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Abstract. LetH be a commutative multiplicative hyperring and α, β ∈
Z+. The purpose of this paper is to introduce an intermediate class
between prime hyperideals and (α, β)-closed hyperideals called (α, β)-
prime hyperideals. Moreover, we study the notion of weakly (α, β)-
prime hyperideals as an extension of the (α, β)-prime hyperideals and a
subclass of the weakly (α, β)-closed hyperideals. We say that a proper
hyperideal P ofH is (weakly) (α, β)-prime if (0 /∈ xα◦y ⊆ P ) xα◦y ⊆ P
for x, y ∈ H implies xβ ⊆ P or y ∈ P . A number of properties and
results concerning them will be discussed.
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1 Introduction

Delving into the study of prime ideal generalizations has emerged as a
profoundly intriguing and groundbreaking pursuit in the realm of com-
mutative ring theory. In a recent study [19], Khashan and Celikel pre-
sented (α, β)-prime ideals which is an intermediate class between prime

Received: August 2024; Accepted: January 2025

1



2 M. ANBARLOEI

ideals and (α, β)-closed ideals. Let α, β ∈ Z+. A proper ideal I of a com-
mutative ring R refers to an (α, β)-prime ideal if for x, y ∈ R, xαy ∈ I
implies either xβ ∈ I or y ∈ I. Moreover, the authors generalized this
notion to weakly (α, β)-prime ideals in [20]. A proper ideal I of R is
called a weakly (α, β)-prime ideal if for x, y ∈ R with 0 ̸= xαy ∈ I, then
either xβ ∈ I or y ∈ I.

Several key concepts in modern algebra were expanded by extending
their underlying structures to hyperstructures. In 1934 [21], the French
mathematician F. Marty pioneered the notion of hyperstructures or mul-
tioperations, where an operation yields a set of values rather than a sin-
gle value. Subsequently, numerous authors have contributed to the ad-
vancement of this novel area of modern algebra [7, 8, 9, 10, 11, 22, 24, 28].
An importan type of the algebraic hyperstructures called the multi-
plicative hyperring was introduced by Rota in 1982 [26]. In this hy-
perstructure, the multiplication is a hyperoperation and the addition
is an operation. Multiplicative hyperrings are richly demonstrated and
characterized in [2, 3, 4, 18, 16, 25, 27]. Dasgupta studied the prime
and primary hyperideals in multiplicative hyperrings in [12]. The idea
of (α, β)-closed hyperideals in a multiplicative hyperring was proposed
in [5]. A proper hyperideal P of a multiplicative hyperring H is said
to be (α, β)-closed if for x ∈ H with xα ⊆ P , then xβ ⊆ P . Motivated
from this notion, the aim of this research work is to introduce and study
the notion of (α, β)-prime hyperideals in a commutative multiplicative
hyperring. Several specific results are given to illustrate the structure
of the new notion. We show that every (α, β)-prime hyperideal is an
(α, β)-closed hyperideal but the converse need not to be hold in Exam-
ple 3.4. We obtain that if P is an (α, β)-prime C-hyperideal of H, then
rad(P ) = {x ∈ H | xβ ⊆ P} in Theorem 3.10. We present a gener-
alization of Prime Avoidance Theorem for (α, β)-prime hyperideals in
a multiplicative hyperring in Theorem 3.22. Furthermore, we extend
this notion to weakly (α, β)-prime hyperideals. We present some char-
acterizations of weakly (α, β)-prime hyperideals on cartesian product of
commutative multiplicative hyperrings.

The following diagram shows the place of (α, β)-prime and weakly
(α, β)-prime hyperideals for all α, β ∈ Z+:
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primary

↗ ↑
prime −→ (α, β)-prime −→ (α, β)-closed

↓ ↘ ↓ ↘ ↓
w. prime −→ w. (α, β)-prime −→ w. (α, β)-closed

↘ ↓
w. primary

2 Some Basic Definitions Concerning Multiplica-
tive Hyperrings

In this section we give some basic definitions and results which we need
to develop our paper. [14] A hyperoperation “ ◦ ” on non-empty set I
is a mapping from I × I into P ∗(I) such that P ∗(I) is the family of all
non-empty subsets of I. In this case, (I, ◦) is called hypergroupoid. Let
I1, I2 be two subsets of I and x ∈ I, then I1 ◦ I2 = ∪x1∈I1,x2∈I2x1 ◦ x2,
and I1 ◦ x = I1 ◦ {x}. This means that the hyperoperation “ ◦ ” on
I can be extended to subsets of I. A hypergroupoid (I, ◦) is called a
semihypergroup if ∪a∈y◦zx◦a = ∪b∈x◦yb◦z for all x, y, z ∈ I which means
◦ is associative. A semihypergroup I is called a hypergroup if x ◦ I =
I = I ◦ x for each x ∈ I. A non-empty subset J of a semihypergroup
(I, ◦) refers to a subhypergroup if x ◦ J = J = J ◦ x for each x ∈ J .

Definition 2.1. [14] An algebraic structure (H,+, ◦) refers to a com-
mutative multiplicative hyperring if

(1) (H,+) is a commutative group;

(2) (H, ◦) is a semihypergroup;

(3) x ◦ (y+ z) ⊆ x ◦ y+ x ◦ z and (y+ z) ◦ x ⊆ y ◦ x+ z ◦ x for every
x, y, z ∈ H;

(4) x ◦ (−y) = (−x) ◦ y = −(x ◦ y) for every x, y ∈ H;

(5) x ◦ y = y ◦ x for every x, y ∈ H.
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If in (3), the equality holds then the multiplicative hyperring H is
called strongly distributive.

Conseder the ring of integers (Z,+, ·). For each subset X ∈ P ⋆(Z)
with |X| ≥ 2, there exists a multiplicative hyperring (ZX ,+, ◦) where
ZX = Z and a ◦ b = {a.x.b | x ∈ X} for all a, b ∈ ZX [12].

Definition 2.2. [1] An element e ∈ H refers to a scalar identity element
if a = a ◦ e for all a ∈ H . Moreover, an element e ∈ H is considered as
an identity element if a ∈ a ◦ e for all a ∈ H.

Throughout this paper, H denotes a commutative multiplicative hy-
perring with identity 1.

Definition 2.3. [14] A non-empty subset A of H is a hyperideal if

(i) x− y ∈ A for all x, y ∈ A;

(ii) r ◦ x ⊆ A for all x ∈ A and r ∈ H.

Definition 2.4. [12] A proper hyperideal A in H refers to a prime
hyperideal if x ◦ y ⊆ A for x, y ∈ H, then x ∈ A or y ∈ A.

The intersection of all prime hyperideals of H containing a hyper-
ideal A is said to be the prime radical of A, denoted by rad(A). If the
multiplicative hyperring H has no prime hyperideal containing A, we
define rad(A) = H. Assume that C is the class of all finite products of
elements of H that is C = {a1◦a2◦· · ·◦an | ai ∈ H,n ∈ N} ⊆ P ∗(H) and
A is a hyperideal of H. A refers to a C-hyperideal of H if for each J ∈ C
and A∩J ̸= ∅ imply J ⊆ A. Notice that {a ∈ H | an ⊆ A for some n ∈
N} ⊆ rad(A). The equality holds if A is a C-hyperideal of H (see Propo-
sition 3.2 in [12]). Moreover, a hyperideal A of H refers to a strong
C-hyperideal if for each E ∈ U and E ∩ A ̸= ∅ imply E ⊆ A such that
U = {

∑n
i=1 Ji | Ji ∈ C, n ∈ N} and C = {a1 ◦ a2 ◦ ... ◦ an | ai ∈ H,n ∈ N}

(for more details see [13]).

Definition 2.5. [12] A proper hyperideal A in H refers to a primary
hyperideal if x ◦ y ⊆ A for x, y ∈ H, then x ∈ A or yn ⊆ A for some
n ∈ N.

Definition 2.6. [1] A proper hyperideal A of H is maximal in H if for
each hyperideal B of H with A ⊂ B ⊆ H, then B = H.
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Also, H refers to a local multiplicative hyperring if it has just one
maximal hyperideal.

Definition 2.7. [1] Assume that A and B are hyperideals of H. We
define (A : B) = {x ∈ H | x ◦B ⊆ A}.

3 (α, β)-Prime Hyperideals

This section discusses the fundamental characteristics of (α, β)-prime
hyperideals and examines their behavior in several classes of commuta-
tive multiplicative hyperrings. We start with the following definition.

Definition 3.1. Let α, β ∈ Z+. A proper hyperideal P of H is called
(α, β)-prime if xα ◦ y ⊆ P for x, y ∈ H implies xβ ⊆ P or y ∈ P .

Example 3.2. Consider the multiplicative hyperring ZA. Let p is a
prime integer such that A∩ ⟨p⟩ = ∅. Then ⟨p⟩ is an (α, β)-prime for all
α, β ∈ Z+.

Remark 3.3. Let α, β ∈ Z+.

(i) Every (α, β)-prime hyperideal of H is (α, β)-closed.

(ii) Every (α, β)-prime hyperideal of H is primary.

Proof. (i) Let P be an (α, β)-prime hyperideal of H and xα ⊆ P for
x ∈ H. Then we have xα ◦ 1 ⊆ P . Since P is an (α, β)-prime hyperideal
of H and 1 /∈ P , we get xβ ⊆ P , as needed.

(ii) Assume that P is an (α, β)-prime hyperideal of H and x ◦ y ⊆ P
for x, y ∈ H. Therefore we get xα ◦ y ⊆ P . This implies that xβ ⊆ P
or y ∈ P as P is an (α, β)-prime hyperideal of H. Thus P is a primary
hyperideal of H. □

The following example shows that the converse of statements in Re-
mark 3.3 may not be true, in general.

Example 3.4. Consider the multiplicative hyperring (ZX ,+, ◦).

(i) Let X = {2, 3}. Then P = ⟨6⟩ is an (3, 2)-closed hyperideal of Z,
but it is not (3, 2)-prime as 23◦3 ⊆ P where neither 22 = {8, 12} ⊈
P nor 3 /∈ P .
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(ii) Let X = {2, 4}. Then P = ⟨8⟩ is a primary hyperideal of the
multiplicative hyperring (Z,+, ◦). However, it is not (4, 3)-prime
as the fact that 14 ◦ 4 ⊆ P but 13 = {4, 8, 16} ⊈ P and 4 /∈ P .

Recall from [4] that a proper hyperideal P of H is n-absorbing if
x1 ◦ · · · ◦ xn ◦ xn+1 ⊆ P for x1, · · · , xn, xn+1 ∈ H, then there are n of
the x,i whose product is in P . Moreover, a proper hyperideal P of H is
called semi n-absorbing if for x ∈ H, xn+1 ⊆ P implies xn ⊆ P . Let
xβ+1 be a subset of an arbitrary (α, β)-prime hyperideal P in H for
some x, y ∈ H. Then xα ◦ x = xα−β ◦ xβ+1 ⊆ P . Hence we get xβ ⊆ P
or x ∈ P as P is an (α, β)-prime hyperideal of H. Then we conclude
that every (α, β)-prime hyperideal is semi β-absorbing. However, the
converse need not to be hold. See the following example.

Example 3.5. In the commutative multiplicative hyperring ZX with
X = {7, 11}, the hyperideal P = ⟨30⟩ is 3-absorbing but it is not an
(4, 3)-prime hyperideal of ZX . Because 24 ◦ 15 ⊆ P but neither 23 ⊆ P
nor 15 ∈ P .

Remark 3.6. A product of the (α, β)-prime hyperideals may not be an
(α, β)-prime hyperideal.

The following example verifies this claim.

Example 3.7. Consider the multiplicative hyperring H = Z + 3xZ[x]
defined in Example 2.4 of [16]. In the hyperring P = 3xZ[x] is (α, β)-
prime hyperideal for all α, β ∈ Z+, but Pn is not an (α, β)-prime hy-
perideal of H for n ≤ α. Because 3αxα ⊆ Pn, 3β = {3β · 2i · 4j | i, j ≥
0 and i+ j = β − 1} ⊈ Pn and xα /∈ Pn.

Our first theorem presents a characterization of (α, β)-prime hyper-
ideals

Theorem 3.8. Assume that P ̸= H is a hyperideal of H and α, β ∈ Z+.
Then the following are equivalent:

(i) P is an (α, β)-prime hyperideal in H.

(ii) P = (P : xα) such that xβ ⊈ P for x ∈ H.
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(iii) If xα ◦ P ′ ⊆ P for some hyperideal P ′ of H and x ∈ H, then
xβ ⊆ P or P ′ ⊆ P .

Proof. (i) =⇒ (ii) Suppose that xβ ⊈ P for x ∈ H. Take any y ∈ (P :
xα). So we have xα ◦ y ⊆ P . Since P is an (α, β)-prime hyperideal in
H and xβ ⊈ P , we get y ∈ P which means (P : xα) ⊆ P . Since the
inclusion P ⊆ (P : xα) always holds, we obtain P = (P : xα).

(ii) =⇒ (iii) Let P ′ be a hyperideal of H and x ∈ H such that
xα ◦ P ′ ⊆ P . If xβ ⊆ P , we are done. If xβ ⊈ P , we get the result that
(P : xα) = P by (ii), and so P ′ ⊆ P .

(iii) =⇒ (i) Let xα◦y ⊆ P for x, y ∈ H. Then ⟨xα⟩◦⟨y⟩ ⊆ ⟨xα◦y⟩ ⊆ P
by Proposition 2.15 in [12]. Put ⟨y⟩ = P ′. Hence we have xα ◦ P ′ ⊆ P .
From (iii) it follows that either xβ ⊆ P or y ∈ P ′ ⊆ P , as needed. □

Recall from [12] that a hyperideal A of H refers to a principal hy-
perideal if A = ⟨x⟩ for x ∈ H. A hyperring whose every hyperideal is
principal is called principal hyperideal hyperring.

Proposition 3.9. Let P ̸= H be a hyperideal of a principal hyperideal
hyperring H and α, β ∈ Z+. Then the following statements are equiva-
lent:

(i) P is an (α, β)-prime hyperideal in H.

(ii) If Pα
1 ◦ P2 ⊆ P for hyperideals P1, P2 of H, then P β

1 ⊆ P or
P2 ⊆ P .

(iii) P = (P : Pα
1 ) such that P β

1 ⊈ P for every hyperideal P1 of H.

(iv) If Pα
1 ◦ y ⊆ P where y ∈ H and P1 is a hyperideal of H, then

P β
1 ⊆ P or y ∈ P .

Proof. (i) =⇒ (ii) Let Pα
1 ◦ P2 ⊆ P for hyperideals P1, P2 of H. Since

H is a principal hyperideal hyperring, there exists x ∈ H such that
P1 = ⟨x⟩ and so xα ◦ P2 ⊆ P . Since P is an (α, β)-prime hyperideal in

H, by Theorem 3.8 we conclude that xβ ⊆ P which means P β
1 = ⟨x⟩β ⊆

⟨xβ⟩ ⊆ P or P2 ⊆ P .

(ii) =⇒ (iii) Let y ∈ (P : Pα
1 ) and P β

1 ⊈ P for a hyperideal P1 of
H. Then ⟨y⟩ ⊆ (P : Pα

1 ) as (P : Pα
1 ) is a hyperideal of H by Theoremm
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3.8 in [1], and so Pα
1 ◦ ⟨y⟩ ⊆ P . By the hypothesis, we get y ∈ ⟨y⟩ ⊆ P

which implies (P : Pα
1 ) ⊆ P . The other containment is clear.

(iii) =⇒ (iv) Let Pα
1 ◦ y ⊆ P and P β

1 ⊈ P . Then we have y ∈ (P :
Pα
1 ) = P , as required.
(iv) =⇒ (i) Let xα ◦ y ⊆ P for x, y ∈ H. We assume that P1 = ⟨x⟩.

Hence we have Pα
1 ◦ y ⊆ ⟨x⟩α ◦ ⟨y⟩ ⊆ ⟨xα ◦ y⟩ ⊆ P . By the assumption,

we get the result that xβ ⊆ P β
1 ⊆ P or y ∈ P . Consequently, P is an

(α, β)-prime hyperideal in H. □
By Remark 3.3, every (α, β)-prime C-hyperideal of H is a primary

hyperideal and so its radical is a prime hyperideal of H by Proposition
3.6 in [12]. Let P be an (α, β)-prime C-hyperideal of H. Then P is
referred as a Q-(α, β)-prime C-hyperideal of H where rad(P ) = Q.

Theorem 3.10. If P is a Q-(α, β)-prime C-hyperideal of H for α, β ∈
Z+, then Q = {x ∈ H | xβ ⊆ P}.

Proof. The inclusion {x ∈ H | xβ ⊆ P} ⊆ Q holds. Assume that
x ∈ Q = rad(P ) and n is the smallest positive integer with xn ⊆ P .
Then we have xα ◦ xn−1 ⊆ P . Take any y ∈ xn−1. Since xα ◦ y ⊆ P
and P is an (α, β)-prime hyperideal of H, we get xβ ⊆ P or y ∈ P . Let
y ∈ P . Since P is a C-hyperideal of H and y ∈ xn−1, we get the result
that xn−1 ⊆ P , a contradiction. Therefore we obtain xβ ⊆ P . Then
Q ⊆ {x ∈ H | xβ ⊆ P}, so this completes the proof. □

Theorem 3.11. Let P be a C-hyperideal of H with an i-set and α, β ∈
Z+ such that Q = {x ∈ H | xβ ⊆ P} is a maximal hyperideal of H.
Then P is a Q-(α, β)-prime hyperideal.

Proof. Assume that xα ◦ y ⊆ P with xβ ⊈ P for x, y ∈ H. Let xα ⊆ Q.
Since Q is a maximal hyperideal of H, we get x ∈ Q by Proposition 2.18
in [12]. This contradict by xβ ⊈ P . Then xα ⊈ Q. Let a ∈ xα such that
a /∈ Q. Then we have ⟨a,Q⟩ = H. So, there exists m ∈ Q such that

1 ∈ ⟨a⟩+m ⊆ ⟨xα⟩+m. Therefore 1 ∈ (⟨xα⟩+m)β ⊆ Σβ
i=0

(
β
i

)
⟨xα⟩β−i◦mi

and so y ∈ 1 ◦ y ⊆ (Σi=0

(
β
i

)
⟨xα⟩β−i ◦ mi) ◦ y ⊆ P . Hence P is an

(α, β)-prime hyperideal. By Theorem 3.10, we conclude that P is a
Q-(α, β)-prime hyperideal. □

As an immediate consequence of the previous theorem, we have the
following result.
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Corollary 3.12. Let Q is a maximal hyperideal of H, α, β ∈ Z+ and
n ≤ β. Then Qn is a Q-(α, β)-prime hyperideal.

Theorem 3.13. Assume that P1, · · · , Pn are C-hyperideals of H such
that for every i ∈ {1, · · · , n}, Pi is a Q-(αi, βi)-prime hyperideal with
αi, βi ∈ Z+. Then

⋂n
i=1 Pi is a Q-(α, β)-prime hyperideal in H where

α ≤ min{α1, · · · , αn} and β ≥ max{β1, · · · , βn}.

Proof. Suppose that xα◦y ⊆
⋂n

i=1 Pi for x, y ∈ H such that y /∈
⋂n

i=1 Pi.
This means that at least one of the P ,

i s, say Pt, does not contain y.
Since Pt is a Q-(αt, βt)-prime hyperideal in H and xαt ◦ y ⊆ Pt, we
conclude that xβt ⊆ Pt which implies x ∈ Q. Then we get xβi ⊆ Pi

for each i ∈ {1, · · · , n} by Theorem 3.10, and so xβ ⊆
⋂n

i=1 Pi where
β ≥ max{β1, · · · , βn}. On the other hand, we have rad(

⋂n
i=1 Pi) =⋂n

i=1 rad(Pi) = Q by Proposition 3.3 in [12]. Consequently,
⋂n

i=1 Pi is a
Q-(α, β)-prime hyperideal in H. □

Let C(P ) = {(α, β) ∈ Z+ × Z+ | P is (α,β)-closed } where P is
a proper hyperideal of H. Then we get {(α, β) ∈ Z+ × Z+ | 1 ≤
α ≤ β} ⊆ C(P ) ⊆ Z+ × Z+. Furthermore, rad(P ) = P if and only
if C(P ) = Z+ × Z+ [5]. Now, let us define L(P ) = {(α, β) ∈ Z+ ×
Z+ | P is (α,β)-prime }. Let L(P ) = Z+ × Z+. Clearly, the hyperideal
P is prime if and only if (1, 1) ∈ L(P ).

Remark 3.14. Let P be a proper hyperideal of H and α, β ∈ Z+. If
(α, β) ∈ L(P ), then (α′, β′) ∈ L(P ) for α′, β′ ∈ Z+ such that α′ ≤ α and
β ≤ β′ by being P a hyperideal.

Remark 3.15. Suppose that P is a proper hyperideal ofH and α, β, θ ∈
Z+. If (α, β) ∈ L(P ) and (β, θ) ∈ C(P ), then (α, θ) ∈ L(P ).

Theorem 3.16. Assume that P is a proper hyperideal of H and α, β ∈
Z+. Then (α, β) ∈ L(P ) if and only if (α+ 1, β) ∈ L(P ).

Proof. (=⇒) Let (α, β) ∈ L(P ). Assume that xα+1◦y ⊆ P for x, y ∈ H
such that y /∈ P . Since α + 1 ≤ 2α, we have (x2)α ◦ y ⊆ P . Since
(α, β) ∈ L(P ) and y /∈ P , we get x2β ⊆ P which means x ∈ rad(P ). By
Theorem 3.10, we conclude that xα ⊆ P .

(⇐=) It follows from Remark 3.14. □
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Theorem 3.17. Let the zero hyperideal of H be a C-hyperideal and
α, β ∈ Z+. If every proper hyperideal of H is (α, β)-prime, then H
has no non-trivial idempotents, and every prime C-hyperideal of H is
maximal.

Proof. Let every proper hyperideal of H be (α, β)-prime. Assume
that e is a non-trivial idempotent in H. Then 0 ∈ e ◦ (e − 1) and so
0 ∈ eα ◦ (e − 1). Since the zero hyperideal of H is a C-hyperideal, we
have eα ◦ (e−1) = 0. Therefore we get e ∈ eβ = 0 as the zero hyperideal
of H is (α, β)-prime and e ̸= 1. This is a contradiction and so H has no
non-trivial idempotents. Suppose that P is a prime C-hyperideal that
is not maximal. Then we have P ⊂ Q for some hyperideal Q of H.
Let x ∈ Q − P . Then xα ◦ x ⊆ ⟨xα+1⟩. This follows that xβ ⊆ ⟨xα+1⟩
or x ∈ ⟨xα+1⟩. This implies that xβ ⊆ xα+1 ◦ a for some a ∈ H or
x ∈ xα+1 ◦ b for some b ∈ H. In the first case, 0 ∈ xβ −xα+1 ◦a. Since P
is a C-hyperideal, we get xβ−xα+1 ◦a ⊆ P . From xβ ◦(1−xα−β+1 ◦r) ⊆
xβ − xα+1 ◦ a it follows that xβ ◦ (1 − xα−β+1 ◦ r) ⊆ P . Since P is a
prime hyperideal and xβ ⊈ P , we get 1 − xα−β+1 ◦ r ⊆ P ⊂ Q and so
1 ∈ Q, a contradiction. In the second case, we get 0 ∈ (x−xα+1 ◦ b)∩P .
Then we get the result that x ◦ (1 − xα ◦ b) ⊆ x − xα+1 ◦ b ⊆ P . Thus
we have 1 − xα ◦ b ⊆ P ⊂ Q because x ⊈ P . This follows that 1 ∈ Q
which is a contradiction. Consequently, every prime C-hyperideal of H
is maximal. □

We say that a hyperideal P of H is of maximum length β if for every
ascending chain P = P0 ⊆ P1 ⊆ P2 ⊆ · · · of hyperideals of H, β is the
largest integer with Pβ = Pβ+1 = · · · .

Theorem 3.18. Assume that α, β ∈ Z+ and P is a strong C-hyperideal
of H of maximum length β. If P is irreducible in H, then P is an
(α, β)-prime hyperideal.

Proof. Let xα ◦ y ⊆ P for x, y ∈ H. Consider the ascending chain
P = P0 ⊆ P1 ⊆ P2 ⊆ · · · where Pi = {b ∈ H xi ◦ b ⊆ P}. By the
assumption we have Pβ = Pβ+1 = · · · . Put I = P+⟨xβ⟩ and J = P+⟨y⟩.
Then we have P ⊆ I ∩ J . Let a ∈ I ∩ J . Then there exist a1, a2 ∈ H
and p1, p2 ∈ P such that a ∈ (p1+xβ ◦ a1)∩ (p2+ y ◦ a2). It follows that
a = p1+x1 = p2+x2 for some x1 ∈ xβ ◦a1 and x2 ∈ y◦a2. Therefore we
get x1−x2 ∈ (xβ◦a1−y◦a2)∩P and so xβ◦a1−y◦a2 ⊆ P as P is a strong
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C-hyperideal of H. Since (xβ ◦a1− y ◦a2) ◦xα ⊆ xα+β ◦a1 −xα ◦ y ◦a2,
we obtain xα+β ◦ a1 − xα ◦ y ◦ a2 ⊆ P which implies xα+β ◦ a1 ⊆ P .
This means a1 ∈ Pα+β = Pβ and so xβ ◦a1 ⊆ P . Then we conclude that
a = p1 + x1 ∈ P which means I ∩ J ⊆ P and so P = I ∩ J . By the
hypothesis, we get P = I which implies xβ ⊆ P or P = J which means
y ∈ P . Thus P is an (α, β)-prime hyperideal. □

Recall from [17] that a proper hyperideal P of H is a 1-absorbing
prime if x ◦ y ◦ z ⊆ P for every non-unit elements x, y, z ∈ H, then
x ◦ y ⊆ P or z ∈ P .

Theorem 3.19. Let P be a 1-absorbing prime C-hyperideal of H. Then
P is an (α, β)-prime hyperideal for every β ≥ 2.

Proof. Assume that P is a 1-absorbing prime C-hyperideal of H. Take
any x, y ∈ H such that xα ◦ y ⊆ P but y /∈ P . If x is unit, then
y ∈ 1◦y ⊆ 1α ◦y ⊆ (x−1 ◦x)α ◦y = (x−1)α ◦xα ◦y ⊆ P , a contradiction.
Then x is nonunit. Let y be unit. Then we have xα−2 ◦ x ◦ x = xα ⊆
xα ◦1 ⊆ xα ◦y ◦y−1 ⊆ P . Take any a ∈ xα−2. Then we get a◦x◦x ⊆ P .
If a is unit, then we are done. Let a be non-unit. Since P is a 1-
absorbing prime hyperideal of H, we obtain a ◦ x ⊆ P or x ∈ P . In
the first case, since P is a C-hyperideal and xα−2 ◦ x ∩ P ̸= ∅, we
have xα−1 = xα−2 ◦ x ⊆ P. By continuing this process, we conclude
that x2 ⊆ P which implies xβ ⊆ P for every β ≥ 2. Now, let y be
non-unit and b be any element in xα−1. If b is unit, then we have
x ◦ y ⊆ e ◦ x ◦ y ⊆ b−1 ◦ b ◦ x ◦ y ⊆ b−1 ◦ xα ◦ y ⊆ P . This implies that
x2 ◦y ⊆ P which means x2 ⊆ P and so xβ ⊆ P for every β ≥ 2. Assume
that b is non-unit. Since b◦x◦y ⊆ P , y /∈ P and P is a 1-absorbing prime
hyperideals of H, we get the result that either b ◦ x ⊆ P which means
xα ⊆ P . By using a similar argument mentioned above, we conclude
that xβ ⊆ P for every β ≥ 2. Thus P is an (α, β)-prime hyperideal for
every β ≥ 2. □

A proper hyperideal P of H is called semiprime, if xk ◦ y ⊆ P for
k ∈ Z and x, y ∈ H implies x ◦ y ⊆ P [15]. The following theorem
shows that the converse of Theorem 3.19 holds when P is a semiprime
hyperideal.

Theorem 3.20. Let P be a semiprime C-hyperideal of H. If P is an
(α, β)-prime for all β ≥ 2, then P is 1-absorbing prime.
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Proof. Let x ◦ y ◦ z ⊆ P for some non-unit elements x, y, z ∈ H but
z /∈ P . Then we have (x ◦ y)α ◦ z ⊆ P . Take any a ∈ x ◦ y. Therefore
aα ◦ z ⊆ P . Since P is an (α, β)-prime hyperideal of H and z /∈ P , we
get aβ ⊆ P . Since P is a C-hyperideal and (x ◦ y)β ∩ P ̸= ∅, we obtain
xβ ◦ yβ ⊆ P . Take any b ∈ yβ. Then we have xβ ◦ b ⊆ P . Since P is
a semiprime hyperideal, we get the result that x ◦ b ⊆ P . This means
that (x ◦ yβ) ∩ P ̸= ∅ and so x ◦ yβ ⊆ P . This implies that x ◦ y ⊆ P
as P is a semiprime hyperideal of H. Consequently, P is a 1-absorbing
prime hyperideal of H. □

Assume that P1, · · · , Pn are hyperideals ofH. A coveringA ⊆ ∪n
i=1Pi

is efficient if P is not contained in the union of any n−1 of the hyperideals
P1, · · · , Pn . Moreover, P = ∪n

i=1Pi is an efficient union when none of
the P ,

i s may be excluded [16]. The following lemma is needed in the
proof of our next result.

Lemma 3.21. Assume that P1, · · · , Pn (n ≥ 2) are C-hyperideals of H
such that P ⊆ ∪n

i=1Pi is an efficient covering. If rad(Pi) ⊈ rad((Pj : a))
for every a /∈ rad(Pj) with i ̸= j, then no Pi is an (α, β)-prime hyperideal
for each i ∈ {1, · · · , n}.

Proof. Assume that one of the P ,
i s, say Pt, is an (α, β)-prime hyperideal

of H. Clearly, P = (P ∩ P1) ∪ · · · ∪ (P ∩ Pn) is an efficient union.
Then we conclude that (∩i ̸=tPi) ∩ P ⊆ Pt ∩ P . Let a /∈ rad(Pt) and
i ̸= t. By the hypothesis, there exists xi ∈ rad(Pi) such that xi /∈
rad((Pt : a)). Therefore we may suppose that αi is the least positive
integer with xαi

i ⊆ Pi. Put X = xα1 ◦ · · · ◦ xαt−1 ◦ xαt+1 ◦ · · · ◦ xαn where
α = max{α1, · · · , αt−1, αt+1, · · · , αn}. Thus X ◦a ⊆ ∩i ̸=t(Pi∩P ). Now,
assume thatX◦a ⊆ Pt∩P . This implies thatX ⊆ (Pt : a) ⊆ rad(Pt : a).
By Theorem 3.8, rad(Pt : a) is a prime hyperideal. Then there exists
some i ∈ {1, · · · , t− 1} ∪ {t+ 1, · · · , n} such that xi ∈ rad(Pt : a), wich
is impossible. Then X ◦ a ⊈ P ∩Pi which means (∩i ̸=tPi)∩P ⊈ Pt ∩P ,
a contradiction. Consequently, no Pi is an (α, β)-prime hyperideal for
each i ∈ {1, · · · , n}. □

Now, we give a generalization of Prime Avoidance Theorem for
(α, β)-prime hyperideals.

Theorem 3.22. Assume that P1, · · · , Pn (n ≥ 2) are C-hyperideals of H
such that at most two of them are not (α, β)-prime. If P is a hyperideal
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of H with P ⊆ ∪n
i=1Pi and rad(Pi) ⊈ rad((Pj : a)) for all a /∈ rad(Pj)

and i ̸= j, then P ⊆ Pt for some t ∈ {1, · · · , n}.

Proof. Suppose on the contrary that P ⊈ Pt for all t ∈ {1, · · · , n}. Let
P ⊆ ∪n

i=1Pi be a covering such that at least n − 2 of the hyperideals
P1, · · · , Pn are (α, β)-prime. Without loss of generality, one may reduce
the covering to an efficient covering. If n = 2, then the covering is not
efficient. Assume that n > 2. Since rad(Pi) ⊈ rad((Pj : a)) for all
a /∈ rad(Pj) and i ̸= j and the covering is efficient, we conclude that no
Pi is an (α, β)-prime hyperideal for each i ∈ {1, · · · , n} by Lemma 3.21.
This contradicts the fact that at most two of the hyperideals P1, · · · , Pn

are not (α, β)-prime. Hence P ⊆ Pt for some t ∈ {1, · · · , n}. □
Let S be a non-empty subset of H with scalar identity 1. Recall from

[1] that S is a multiplicative closed subset (briefly, MCS), if S is closed
under the hypermultiplication and S contains 1. [23] Consider the set
(H × S/ ∼) of equivalence classes, being denoted by S−1H, such that
(x1, t1) ∼ (x2, t2) if and only if there exists t ∈ S with t◦t1◦x2 = t◦t2◦x1.
The equivalence class of (x, t) ∈ H×S is denoted by x

t . The set S
−1H is

a multiplicative hyperring where the operation ⊕ and the multiplication
⊙ are defined by

x1
t1
⊕ x2

t2
= t1◦x2+t2◦x1

t1◦t2 = {a+b
c | a ∈ t1 ◦x2, b ∈ t2 ◦x1, c ∈ t1 ◦ t2}

x1
t1

⊙ x2
t2

= x1◦a2
t1◦t2 = {a

b | a ∈ x1 ◦ x2, b ∈ t1 ◦ t2}
The localization map π : H −→ S−1H, defined by x 7→ x

1 , is a
homomorphism of hyperrings. Also, if A is a hyperideal of H, then
S−1A is a hyperideal of S−1H [23].

Theorem 3.23. Assume that P is a C-hyperideal of H and S a MCS
such that P ∩ S = ∅. If P is an (α, β)-prime hyperideal of H, then
S−1P is an (α, β)-prime hyperideal of S−1H.

Proof. Let
x

t1
⊙ · · · ⊙ x

t1︸ ︷︷ ︸
α

⊙ y
t2

= xα◦y
tα1 ◦t2

⊆ S−1P for some x
t1
, y
t2

∈ S−1H.

So we get a
t ∈ xα◦y

tα1 ◦t2
for every a ∈ xα ◦ y = x ◦ · · · ◦ x︸ ︷︷ ︸

α

◦y and t ∈ tα1 ◦ t2 =

t1 ◦ · · · ◦ t1︸ ︷︷ ︸
α

◦t2. Hence a
t = a′

t′ for some a′ ∈ P and t′ ∈ S. Then there

exists s ∈ S such that s ◦ a ◦ t′ = s ◦ a′ ◦ t. This implies s ◦ a ◦ t′ ⊆ P .
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Since a ∈ xα ◦ y, we conclude that s ◦ a ◦ t′ ⊆ s ◦ xα ◦ y ◦ t′. Since P is a
C-hyperideal of H, we get s ◦ xα ◦ y ◦ t′ ⊆ P and then sα ◦ xα ◦ y ◦ t′α =
(s ◦ x ◦ t′)α ◦ y ⊆ P . Take any z ∈ s ◦ x ◦ t′. Since zα ◦ y ⊆ P and P
is an (α, β)-prime hyperideal of H, we have either zβ ⊆ P or y ∈ P .
In first possibily, we get (s ◦ x ◦ t′)β ⊆ P as P is a C-hyperideal of H
and zβ ⊆ (s ◦ x ◦ t′)β. Hence xβ

tβ1
= sβ◦xβ◦t′β

sβ◦tβ1 ◦t′
β ⊆ S−1P which means

x

t1
⊙ · · · ⊙ x

t1︸ ︷︷ ︸
β

⊆ S−1P or y
t2

∈ S−1P . This shows that S−1P is an

(α, β)-prime hyperideal of S−1H. □

Assume that (H,+, ◦) is a multiplicative hyperring and x is an in-
determinate. Then (H[x],+, ⋄) is a polynomail multiplicative hyperring
such that uxn ⋄ vxm = (u ◦ v)xn+m [6].

Theorem 3.24. Let α, β ∈ Z+. If P is an (α, β)-prime hyperideal of
(H,+, ◦), then P [x] is an (α, β)-prime hyperideal of (H[x],+, ⋄).

Proof. Suppose that u(x)α ⋄ v(x) ⊆ P [x]. Without loss of generality,
we may assume that u(x) = axn and v(x) = bxm for a, b ∈ H. Hence
aα ◦ bxαn+m ⊆ P [x]. This means aα ◦ b ⊆ P . Since P is an (α, β)-
prime hyperideal of (H,+, ◦), we get aβ ⊆ P or b ∈ P which implies
u(x)β = (axn)β = aβxβ·n ⊆ P or v(x) = bxm ∈ P [x]. Consequently,
P [x] is an (α, β)-prime hyperideal of (H[x],+, ⋄). □

In view of Theorem 3.24, we have the following result.

Corollary 3.25. Assume that P is an (α, β)-prime hyperideal of H.
Then P [x] is an (α, β)-prime hyperideal of H[x].

Assume that H is a multiplicative hyperring. Then the set of all
hypermatrices of H is denoted by Mm(H). Let A = (Aij)m×m, B =
(Bij)m×m ∈ P ⋆(Mm(H)). Then A ⊆ B if and only if Aij ⊆ Bij [1].

Theorem 3.26. Suppose that P is a hyperideal of H and α, β ∈ Z+. If
Mm(P ) is an (α, β)-prime hyperideal of Mm(H), then P is an (α, β)-
prime hyperideal of H.
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Proof. Let xα ◦ y ⊆ P for some x, y ∈ H. Then we have
xα ◦ y 0 · · · 0

0 0 · · · 0
...

...
. . .

...
0 0 · · · 0

 ⊆Mm(P ).

Since Mm(P ) is an (α, β)-prime hyperideal of Mm(H) and
xα ◦ y 0 · · · 0

0 0 · · · 0
...

...
. . .

...
0 0 · · · 0



=


x 0 · · · 0
0 0 · · · 0
...

...
. . .

...
0 0 · · · 0

 ◦ · · · ◦


x 0 · · · 0
0 0 · · · 0
...

...
. . .

...
0 0 · · · 0


︸ ︷︷ ︸

α

◦


y 0 · · · 0
0 0 · · · 0
...

...
. . .

...
0 0 · · · 0

 ,

we get the result that
x 0 · · · 0
0 0 · · · 0
...

...
. . .

...
0 0 · · · 0

 ◦ · · · ◦


x 0 · · · 0
0 0 · · · 0
...

...
. . .

...
0 0 · · · 0


︸ ︷︷ ︸

β

=


xβ 0 · · · 0
0 0 · · · 0
...

...
. . .

...
0 0 · · · 0

 ⊆Mm(P )

or 
y 0 · · · 0
0 0 · · · 0
...

...
. . .

...
0 0 · · · 0

 ∈Mm(P ).
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Then we conclude that xβ ⊆ P or y ∈ P . Consequently, P is an
(α, β)-prime hyperideal of H. □

Recall from [14] that a mapping ψ from the multiplicative hyper-
ring (H1,+1, ◦1) into the multiplicative hyperring (H2,+2, ◦2) refers
to a hyperring good homomorphism if ψ(a +1 b) = ψ(a) +2 ψ(b) and
ψ(a ◦1 b) = ψ(a) ◦2 ψ(b) for all a, b ∈ H1.

Theorem 3.27. Assume that H1 and H2 are two multiplicative hyper-
rins, ψ : H1 −→ H2 a hyperring good homomorphism and α, β ∈ Z+.

(i) If P2 is an (α, β)-prime hyperideal of H2, then ψ−1(P2) is an
(α, β)-prime hyperideal of H1.

(ii) If ψ is surjective and P1 is a an (α, β)-prime C-hyperideal of H1

with Ker(ψ) ⊆ P1 , then ψ(P1) is an (α, β)-prime hyperideal of
H2.

Proof. (i) Let xα ◦1 x1 ⊆ ψ−1(P2) for some x, x1 ∈ H1. Then we
have ψ(xα ◦1 x1) = ψ(x)α ◦2 ψ(x1) ⊆ P2 as ψ is a hyperring good
homomorphism. Since P2 is an (α, β)-prime hyperideal of H2, we have
ψ(xβ) = (ψ(x))β ⊆ P2 which means xβ ⊆ ψ−1(P2) or ψ(x1) ∈ P2

which implies x1 ∈ ψ−1(P2). Consequently, ψ−1(P2) is an (α, β)-prime
hyperideal of H1.

(ii) Let yα ◦2 y1 ⊆ ψ(P1) for y, y1 ∈ H2. Then ψ(x) = y and ψ(x1) =
y1for some x, x1 ∈ H1 because ψ is surjective. Hence ψ(xα ◦1 x1) =
ψ(x)α ◦2 ψ(x1) ⊆ ψ(P1). Now, pick any a ∈ xα ◦1 x1. Then ψ(a) ∈
ψ(xα ◦1 x1) ⊆ ψ(P1) and so there exists b ∈ P1 such that ψ(a) = ψ(b).
Then we have ψ(a − b) = 0 which means a − b ∈ Ker(ψ) ⊆ P1 and so
a ∈ P1. Therefore xα ◦1 x1 ⊆ P1 as P1 is a C-hyperideal. Since P1 is
an (α, β)-prime hyperideal of H1, we obtain xβ ⊆ P1 or x1 ∈ P1. This
implies that yβ = ψ(xβ) ⊆ ψ(P1) or y1 = ψ(x1) ∈ ψ(P1). Thus ψ(P1) is
an (α, β)-prime hyperideal of H2. □

Now, we have the following result.

Corollary 3.28. Let P1 and P2 be two hyperideals of H with P1 ⊆ P2

and α, β ∈ Z+. Then P2 is an (α, β)-prime hyperideal of H if and only
if P2/P1 is an (α, β)-prime hyperideal of H/P1.
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Proof. Consider the homomorphism π : H −→ H/P1 defined by π(x) =
x + P1. Then the claim follows from Theorem 3.27 as π is a good
epimorphism. □

4 Weakly (α, β)-Prime Hyperideals

In this section, we introduce the class of the weakly (α, β)-prime hyper-
ideals as an expansion of the (α, β)-prime hyperideals and investigate
some of their properties.

Definition 4.1. Assume that P is a proper hyperideal of H and α, β ∈
Z+. P is said to be a weakly (α, β)-prime hyperideal if 0 /∈ xα ◦ y ⊆ P
for x, y ∈ H implies that xβ ⊆ P or y ∈ P .

Example 4.2. Consider the ring (Z8,⊕,⊙) where x̄ ⊕ ȳ and x̄ ⊙ ȳ
are remainder of x+y

8 and x·y
8 , respectively, where + and · are ordinary

addition and multiplication for all x̄, ȳ ∈ Z8. Define the hyperoperation
x̄ ◦ ȳ = {xy, 2xy, 3xy, 4xy, 5xy, 6xy, 7xy}. Then the hyperideal Q =
{0̄, 4̄} of (Z8,⊕, ◦) is weakly (3, 1)-prime but it is not (3, 1)-prime.

Theorem 4.3. Assume that the zero hyperideal of H is a C-hyperideal
such that its radical is prime. If P is a weakly (α, β)-prime C-hyperideal
of H for α, β ∈ Z+, then rad(P ) is prime. In particular, xβ ⊆ P for
each x ∈ rad(P )− rad(0).

Proof. Let x ◦ y ⊆ rad(P ) for x, y ∈ H. Then there exists n ∈ Z+

such that xn ◦ yn ⊆ P . Assume that a ∈ xn and b ∈ yn, so aα ◦ b ⊆ P .
If 0 ∈ aα ◦ b, then aα ◦ b = 0 as the zero hyperideal of H is a C-
hyperideal. Since radical of the hyperideal is prime, we have a ∈ rad(0)
or b ∈ rad(0). This means x ∈ rad(0) or y ∈ rad(0). Then we get the
result that x ∈ rad(P ) or y ∈ rad(P ). Assume that 0 /∈ aα ◦ b. Since P
is a weakly (m,n)-prime hyperideal of H, we get either aβ ⊆ P or b ∈ P .
Since P is a C-hyperideal, aβ ⊆ xβn or b ∈ yn, we have xβn ⊆ P which
implies x ∈ rad(P ) or yn ⊆ P which means y ∈ rad(P ), as needed.
Now, take any x ∈ rad(P )− rad(0). Assume that n is the least positive
integer with xn ⊆ P . Since x /∈ rad(0), we conclude that 0 /∈ xα ◦ xn−1.
Let y ∈ xn−1. So 0 /∈ xα ◦ y ⊆ P . Since P is a weakly (m,n)-prime
hyperideal and y /∈ P , we get xβ ⊆ P , as required. □
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Theorem 4.4. If every proper hyperideal of H is weakly (α, β)-prime
such that α, β ∈ Z+ and α ≥ β, then every prime C-hyperideal of H is
maximal.

Proof. Suppose that I is a prime C-hyperideal such that it is not maxi-
mal. Let J be a proper hyperideal such that I ⊂ J . Take any x ∈ J − I.
Put P = ⟨xα+1⟩. Therefore we have 0 /∈ xα ◦ x ⊆ P . By the hy-
pothesis, we have xβ ⊆ P or x ∈ P . In the first possibilty, we obtan
xβ ⊆ xα+1 ◦ r for some r ∈ H which means 0 ∈ xβ − xα+1 ◦ r ∩ I. Then
xβ − xα+1 ◦ r ⊆ I, also xβ ◦ (1 − xα−β+1 ◦ r) ⊆ xβ − xα+1 ◦ r. Hence
xβ ◦ (1 − xα−β+1 ◦ r) ⊆ I. Since xβ ⊈ I and I is a prime hyperideal,
we get 1 − xα−β+1 ◦ r ⊆ I ⊂ J which means 1 ∈ J , a contradiction.
In the second possibilty, we get a contradiction by a similar argument.
Consequenntly, every prime C-hyperideal of H is maximal. □

Let P be a weakly (α, β)-prime C-hyperideal of H and x, y ∈ H. We
say that (x, y) is an (α, β)-zero of P if 0 ∈ xα ◦ y, xβ ⊈ P and y /∈ P .

Proposition 4.5. Let P be a weakly (α, β)-prime C-hyperideal of H and
and (x, y) be an (α, β)-zero of P where α, β ∈ Z+. Then the following
hold:

(i) 0 ∈ (x+ a)α ◦ y for all a ∈ P .

(ii) 0 ∈ xα ◦ (y + a) for all a ∈ P .

(iii) If the hyperideal zero of H is a strong C-hyperideal, then xα◦a = 0
for all a ∈ P .

Proof. (i) Let (x, y) be an (α, β)-zero of P and 0 /∈ (x+a)α ◦y for some
a ∈ P . Since 0 ∈ xα ◦ y and P is a C-hyperideal of H, we conclude that
xα ◦y ⊆ P . Therefore 0 /∈ (x+a)α ◦y ⊆ xα ◦y+Σα

i=1

(
α
i

)
xα−i ◦ai ◦y ⊆ P.

Since P is a weakly (α, β)-prime hyperideal of H and y /∈ P , we get
(x+ a)β ⊆ P . On the other hand, since (x, y) is an (α, β)-zero of P and
xβ ⊈ P , we get the result that (x + a)β ⊈ P which is a contradiction.
Thus 0 ∈ (x+ a)α ◦ y for all a ∈ P .

(ii) Let 0 /∈ xα ◦ (y + a) for some a ∈ P . Hence 0 /∈ xα ◦ (y + a) ⊆
xα ◦ y + xα ◦ a ⊆ P as P is a C-hyperideal of H. Since P is a weakly
(α, β)-prime hyperideal of H and xβ ⊈ P , we obtain y + a ∈ P and so
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y ∈ P which is a contradiction. Consequently, 0 ∈ xα ◦ (y + a) for all
a ∈ P .

(iii) Assume that xα ◦ a ̸= 0 for some a ∈ P . Then there exists
u ∈ xα ◦ a such that u ̸= 0. By (ii) we have 0 ∈ xα ◦ (y + a). Since the
hyperideal zero of H is a strong C-hyperideal and 0 ∈ xα ◦ (y + a) ⊆
xα ◦y+xα ◦a, we get xα ◦y+xα ◦a = 0. Moreover, since 0 ∈ xα ◦y and
0 ̸= u ∈ xα◦a, we get u = 0+u ∈ xα◦y+xα◦a which is a contradiction.
Hence xα ◦ a = 0 for all a ∈ P . □

Recall from [1] that an element x ∈ G is nilpotent if there exists
an integer t such that 0 ∈ xt. The set of all nilpotent elements of G is
denoted by Υ.

Theorem 4.6. Let P be a weakly (α, β)-prime C-hyperideal of a strongly
distributive multiplicative hyperring H and (x, y) be an (α, β)-zero of P
where α, β ∈ Z+. Then

(i) If the hyperideal zero of H is a strong C-hyperideal, then x◦a ⊆ Υ
for all a ∈ P .

(ii) If the hyperideal zero of H is a C-hyperideal, y ◦ a ⊆ Υ for all
a ∈ P .

Proof. (i) Since xα ◦ a = 0 for all a ∈ P , by Proposition 4.5 (3), we get
the result that x ◦ a ⊆ Υ.

(ii) Take any a ∈ P . Since 0 ∈ (x+a)α ◦y by Proposition 4.5(1) and
the hyperideal zero of H is a C-hyperideal, we get ((x + a) ◦ y)α = 0.
This means that (x + a) ◦ y ⊆ Υ. Also, since 0 ∈ xα ◦ y and the
hyperideal zero of H is a C-hyperideal, we have (x ◦ y)α = 0 which
implies x ◦ y ⊆ Υ. Since H is a strongly distributive multiplicative
hyperring, we have a ◦ y = (x+ a) ◦ y − x ◦ y ⊆ Υ, as needed. □

Theorem 4.7. Let {Pi}i∈I be a family of weakly (α, β)-prime hyperide-
als of H and D(Pi) = {x ∈ H | xβ ⊆ Pi} for all i ∈ I where α, β ∈ Z+.
If D(Pi) = D(Pj) for all i, j ∈ I, then

⋂
i∈I Pi is a weakly (α, β)-prime

hyperideal of H.

Proof. Assume that 0 /∈ xα ◦ y ⊆
⋂

i∈I Pi for x, y ∈ H but y /∈
⋂

i∈I Pi.
Therefore we conclude that y /∈ Pj for some j ∈ I. Since Pj is a weakly
(α, β)-prime hyperideal of H and 0 /∈ xα ◦ y ⊆ Pj , we get the result that
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xβ ⊆ Pj . This implies that x ∈ D(Pj) and so x ∈ D(Pi) for all i ∈ I by
the hypothesis. Then xβ ⊆

⋂
i∈I Pi. This shows that

⋂
i∈I Pi is a weakly

(α, β)-prime hyperideal of H. □
Let I be a finite sum of finite products of elements of H. Consider

the relation γ on a multiplicative hyperring H defined as xγy if and
only if {x, y} ⊆ I, namely, xγy if and only if {x, y} ⊆

∑
j∈J

∏
i∈Ij zi

for some z1, ..., zn ∈ H and Ij , J ⊆ {1, ..., n}. γ∗ denotes the transitive
closure of γ. The relation γ∗ is the smallest equivalence relation on H
such that the set of all equivalence classes, i.e., the quotient G/γ∗, is a
fundamental ring. Assume that Σ is the set of all finite sums of products
of elements ofH. We can rewrite the definition of γ∗ onH, namely, xγ∗y
if and only if there exist z1, ..., zn ∈ H such that z1 = x, zn+1 = y and
u1, ..., un ∈ Σ where {zi, zi+1} ⊆ ui for 1 ≤ i ≤ n. Suppose that γ∗(x)
is the equivalence class containing x ∈ H. Define γ∗(x)⊕ γ∗(y) = γ∗(z)
for every z ∈ γ∗(x) + γ∗(y) and γ∗(x) ⊙ γ∗(y) = γ∗(w) for every w ∈
γ∗(x) ◦ γ∗(y). Then (H/γ∗,⊕,⊙) is a ring called a fundamental ring of
H [28].

Theorem 4.8. Assume that P is a hyperideal of H. Then P is a weakly
(α, β)-prime hyperideal of (H,+, ◦) if and only if P/γ∗ is a weakly (α, β)-
prime ideal of (H/γ∗,⊕,⊙).

Proof. (=⇒) Let 0 ̸= x⊙ · · · ⊙ x︸ ︷︷ ︸
α

⊙y ∈ P/γ∗ for some x, y ∈ H/γ∗.

Hence we have x = γ∗(a) and y = γ∗(b) for some a, b ∈ H. This means
that x⊙ · · · ⊙ x︸ ︷︷ ︸

α

⊙y = γ∗(a)⊙ · · · ⊙ γ∗(a)︸ ︷︷ ︸
α

⊙γ∗(b) = γ∗(aα ◦ b). Since

γ∗(0) ̸= γ∗(aα ◦ b) ∈ P/γ∗, we get 0 /∈ aα ◦ b ⊆ P . Since P is a weakly
(α, β)-prime hyperideal of H, we get the result that aβ ⊆ P or b ∈ P .
This implies that x⊙ · · · ⊙ x︸ ︷︷ ︸

β

= γ∗(a)⊙ · · · ⊙ γ∗(a)︸ ︷︷ ︸
β

= γ∗(aβ) ∈ P/γ∗ or

y = γ∗(a) ∈ P/γ∗. Consequently, P/γ∗ is a weakly (α, β)-prime ideal of
H/γ∗.

(⇐=) Suppose that 0 /∈ aα ◦ b ⊆ P for some a, b ∈ H. Then we
have γ∗(a), γ∗(b) ∈ H/γ∗ and so γ∗(0) ̸= γ∗(a)⊙ · · · ⊙ γ∗(a)︸ ︷︷ ︸

α

⊙γ∗(b) =

γ∗(aα ◦ b) ∈ P/γ∗. Since P/γ∗ is a weakly (α, β)-prime ideal of H/γ∗,
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we obtain γ∗(a)⊙ · · · ⊙ γ∗(a)︸ ︷︷ ︸
β

= γ∗(aβ) ∈ P/γ∗ which implies aβ ⊆ P

or γ∗(b) ∈ P/γ∗ which means b ∈ P . Thus P is a weakly (α, β)-prime
hyperideal of H. □

Let (H1,+1, ◦1) and (H2,+2, ◦2) be two multiplicative hyperrings
with nonzero identity. The set H1 ×H2 with the operation + and the
hyperoperation ◦ defined as

(x1, x2) + (y1, y2) = (x1 +1 y1, x2 +2 y2)
(x1, x2) ◦ (y1, y2) = {(x, y) ∈ H1 ×H2 | x ∈ x1 ◦1 y1, y ∈ x2 ◦2 y2}

is a multiplicative hyperring [27]. Now, we present some characteriza-
tions of weakly (α, β)-prime hyperideals on cartesian product of com-
mutative multiplicative hyperring.

Proposition 4.9. Let (H1,+1, ◦1) and (H2,+2, ◦2) be two multiplicative
hyperrings with scalar identities 1H1 and 1H2, respectively, P a proper
nonzero hyperideal of H1 × H2, and α, β ∈ Z+. If P is weakly (α, β)-
prime, then it has one of the following cases:

(i) P = P1 ×H2 such that P1 is an (α, β)-prime hyperideal of H1.

(ii) P = H1 × P2 such that P2 is an (α, β)-prime hyperideal of H2.

Proof. Suppose that P = P1 × P2 is a nonzero weakly (α, β)-prime
hyperideal of H1 × H2 such that P1 and P2 are hyperideals of H1 and
H2, respectively. Let us assume P1 and P2 are proper, and P1 ̸= 0. Take
any 0 ̸= x ∈ P1. Therefore we have (0, 0) /∈ (1H1 , 0)

α◦(x, 1H2) ⊆ P1×P2.
Since P is a nonzero weakly (α, β)-prime hyperideal of H1 ×H2, we get
the result that (1H1 , 0)

β ⊆ P1 × P2 or (x, 1H2) ∈ P1 × P2. It follows
that 1H1 ∈ P1 or 1H2 ∈ P2. Then P1 = H1 or P2 = H2. This is a
contradiction. Let us consider P1 is proper and P2 = H2. Now, we
shows that P1 is an (α, β)-prime hyperideal of H1. Let x

α ◦1 y ⊆ P1 for
x, y ∈ H1. Hence we get (0, 0) /∈ (x, 1H2)

α ◦ (y, 1H2) ⊆ P1 ×H2 and so
we have (x, 1H2)

β ⊆ P1 ×H2 or (y, 1H2) ∈ P1 ×H2. This implies that
xβ ⊆ P1 or y ∈ P1. Similarly, it can be seen that if P1 = H1 and P2 is a
proper hyperideal of H2, then P2 is (α, β)-prime. □

Theorem 4.10. Assume that H = H1×· · ·×Hn where H1, · · · , Hn are
commutative multiplicative hyperrings, P a proper nonzero hyperideal of
H and α, β ∈ Z+. Then the following are equivalent.
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(i) P is a weakly (α, β)-prime hyperideal of H.

(ii) P = H1 × · · · × Pi × · · · × Hn such that Pi is an (α, β)-prime
hyperideal of Hi for some i ∈ {1, · · · , n}.

(iii) P is an (α, β)-prime hyperideal of H.

Proof. (i) =⇒ (ii) Let P = P1 × · · · × Pn is a weakly (α, β)-prime
hyperideal of H. We use the induction on n. If n = 2, then the claim is
true by Proposition 4.9. Let the claim be true for n − 1. Assume that
I = P1×· · ·×Pn−1. So P = I×Pn. Then we conclude that I is an (α, β)-
prime hyperideal of H1×· · ·×Hn−1 and Pn = Hn or I = H1×· · ·×Hn−1

and Pn is an (α, β)-prime hyperideal of Hn by Proposition 4.9. In the
first possibility, we obtain I = H1×· · ·×Pi×· · ·×Hn−1 such that Pi is
an (α, β)-prime hyperideal of Hi by induction hypothesis and Pn = Hn.
This shows that P = H1 × · · · ×Pi × · · · ×Hn−1 ×Hn such that Pi is an
(α, β)-prime hyperideal of Hi. In the second possibility, we have Ii = Hi

for all i ∈ {1, · · · , n− 1} and Pn is an (α, β)-prime hyperideal of Hn. It
follows that P = H1 × · · · ×Hn−1 × Pn where Pn is is an (α, β)-prime
hyperideal of Hn.

(ii) =⇒ (iii) Without loss of generality, we assume that P1 is an
(α, β)-prime hyperideal of H1 and Pi = Hi for all i ̸= 1. Let us as-
sume (x1, x2, · · · , xn)α ◦ (y1, y2, · · · , yn) ⊆ P1 ×H2 × · · · ×Hn such that
(y1, y2, · · · , yn) /∈ P1×H2×· · ·×Hn. This implies that xα1 ◦1y1 ⊆ P1 and

y1 /∈ P1. Since P1 is an (α, β)-prime hyperideal of H1, we get xβ1 ⊆ P1.
It follows that (x1, x2, · · · , xn)β ⊆ P1×H2×· · ·×Hn and this completes
the proof.

(iii) =⇒ (i) It is straightforward. □

5 Conclusions

In this paper, we generalized the concept of (α, β)-prime ideals in mul-
tiplicative hyperrings by introducing (α, β)-prime hyperideals. We pro-
vided several key results explaining the structure of this concept. The
stability of these hyperideals in various hyperring-theoretic construc-
tions was examined. Furthermore, we extended this notion to weakly
(α, β)-prime hyperideals and presented several properties of this con-
cept. Finally, we offered characterizations of the weakly (α, β)-prime



(WEAKLY) (α, β)-PRIME HYPERIDEALS... 23

hyperideals on the cartesian product of commutative multiplicative hy-
perrings.

6 Future work

Definition 6.1. Assume that ϕ : HI(H) −→ HI(H) ∪ {∅} is a map
where HI(H) is the set of hyperideals of a commutative multiplicative
hyperring H and α, β ∈ Z+. A proper hyperideal P in H refers to a
ϕ-(α, β)-prime hyperideal if xα◦y ⊆ P −ϕ(P ) for x, y ∈ H, then xβ ⊆ P
or y ∈ P .
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