o (€€
I'(1 — aun)
7=0 m=0
n—1My—1 1
_ = a0 (gl pgn
aaz > w(om) e gy S (7 )
7=0 m=0
Using the Cauchy-Schwarz inequality, results in
n—1My—1 1
XIEP + Xl < —oa Y D w m) mmr g —any o 1€ 1€
(1 — am)
7=0 m=0
n—1My—1 1
_ = a0 en
O-ajzo Tnzzo w(am)ﬂgmr(l _ Qm)aC] HT/ ||H£ ”

Also, one can easily see that

XIEM P + xlln™ > < XZ iy} €7 1€™ +><Z i Hn ™.

]OOCn

Using the Young’s inequality, one obtains

€1 + 2 < 2(; = 2 (I + "))
n—1
=5
£t P+ I). o)
=0 QCn

To prove this relation, we use mathematical induction. In the case of
n = 1, this relation holds as follows

EHIZ + 1> < N1E° N + 11n° 1%

Assume that (16) is true for n = 2,3, ...,k — 1, to prove this for n = k,
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we have
1 n—1 a(;n
IEX 12 + lIn* 12 %(Z —(IE17 + 1€511%)
= o,
n—1 A
—o .
+ —- (I 117 + 119*11%) ).
=0 O(Qn
thus

e m

—_

1/ —%C;
412 + 11 < 5 (32 o (112 + 141D
j=0 OCn

n—1

_l’_

(17 + 10419))
=0 a@n

moreover, — E;:& GC;L = (" then

IE¥ 117 + [1n*)1* < §(H£OII2+II£'“H) (Hno\|2+nk!!2)-

Therefore, ||£¥]|2 + [|n*]|2 < [|€°]|2 + [|[7°|?, and the numerical scheme is
unconditionally stable.

Theorem 4.4. Assume that 1 (z,t,) is the exact solution of Eq (1) at
t = ty, then the numerical solution Y™ = Y% + Wb} of (11) satisfies the
following relation

||€n|| < eXP(l) (n—min(2—aMa,'r(a1+1)) ‘I‘O'i),
X

where ™ = (x, t,) — Y.

Proof. Since ¢r(x,t) and 1r(z,t) are the exact solutions of system
(7) at t = ty, then we have

{HZWW%Q?WN%%%wﬁ+DWM%mea+QM%m%wa—m

(Tg(w(a)(?@?m?lm(% tn)’ ‘:OI) + :(¢I($a tn)v SDI) - (21(1:7 tn)a 901) =0.
(17)
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Subtracting (11) from (17) and setting €% = Yr(x,t,) — ¥}
and €} = ¢Yr(z,t,) — ¢}, yields

(YT (w(@)EDIm e, or) + (e, or = (E9) + P22, 0p),
(Tg (w(a)OFQ?m€%7 QOI) + :(6?7 QOI) = (E‘E(Oé) + F:%7 @I)

Taking ¢r = € and ¢ = €%, we get

{(ruw(a)g@?ms?),e?) + (e, ep) = (B9 + ~1,51>,
(Tr(w(@)§Demen), en) +I(ep, e) = (En + =g, eh).

Since a@? <0, for j =(0,1,2,...,n — 1) and aQ;l > 0, for j = n, then
eI + (e ef) <
Ma—1 = g =
—0a 520 oy wom) zmmriimay 05 (e, 60) + (B9 + 759, eh),

XleR]? "‘3(51753) <
Mo 1 S = -
00 Y120 Some (am)macj (er.ch) + (Eg =5 4 P29, eh).

Using the Cauchy-Schwarz inequality, we have

(XllFII? +3(6’é,€?) <
Mo—1 A g
—0a )i Zm o w(a )m%‘]He}IHIS}‘II

+HIEF + T2 e, (18)
xleRI® +3(5Ia€R) <
Ma—1
aaZ Zm 0 w(am)m%} Hf‘fRHHERH
[HIER + =gl
Due to J(e},e%) = —3(e’h,€}) and summing equations (18), implies

that

X (€711 + lle%I1)

(nefnusfn T ||eR||||eR|r)

+|[= F’annerHn"“(“ +F’ar|||ef|r
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Using the Holder’s inequality, one obtains

X (71 + llekII?) <

X(Y nj < (le?1* + lleR12) (||6%|!2+H€%!2)2>
Jj=0 OC"

Fr—~ F=
(LR SO wﬁ

@%ﬁﬂﬁ@

=G5 - _
||€"H<Z ”I!€J||+ (H @) 4 e,

D=

N

It leads to

mewW—WWLW%WHw®+“%”—rmﬂﬁ%W+
125 4 F22)12 and |[£7]|2 = [|]|2 + ||l ]|2 for j = 0,...,n — 1.
Using Lemma 4.1, we get

n—l n

O/QA
le™l < — (H”‘“(a) +729 exp()_ )

< exp(1) = ([ + "5

<exp(1) (n*min@*O‘Maﬂ“(alH)) +02),

Xl x|r

and the proof is completed.

4.2 Convergence of the fully discrete scheme

At first, we define the Ritz projector as HZ : HP(Q) — Vi, by (Vﬂfw, Von)
= (Vi, V) for all ¢, € Vyp,.

Lemma 4.5. [1/] Let 1 <<l and B < p<p+1. Ifyp € H® N HH,
then there exists a positive constant C independent of h such that

1T = ¢lls < CRH P[4
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Theorem 4.6. Assume that ¥(x,t) = Yr(z,t) + r(x,t) is the ex-
act complex-valued solution of the equation (1). Then, the numerical
solution ) =}, + i}, (12) satisfies the following relation

C .
lofll < = (h“‘ﬂ + 7 minE e @) o)

where o) = Y(x,t,) — Yy

Proof: Since ¢(z,t,) = Yr(x,t,) + ir(x,t,) is the exact solution
of equation (1) at ¢ = t,, taking Yr(z,t,) and ¢r(z,t,) instead of ¢ ,
and ¥}, in (12), we get

(Ew( ) + 2%, 0rp),  Vern € X;f,
(w()EDF™ Rz, t0)), 010) + DWr(2, ), orp) + (z1(z,tn), @1.1)
(Ew( ) + 2%, 0rn), Vern € X7,

g w Fgamwf(x t ))7 @R,h) + :(wR(m) tn)a <)0R,h) - (ZR(‘Ta tn)7 QOR,h)

(Y
(Y

(19)
in which
2Rz, tn), orp) =
— OWr(@, tn), rn) + AWV(@, ta1) PYR(T, ) — v(@, ta)YR(T, ), RA),

3(%(% tn)? Qpl,h) =
O(br(m,tn), prn) — A (x, tno1)2P1(2, ) + v(@, tn) 1 (T, t0), o1p)-

Subtracting (12) from (19) results in

(Tr(w(@ED™ o), rn) + Dk orn) = E7 + F=5, o)
Yorn € X,
(To(w(a)§D2™ o), o1,) + 3(Fs 0rn) = (E5Y + 2%, or),
Vorn € X;f,
(20)
where o} = ¢r(z,t,) — Wfﬁ and 0% = Yr(x,t,) — ngh.
Putting of = €7, + 07, and ¢ = €, + 0%, in equation (20), where
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07, = by — 7, and erj, = oy (2, t,) — 097, implies that

(T E F:Da 51 nt075); PR1) + ern + 0% p PRA)
(Y E(W F@a’"ﬁR ot QR,h))v rn) + 3}y, + 075, 01.0)
= (Ew( )y PE% o1n), Veor € Xy,
Taking ¢gp = 07, and Y1, = O, in (21), we get
(T7(w ((C))‘)Fgam (€7 p + 9?,h)) 07 4) + NeRp + 0% p 07 5)
(T8 (w(a )F@am(ER nt R ))7 eﬁ,h) +3(efp + 071, 0%)
= (B4 + F=g 0n,), Vrn € X},
Due to J(60}, + €1,,0%,) = —3(0% ,, + €L 1, 074), summing equations
(22) and using the Cauchy-Schwarz inequality, one obtains
nol o : )
ORI+ X1l < (X~ ) (1107l + 165,010 ) +
§=0 acn
175 (w(@)§ D e ) 1607 h” + 1T (w(@)§ D5 el ) 107 11+
IE2 + FEGN 0% 11l + 1= + F=2 167 4.

Using the Holder’s inequality implies that

1
167 41I* + 16% 411° < Z ) (167 4117 + 1165 4117 (167 511>+

j=0 n
n l ]' T am T Om N
\|9R,hu2>2+x((||m (@)FDem el DI + | TL(w(@)FDemer )12
1 —w(a —a —w(a —a )2\
(16% 1112 + 1671%)% + (IEZ + FER)2 + 125 + TEF)1?)2

1
07012 + 103 1P )

=
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It leads to
n—1
aCn 1 T (072 n
o< (Y ) WH+X((Hra<w<a>5©t%3,h>u2+
j=0 O

1T (w(a)fDm ey ) [2) 7 + 20 +anu),

where |16 = 167,11 + 16,11, 11611 = 1167,

0.y — 1 and |22 4+ 7222 = |24 + F:ggy? + H:‘”(“) + T2 2.
Using the Granwall inequality, we get

hH2 for j =

n 1 T Qm N T Qm N 1
161 < X((IITQ(w(a)oF@t efn) I+ ITa(w(@)gD7 el )% 2

el em
+|jzwl@ 4 Fe H)exp(E ..n]>
Gy,

J=0

N|=

exp(1 - am n T Sm Tl
< x( )<(‘|Ta(w(a)g®t ER,h)”2+ ”Ta(w(a)(};@t 6[,h>H2)

+ |29 4 FE"‘||>.
Applying Lemma 4.5, we get
1% (w ()D€ p) | < 1TE (w0 (@)g D7 R )6
< WP (@)D )l
Moreover, we have §D¢(t,) = §Dfp(t,) — FE, then

I8 (w(@)gDF ™ efo )| <H* =PI TE(w ()5 DR i )l
+ P (W ()2

Using (6), positive constants ¢; and cg exist, such that
I TE((@FD )| < et o expit=f (n e et ) 4 ),
Similarly, we have

ITe@(@)§DF e} )l < caht = 4 eght 8 (= mnEmener(at ) 4 o),

.19
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Therefore, one obtains
oy < e’q;(l) (th~—5 + ey bt (m minCene r(eatl)) o) 4
cah? =P 4 eyt (nmminCmana rl@atl)) 4oy =wle) FEQH).
Consequently, we have

1 .
||9]?|| < eXI;(”(C(h“_ﬁ—i—(n_ min(2—anpy, ,r(a1+1)) + 6))
+z@ + FEC“H),

where C'is a constant dependent on ¢y, ¢z, c3 and ¢4. Note that ||e}; ;|| <
crh#*# and €Tl < crh*=# | therefore, the following inequality is sat-
isfied

1 .
||QZ|| < eXI;( )C(hu—ﬁ + (n—mln(Q—aMa,r(m-i-l)) 4 6) 4 Ug),

where
lorll* = lletull® + llonll?,

and the proof is completed.

5 Numerical Results

In this section, two numerical examples are given to confirm the valida-
tion of our theoretical results. In the following examples, the compu-
tational domain is (z,t) € ([0,1] x [0,1]), the weight function w(a) =
I'(3 - a) and ¢ = 1078, In numerical experiments, piecewise linear
basis functions are considered. We perform our computations using
MATLAB2021 software on a desktop computer with 16GB of RAM
and Core i7 -6700CPU @4.00GH Z.

Example 1: We consider the following distributed-order time and Riesz
space fractional Schrodinger equation

28

iD O (x,t) = ~ola?

(1) + Yz, t) + 2(x, 1),
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Table 1: Numerical results in space for Example 1 with 5 = 0.75

h llop ]l order (AR order
1/8 4.9926E-2 - 1.2263E-1 -
1/16 1.3751E-2 1.8603 5.5766E-2 1.1369
1/32 3.6544E-3 1.9118 3.5619E-2 1.2220

1/64 9.1857E-4 1.9922 1.0798E-2 1.2465

Table 2: Numerical results in space for Example 1 with 5 = 0.9

h [oh ] order okl order
1/8 4.6175E-2 - 1.2013E-1 -
1/16 1.2239E-2 1.9156 5.5243E-2 1.1207
1/32 3.1784E-3 1.9451 2.4970E-2 1.1454
1/64 9.0962E-4 1.9730 1.1719E-2 1.0915

with homogeneous initial and Dirichlet boundary conditions. The func-
tion z(z, t) is computed from the exact solution v (x, ) = (1+4) sin(mwx)t2.
We solve this problem with several step sizes in space and time at the fi-
nal time of T = 1. Tables 1 and 2 show the L? and H”- norms errors and
the convergence orders in space with 5 = 0.75, 8 = 0.9 and Ny = (%)2,
M, = % In Table 3, we report the L?-norm error and convergence or-
der in time with § = 0.8 and h = ﬁio and compare CPU time between
the L1-method and the fast-L1-method. The results of Table 3 make it
easy to find that the fast-L1-method can obtain the same convergence
results as the L1-method, but the fast-L1-method consumes less CPU
time during the program. As seen in all three tables, numerical results
show that the computed orders are close to the theoretical orders.
Example 2: Consider the distributed-order time and Riesz space

fractional Schrédinger equation

28

iDy Oy (x,t) = ~ola?

Y(x,t) + (2, )o@, 1) + 2(2, 1),

with homogeneous initial and Dirichlet boundary conditions. The func-
tion z(w,t) is computed from the exact solution v (z,t) = (1 + i)x?(1 —
r)%t2,

.21
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Table 3: Numerical results in time for Example 1 with § = 0.8

L1 fast-L1
Nrp |l opl order CPU CPU
500  1.6861E-3 - 1.9257TE+2  8.3541E+1

1000  8.5406E-4  0.9813  3.7542E+3  1.6719E+2
2000 4.5345E-4 0.1934 8.3241E+3  3.0672E+2
4000  2.2058E-6  1.0396  4.7245E45  8.3245E+2

Table 4: Numerical results in space for Example 2 with 8 = 0.75

h lon order |2zl order
1/8 7.0449E-4 - 1.5741E-2 -
1/16 1.9407E-4 1.8598 6.9745E-3 1.1744
1/32 5.2360E-5 1.8900  3.6289E-3 1.2110

1/64 1.3742E-5 1.9299 1.4719E-3 1.2288

For this example, the L? and HP- norms errors and the convergence or-
ders in space are shown in Tables 4 and 5. Moreover, comparison CPU
time, errors, and convergence orders of L1- method and fast-L1- method

for Example 2 with g = 0.8, M, = % and different temporal steps are

given in Table 6. In this example, the results are similar to the previous

example.

6 Conclusion

In this paper, a combination of the fast-L1 method and the finite element
method was proposed for a distributed-order time and Riesz space frac-

Table 5: Numerical results in space for Example 2 with § = 0.9

h lox I order lanlls order

1/8 6.1952E-4 - 9.3614E-3 -

1/16 1.6948E-4 1.8700 4.4315E-3 1.0789
1/32 4.5097E-5 1.9100 2.0598E-3 1.1058
1/64 1.1753E-5 1.9388 9.4642E-4 1.1215
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Table 6: Numerical results in time for Example 2 with § = 0.8

L1 fast-L1
Nrp |l opl order CPU CPU
500  1.2864E-5 - 1.7524E+2  7.4751E+1

1000 5.9503E-6  1.1123  3.3341E+4+3  2.2741E+2
2000  2.8004E-6  1.0380 8.2701E+3  3.9025E+2
4000 1.4082E-6  0.9918  3.5049E+45  8.9104E+2

tional Schrodinger equation (DOT-RSFSE). Using the proposed method,
the semi-discrete and fully discrete variational formulations were ob-
tained. Then the stability and convergence properties of the presented
method were studied. The numerical scheme of the fast-L1-FEM was
unconditionally stable and convergent. Two examples were implemented
and the numerical results validated the theoretical results. Besides, the
Performance of the fast-L1 finite element method was compared to the
L1- finite element method. The obtained numerical results kept almost
the same convergence order but showed that the fast-L1 finite element
method has a lower computational cost.
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