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Abstract. Let H be a commutative multiplicative hyperring and a, 8 €
Z*. The purpose of this paper is to introduce an intermediate class
between prime hyperideals and (a, 3)-closed hyperideals called («, §)-
prime hyperideals. Moreover, we study the notion of weakly (a, f)-
prime hyperideals as an extension of the (a, 8)-prime hyperideals and a
subclass of the weakly («, 8)-closed hyperideals. We say that a proper
hyperideal P of H is (weakly) («, 8)-prime if (0 ¢ %oy C P ) %oy C P
for z,y € H implies 2° C P or y € P. A number of properties and
results concerning them will be discussed.
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1 Introduction

Delving into the study of prime ideal generalizations has emerged as a
profoundly intriguing and groundbreaking pursuit in the realm of com-
mutative ring theory. In a recent study [19], Khashan and Celikel pre-
sented (a, §)-prime ideals which is an intermediate class between prime
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ideals and (a, 3)-closed ideals. Let a, 3 € ZT. A proper ideal I of a com-
mutative ring R refers to an («, 8)-prime ideal if for x,y € R, 2%y € I
implies either 2% € I or y € I. Moreover, the authors generalized this
notion to weakly («, 5)-prime ideals in [20]. A proper ideal I of R is
called a weakly («, 8)-prime ideal if for x,y € R with 0 # x%y € I, then
either 2 € T or y € I.

Several key concepts in modern algebra were expanded by extending
their underlying structures to hyperstructures. In 1934 [21], the French
mathematician F. Marty pioneered the notion of hyperstructures or mul-
tioperations, where an operation yields a set of values rather than a sin-
gle value. Subsequently, numerous authors have contributed to the ad-
vancement of this novel area of modern algebra [7, 8,9, 10, 11,22, 24, 23].
An importan type of the algebraic hyperstructures called the multi-
plicative hyperring was introduced by Rota in 1982 [26]. In this hy-
perstructure, the multiplication is a hyperoperation and the addition
is an operation. Multiplicative hyperrings are richly demonstrated and
characterized in [2, 3, 4, 18, 16, 25, 27]. Dasgupta studied the prime
and primary hyperideals in multiplicative hyperrings in [12]. The idea
of (a, f)-closed hyperideals in a multiplicative hyperring was proposed
in [5]. A proper hyperideal P of a multiplicative hyperring H is said
to be (a, B)-closed if for € H with 2® C P, then 2 C P. Motivated
from this notion, the aim of this research work is to introduce and study
the notion of (a, B)-prime hyperideals in a commutative multiplicative
hyperring. Several specific results are given to illustrate the structure
of the new notion. We show that every (a,3)-prime hyperideal is an
(a, B)-closed hyperideal but the converse need not to be hold in Exam-
ple 3.4. We obtain that if P is an («, 5)-prime C-hyperideal of H, then
rad(P) = {x € H | ® C P} in Theorem 3.10. We present a gener-
alization of Prime Avoidance Theorem for (o, 3)-prime hyperideals in
a multiplicative hyperring in Theorem 3.22. Furthermore, we extend
this notion to weakly («, 5)-prime hyperideals. We present some char-
acterizations of weakly («, 8)-prime hyperideals on cartesian product of
commutative multiplicative hyperrings.

The following diagram shows the place of (a, 8)-prime and weakly
(o, B)-prime hyperideals for all a, 3 € Z™:



(WEAKLY) (o, 5)-PRIME HYPERIDEALS...

primary
/ T
prime — (o, B)-prime  —  («, 3)-closed
3 N\ \J N\ \J
w. prime —  w. (o, B)-prime — w. (a, 3)-closed
N\ )

Ww. primary

2 Some Basic Definitions Concerning Multiplica-
tive Hyperrings

In this section we give some basic definitions and results which we need
to develop our paper. [14] A hyperoperation “o” on non-empty set [
is a mapping from [ x I into P*(I) such that P*(I) is the family of all
non-empty subsets of I. In this case, (I, 0) is called hypergroupoid. Let
I, I be two subsets of I and = € I, then Iy o Iy = Uy, 1, 20el, %1 © T2,
and I} ox = I; o {z}. This means that the hyperoperation “o” on
I can be extended to subsets of I. A hypergroupoid (I,0) is called a
semihypergroup if Useyo,20a = Upggoyboz for all x,y, 2 € I which means
o is associative. A semihypergroup [ is called a hypergroup if x o I =
I = Tox for each x € I. A non-empty subset J of a semihypergroup

(I,0) refers to a subhypergroup if x o J = J = Jox for each = € J.

Definition 2.1. [14] An algebraic structure (H,+,0) refers to a com-
mutative multiplicative hyperring if

(1) (H,+) is a commutative group;
(2) (H,o) is a semihypergroup;

(3) zo(y+z)Czxoy+zozand (y+z2)ox Cyox+ zoux for every
z,y,2 € H;

(4) zo(—y)=(—z)oy=—(xoy) for every z,y € H;

(5) woy=youx for every z,y € H.
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If in (3), the equality holds then the multiplicative hyperring H is
called strongly distributive.

Conseder the ring of integers (Z,+,-). For each subset X € P*(Z)
with |X| > 2, there exists a multiplicative hyperring (Zx, +,0) where
Zx =Zand aob={a.x.b |z € X} forall a,b e Zx [12].

Definition 2.2. [I] An element e € H refers to a scalar identity element
if a=aoeforalla € H. Moreover, an element e € H is considered as
an identity element if a € aoe for all a € H.

Throughout this paper, H denotes a commutative multiplicative hy-
perring with identity 1.

Definition 2.3. [11] A non-empty subset A of H is a hyperideal if
(i) z—yeAforall z,y€ A;
(iil) roxCAforallz € Aandr e H.

Definition 2.4. [12] A proper hyperideal A in H refers to a prime
hyperideal if x oy C A for z,y € H, then x € A or y € A.

The intersection of all prime hyperideals of H containing a hyper-
ideal A is said to be the prime radical of A, denoted by rad(A). If the
multiplicative hyperring H has no prime hyperideal containing A, we
define rad(A) = H. Assume that C is the class of all finite products of
elements of H that is C = {aj0as0---0ay, | a; € Hyn € N} C P*(H) and
A is a hyperideal of H. A refers to a C-hyperideal of H if for each J € C
and ANJ # @ imply J C A. Notice that {a € H | a™ C A for some n €
N} C rad(A). The equality holds if A is a C-hyperideal of H (see Propo-
sition 3.2 in [12]). Moreover, a hyperideal A of H refers to a strong
C-hyperideal if for each F € {l and EN A # & imply F C A such that
U={>3",JilJieCneN}tandC={ajoazo...0a, | a; € Hyn e N}
(for more details see [13]).

Definition 2.5. [12] A proper hyperideal A in H refers to a primary
hyperideal if z oy C A for z,y € H, then x € A or y™ C A for some
n € N.

Definition 2.6. [I] A proper hyperideal A of H is maximal in H if for
each hyperideal B of H with A C B C H, then B = H.
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Also, H refers to a local multiplicative hyperring if it has just one
maximal hyperideal.

Definition 2.7. [!] Assume that A and B are hyperideals of H. We
define (A: B)={x € H|x0oB C A}.

3 (a,p)-Prime Hyperideals

This section discusses the fundamental characteristics of (a, 3)-prime
hyperideals and examines their behavior in several classes of commuta-
tive multiplicative hyperrings. We start with the following definition.

Definition 3.1. Let o, 3 € ZT. A proper hyperideal P of H is called
(v, B)-prime if 2% oy C P for 2,y € H implies z° C P or y € P.

Example 3.2. Consider the multiplicative hyperring Z4. Let p is a
prime integer such that AN (p) = @. Then (p) is an («, 5)-prime for all
a,BeLT.

Remark 3.3. Let o, € Z™.
(i) Every («a, 8)-prime hyperideal of H is (a, 3)-closed.
(i) Every (a, f)-prime hyperideal of H is primary.

Proof. (i) Let P be an («, 3)-prime hyperideal of H and z® C P for
x € H. Then we have x* 01 C P. Since P is an («, §)-prime hyperideal
of H and 1 ¢ P, we get z° C P, as needed.

(ii) Assume that P is an (o, §)-prime hyperideal of H and zoy C P
for z,y € H. Therefore we get * oy C P. This implies that =% C P
ory € P as Pis an («, 8)-prime hyperideal of H. Thus P is a primary
hyperideal of H. O

The following example shows that the converse of statements in Re-
mark 3.3 may not be true, in general.

Example 3.4. Consider the multiplicative hyperring (Zx,+, o).

(i) Let X ={2,3}. Then P = (6) is an (3, 2)-closed hyperideal of Z,
but it is not (3, 2)-prime as 2303 C P where neither 22 = {8,12} ¢
P nor 3 ¢ P.
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(ii)) Let X = {2,4}. Then P = (8) is a primary hyperideal of the
multiplicative hyperring (Z, +, o). However, it is not (4, 3)-prime
as the fact that 104 C P but 13 = {4,8,16} € P and 4 ¢ P.

Recall from [1] that a proper hyperideal P of H is n-absorbing if
10+ 0&p 0 xpy1 C P for x1, -+ ,xn,Tpr1 € H, then there are n of
the z; whose product is in P. Moreover, a proper hyperideal P of H is
called semi n-absorbing if for x € H, 2"t p implies ™ C P. Let
28*1 be a subset of an arbitrary (a, B)-prime hyperideal P in H for
some z,y € H. Then 2% o z = 2% 8 o 21 C P. Hence we get 2 C P
or x € P as P is an (a, 3)-prime hyperideal of H. Then we conclude
that every (a,f)-prime hyperideal is semi -absorbing. However, the
converse need not to be hold. See the following example.

Example 3.5. In the commutative multiplicative hyperring Zx with
X = {7,11}, the hyperideal P = (30) is 3-absorbing but it is not an
(4, 3)-prime hyperideal of Zx. Because 2% 0 15 C P but neither 23 C P
nor 15 € P.

Remark 3.6. A product of the («, )-prime hyperideals may not be an
(e, B)-prime hyperideal.

The following example verifies this claim.

Example 3.7. Consider the multiplicative hyperring H = 7Z + 3z7Z[x]
defined in Example 2.4 of [16]. In the hyperring P = 3zZ[z] is («, 3)-
prime hyperideal for all o, 8 € Z*, but P" is not an («, 8)-prime hy-
perideal of H for n < a. Because 3°z® C P*, 3% = {36.20 .47 | i,j >
Oandi+j=p—1} € P" and 2 ¢ P".

Our first theorem presents a characterization of («, #)-prime hyper-
ideals

Theorem 3.8. Assume that P # H is a hyperideal of H and o, 3 € ZT.
Then the following are equivalent:

(i) P is an («, B)-prime hyperideal in H.

(ii) P =(P:2%) such thatz® ¢ P forz € H.
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(iii) If 2% o P' C P for some hyperideal P' of H and x € H, then
2 C P orP CP.

Proof. (i) = (ii) Suppose that ” ¢ P for z € H. Take any y € (P :
). So we have z® oy C P. Since P is an («, 8)-prime hyperideal in
H and 2 ¢ P, we get y € P which means (P : %) C P. Since the
inclusion P C (P : %) always holds, we obtain P = (P : z%).

(ii) = (iii) Let P’ be a hyperideal of H and z € H such that
%o P' C P. If 2” C P, we are done. If 27 ¢ P, we get the result that
(P:x%) = P by (ii), and so P’ C P.

(iii) = (i) Let %oy C P for z,y € H. Then (z*)o(y) C (z%oy) C P
by Proposition 2.15 in [12]. Put (y) = P’. Hence we have z® o P’ C P.
From (iii) it follows that either 8 C Porye P C P, as needed. O

Recall from [12] that a hyperideal A of H refers to a principal hy-
perideal if A = (x) for x € H. A hyperring whose every hyperideal is
principal is called principal hyperideal hyperring.

Proposition 3.9. Let P # H be a hyperideal of a principal hyperideal
hyperring H and o, B € Z+. Then the following statements are equiva-
lent:

(i) P is an («, B)-prime hyperideal in H.

(ii) If P} o P, C P for hyperideals Py, P> of H, then Pf C P or
P, CP.

(ili) P = (P:P{) such that Plﬁ ¢ P for every hyperideal Py of H.

(iv) If Pfoy C P wherey € H and P is a hyperideal of H, then
Plﬁ CPoryeP.

Proof. (i) = (ii) Let P{* o P, C P for hyperideals Py, P» of H. Since
H is a principal hyperideal hyperring, there exists x € H such that
P, = (x) and so % o P, C P. Since P is an (a, §)-prime hyperideal in
H, by Theorem 3.8 we conclude that 2% C P which means Plﬁ = (z)f C
(z¥y C Por P, C P.

(ii) = (ili) Let y € (P : P{) and Plﬁ ¢ P for a hyperideal P; of
H. Then (y) C (P : P{) as (P : Py) is a hyperideal of H by Theoremm
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3.8 in [1], and so P{* o (y) C P. By the hypothesis, we get y € (y) C P
which implies (P : P*) C P. The other containment is clear.

(iii) = (iv) Let P® oy C P and P’ ¢ P. Then we have y € (P :
P{*) = P, as required.

(iv) = (i) Let x* oy C P for x,y € H. We assume that P; = (x).
Hence we have P{* oy C (x)® o (y) C (z* oy) C P. By the assumption,
we get the result that 2 C PiB C P or y € P. Consequently, P is an
(c, B)-prime hyperideal in H. O

By Remark 3.3, every («, )-prime C-hyperideal of H is a primary
hyperideal and so its radical is a prime hyperideal of H by Proposition
3.6 in [12]. Let P be an (a,()-prime C-hyperideal of H. Then P is
referred as a Q-(«, 8)-prime C-hyperideal of H where rad(P) = Q.

Theorem 3.10. If P is a Q-(«, 8)-prime C-hyperideal of H for a,f €
Zt, then Q= {x € H | 2% C P}.

Proof. The inclusion {z € H | 2° C P} C @Q holds. Assume that
x € Q = rad(P) and n is the smallest positive integer with ™ C P.
Then we have 2% o 2”1 C P. Take any y € 2"~ !. Since 2%oy C P
and P is an (o, 3)-prime hyperideal of H, we get 2° C P or y € P. Let
y € P. Since P is a C-hyperideal of H and y € 2", we get the result
that 2”1 C P, a contradiction. Therefore we obtain 2? C P. Then
Q C {x € H | z” C P}, so this completes the proof. O

Theorem 3.11. Let P be a C-hyperideal of H with an i-set and o, 5 €
ZF such that Q = {x € H | 2® C P} is a mazimal hyperideal of H.
Then P is a Q-(a, B)-prime hyperideal.

Proof. Assume that 2%oy C P with 2® ¢ P for z,y € H. Let 2® C Q.
Since @ is a maximal hyperideal of H, we get z € (Q by Proposition 2.18
in [12]. This contradict by 2” ¢ P. Then 2% ¢ Q. Let a € 2% such that
a ¢ Q. Then we have (a,Q) = H. So, there exists m € @ such that
1 € {a)+m C (x®)+m. Therefore 1 € ({(z*)+m)’ C E?:o (’?) (z®)B~tom?
and soy € 1oy C (Zizo(f) (x*)Y~" om?) oy C P. Hence P is an
(c, B)-prime hyperideal. By Theorem 3.10, we conclude that P is a
Q-(«, B)-prime hyperideal. O

As an immediate consequence of the previous theorem, we have the
following result.
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Corollary 3.12. Let Q is a maximal hyperideal of H, o, € ZT and
n < B. Then Q™ is a Q-(«, B)-prime hyperideal.

Theorem 3.13. Assume that Py,--- , P, are C-hyperideals of H such
that for every i € {1,--- ,n}, P; is a Q-(ay, Bi)-prime hyperideal with
a;,Bi € ZT. Then (. P; is a Q-(a, B)-prime hyperideal in H where
a <min{ay, - ,a,} and f > max{SBi, -, Bn}.

Proof. Suppose that x%oy C (i, P, for z,y € H such that y ¢ i, P;.
This means that at least one of the PJs, say F;, does not contain y.
Since P; is a @Q-(ay, B¢)-prime hyperideal in H and z* oy C P, we
conclude that 2% C P, which implies z € Q. Then we get % C P
for each i € {1,---,n} by Theorem 3.10, and so 2 C N, P, where
B > max{fBi, - ,Bn}. On the other hand, we have rad(N;_, P;) =
Ni—, rad(P;) = Q by Proposition 3.3 in [12]. Consequently, (i, F; is a
Q-(a, B)-prime hyperideal in H. O

Let €(P) = {(o,8) € ZT x ZT | P is (a,8)-closed } where P is
a proper hyperideal of H. Then we get {(a,8) € ZT x ZT | 1 <
a < B} C €P) C Z" x Z*. Furthermore, rad(P) = P if and only
if €(P) = Z* x Z* [5]. Now, let us define £(P) = {(a,) € ZT x
Z* | Pis (a,3)-prime }. Let £(P) = ZT x Z*. Clearly, the hyperideal
P is prime if and only if (1,1) € £(P).

Remark 3.14. Let P be a proper hyperideal of H and o, € ZT. If
(a, B) € £(P), then (/, 8") € £(P) for o, 8/ € Z* such that o/ < a and
B < B’ by being P a hyperideal.

Remark 3.15. Suppose that P is a proper hyperideal of H and «, 3,0 €
Z*. If (o, B) € £(P) and (B,0) € €(P), then («,0) € £(P).

Theorem 3.16. Assume that P is a proper hyperideal of H and «, 8 €
Z*. Then (o, 8) € £(P) if and only if (o + 1,8) € £(P).

Proof. (=) Let (a, ) € £(P). Assume that 2%Tloy C Pforz,y € H
such that y ¢ P. Since a +1 < 2a, we have (z2)* oy C P. Since
(o, B) € £(P) and y ¢ P, we get 2% C P which means z € rad(P). By
Theorem 3.10, we conclude that ¢ C P.

(<) It follows from Remark 3.14. O
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Theorem 3.17. Let the zero hyperideal of H be a C-hyperideal and
a,B8 € ZT. If every proper hyperideal of H is (c,3)-prime, then H
has no non-trivial idempotents, and every prime C-hyperideal of H is
mazimal.

Proof. Let every proper hyperideal of H be («,)-prime. Assume
that e is a non-trivial idempotent in H. Then 0 € eo (e — 1) and so
0 € e* o (e —1). Since the zero hyperideal of H is a C-hyperideal, we
have e® o (e —1) = 0. Therefore we get e € ¢’ = 0 as the zero hyperideal
of H is («a, f)-prime and e # 1. This is a contradiction and so H has no
non-trivial idempotents. Suppose that P is a prime C-hyperideal that
is not maximal. Then we have P C @ for some hyperideal ) of H.
Let £ € Q — P. Then 2® o2 C (z®*1). This follows that z° C (z®*1)
or € (x®*t1). This implies that 2% C z°*! o a for some a € H or
z € T ob for some b € H. In the first case, 0 € 2® — 2%t oq. Since P
is a C-hyperideal, we get 27 —2°t1oa C P. From 280 (1 -z B+lor) C
z? — 2zl o a it follows that 2% o (1 — z* P+l o) C P. Since P is a
prime hyperideal and 2 ¢ P, we get 1 — 2% A+l oy C P C Q and so
1 € Q, a contradiction. In the second case, we get 0 € (x —2%T1ob) N P.
Then we get the result that z o (1 —2%0b) C x — 2°T' o b C P. Thus
we have 1 — 2% ob C P C @ because x ¢ P. This follows that 1 € Q
which is a contradiction. Consequently, every prime C-hyperideal of H
is maximal. [l

We say that a hyperideal P of H is of maximum length g if for every
ascending chain P = Py C P C P, C --- of hyperideals of H, § is the
largest integer with Pg = Pgiq1 =---.

Theorem 3.18. Assume that o, 3 € Z+ and P is a strong C-hyperideal
of H of maximum length 8. If P is irreducible in H, then P is an
(a, B)-prime hyperideal.

Proof. Let oy C P for x,y € H. Consider the ascending chain
P=PCP,CPC-- where P, ={bec H z'0ob C P}. By the
assumption we have Pg = Pgy1 = ---. Put [ = P+(2%) and J = P+(y).
Then we have P C I NJ. Let a € I NJ. Then there exist a,as € H
and p1, py € P such that a € (p1 4+ 2% 0ay) N (p2 +yoas). It follows that
a = p1+x1 = pa+axo for some x1 € zPoay and x9 € yoas. Therefore we
get x1—x9 € (mﬂoal—yoag)ﬂP and so wﬁoal—yoag C P as Pisastrong
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C-hyperideal of H. Since (z°oa; —yoas)oz® C 2°TFoa; —ax*oyoas,
we obtain 2% oa; — 2% oy oay C P which implies 2?0 a; C P.
This means a1 € P, = Pg and so 2P oa; C P. Then we conclude that
a = p1 +x1 € P which means INJ C P and so P = I NJ. By the
hypothesis, we get P = I which implies 2” C P or P = J which means
y € P. Thus P is an («, 8)-prime hyperideal. O

Recall from [17] that a proper hyperideal P of H is a l-absorbing
prime if z oy o z C P for every non-unit elements z,y,z € H, then
xoyC PorzelP.

Theorem 3.19. Let P be a 1-absorbing prime C-hyperideal of H. Then
P is an («, B)-prime hyperideal for every B > 2.

Proof. Assume that P is a 1-absorbing prime C-hyperideal of H. Take
any x,y € H such that oy C P but y ¢ P. If x is unit, then
y€loyC 1%y C (xtox)oy = (271)*0x%0y C P, a contradiction.
Then z is nonunit. Let y be unit. Then we have x*2
r%01 C 2% yoy ! C P. Take any a € 2% 2. Then we get aozox C P.
If @ is unit, then we are done. Let a be non-unit. Since P is a 1-
absorbing prime hyperideal of H, we obtain aox C P or z € P. In
the first case, since P is a C-hyperideal and 2“2 o2 NP # O, we
have 2! = 2272 o x C P. By continuing this process, we conclude
that 22 C P which implies 2? C P for every f > 2. Now, let y be
non-unit and b be any element in x®~!. If b is unit, then we have
royCeoxoyCbloboxoy Cb'oxr®oy C P. This implies that
22 oy C P which means 22 C P and so 2P C P for every 8 > 2. Assume
that b is non-unit. Since boxoy C P,y ¢ P and P is a 1-absorbing prime
hyperideals of H, we get the result that either b o x C P which means
x® C P. By using a similar argument mentioned above, we conclude
that 2% C P for every 8 > 2. Thus P is an («a, §)-prime hyperideal for
every 8 > 2. O

A proper hyperideal P of H is called semiprime, if z¥ oy C P for
k € Z and z,y € H implies x oy C P [15]. The following theorem
shows that the converse of Theorem 3.19 holds when P is a semiprime
hyperideal.

oxox =zx%C

Theorem 3.20. Let P be a semiprime C-hyperideal of H. If P is an
(a, B)-prime for all B > 2, then P is 1-absorbing prime.

11
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Proof. Let z oy oz C P for some non-unit elements x,y,z € H but
z ¢ P. Then we have (x oy)® oz C P. Take any a € x oy. Therefore
a®oz C P. Since P is an («, §)-prime hyperideal of H and z ¢ P, we
get a® C P. Since P is a C-hyperideal and (z 0 4)? N P # @, we obtain
z? oyP C P. Take any b € y®. Then we have 2 o b C P. Since P is
a semiprime hyperideal, we get the result that z o b C P. This means
that (roy®)N P # @ and so x o y® C P. This implies that z oy C P
as P is a semiprime hyperideal of H. Consequently, P is a 1-absorbing
prime hyperideal of H. ([

Assume that Py, - - - , P, are hyperideals of H. A covering A C U} | P;
is efficient if P is not contained in the union of any n—1 of the hyperideals
Py,---, P, . Moreover, P = U}, P; is an efficient union when none of
the P;s may be excluded [16]. The following lemma is needed in the
proof of our next result.

Lemma 3.21. Assume that Py,--- , P, (n > 2) are C-hyperideals of H
such that P C U™ P; is an efficient covering. If rad(P;) € rad((P; : a))
for every a ¢ rad(P;) withi # j, then no P; is an (a, 8)-prime hyperideal
for eachi e {1,--- ,n}.

Proof. Assume that one of the P;s, say P;, is an («, 3)-prime hyperideal
of H. Clearly, P = (PN P)U---U(PNP,) is an efficient union.
Then we conclude that (N« P;) NP € P,NP. Let a ¢ rad(F;) and
i # t. By the hypothesis, there exists x; € rad(P;) such that x; ¢
rad((P; : a)). Therefore we may suppose that «; is the least positive
integer with 27" C P;. Put X = 2f o---oxf joxf ooz where
a =max{o, -, 01,041, - ,0p}. Thus Xoa C Nz (P;NP). Now,
assume that Xoa C P,NP. This implies that X C (P; : a) C rad(P; : a).
By Theorem 3.8, rad(P; : a) is a prime hyperideal. Then there exists
some i€ {l,--- ,t—1}U{t+1,---,n} such that z; € rad(F; : a), wich
is impossible. Then X oa ¢ PN P; which means (N2 P) NP ¢ P.NP,
a contradiction. Consequently, no P; is an («, 8)-prime hyperideal for
eachie {1,---,n}. 0O

Now, we give a generalization of Prime Avoidance Theorem for
(c, B)-prime hyperideals.

Theorem 3.22. Assume that Py, --- , P, (n > 2) are C-hyperideals of H
such that at most two of them are not («, 8)-prime. If P is a hyperideal
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of H with P C U | P; and rad(P;) € rad((P; : a)) for all a ¢ rad(P;)
and i # j, thenPQPtforsometE{l . }

Proof. Suppose on the contrary that P ¢ P, for all t € {1,--- ,n}. Let
P C U P; be a covering such that at least n — 2 of the hyperideals
Py, --- | P, are (a, §)-prime. Without loss of generality, one may reduce
the covering to an efficient covering. If n = 2, then the covering is not
efficient. Assume that n > 2. Since rad(P;) ¢ rad((P; : a)) for all
a ¢ rad(Pj) and i # j and the covering is efficient, we conclude that no
P; is an («, )-prime hyperideal for each ¢ € {1,--- ,n} by Lemma 3.21.
This contradicts the fact that at most two of the hyperideals Py, --- , P,
are not («, §)-prime. Hence P C P, for some t € {1,--- ,n}. O
Let S be a non-empty subset of H with scalar identity 1. Recall from
[1] that S is a multiplicative closed subset (briefly, MCS), if S is closed
under the hypermultiplication and S contains 1. [23] Consider the set
(H x S/ ~) of equivalence classes, being denoted by S~™'H, such that
(x1,t1) ~ (x2,t2) if and only if there exists t € S with totjoxg = totyox.
The equivalence class of (z,t) € H xS is denoted by 7. The set “1His
a multiplicative hyperring where the operation & and the multiplication
® are defined by
%@% = hLozatizor, _ {‘%H’ | a € t1oxe,b € tgoxy,c € t1oty}

ti1oto
%@% = 922?22 :{% ’ (IEZL‘lon,bEthtQ}
The localization map 7= : H — S™'H, defined by z 1, is a
homomorphism of hyperrings. Also, if A is a hyperideal of H, then

S~1A is a hyperideal of S~1H [23].

Theorem 3.23. Assume that P is a C-hyperideal of H and S o MCS
such that PN S = @. If P is an («, B)-prime hyperideal of H, then
S=1P is an (a, B)-prime hyperideal of S~ H.

Proof. Let%@---@%@%: f%iy C S~LP for some i,t—ES 1.

(e}

So we get ¢ € jao foreverya € x%oy =go---omoyandt € tf oty =

to‘ot
a

tyo---otyoty. Hence ¢ = %,/ for some @' € P and ¢ € S. Then there
—_——

(0%
exists s € S such that soaot' = soa’ ot. This implies soaot’' C P.
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Since a € % oy, we conclude that soaot' C sox®oyot’. Since P is a

C-hyperideal of H, we get soxz®oyot’ C P and then s*ox%oyot'®

(soxot)*oy C P. Take any z € sozot’. Since z*oy C P and P

is an (a, §)-prime hyperideal of H, we have either 28 C P or y € P.

In first possibily, we get (s oz ot')? C P as P is a C-hyperideal of H
sPoxPot'B

8 _ .
and 27 C (sozot/)’. Hence Ly = £°L°0° C §-1P which means
t7 sBot] ot

Y ¢ §~1P. This shows that S~!P is an

Xz X
Zo-0= C SPor
ECRRNCE 2

B
(o, B)-prime hyperideal of S™'H. O
Assume that (H,+,0) is a multiplicative hyperring and z is an in-
determinate. Then (H|[z],+,¢) is a polynomail multiplicative hyperring
such that uz™ o va™ = (uov)x™ ™ [0].

Theorem 3.24. Let o, 3 € ZT. If P is an («, B)-prime hyperideal of
(H,+,0), then P[z] is an (o, B)-prime hyperideal of (H[x],+,©).

Proof. Suppose that u(z)* o v(x) C P[z]. Without loss of generality,
we may assume that u(z) = az™ and v(x) = ba™ for a,b € H. Hence
a® o bx®"*t™ C Px]. This means a® ob C P. Since P is an (a, 3)-
prime hyperideal of (H,+,0), we get a” C P or b € P which implies
u(z)? = (az™)? = aPzP™ C P or v(z) = ba™ € P[z]. Consequently,
Plz] is an («, )-prime hyperideal of (H[z],+,¢). O

In view of Theorem 3.24, we have the following result.

Corollary 3.25. Assume that P is an («, 3)-prime hyperideal of H.
Then Plx| is an («, 8)-prime hyperideal of H|x].

Assume that H is a multiplicative hyperring. Then the set of all
hypermatrices of H is denoted by M,,(H). Let A = (Aij)mxm,B =
(Bij)mxm € P*(Mp(H)). Then A C B if and only if A;; C B;;[1].

Theorem 3.26. Suppose that P is a hyperideal of H and o, 3 € Z7". If
M, (P) is an (a, B)-prime hyperideal of My, (H), then P is an (a, f)-
prime hyperideal of H.



(WEAKLY) (o, 5)-PRIME HYPERIDEALS...

Proof. Let z% oy C P for some z,y € H. Then we have

%oy 0 --- 0
. C My (P).

Since M,,(P) is an («, 5)-prime hyperideal of M,,(H) and

oy 0 --- 0
0 0 --- 0
0 0 0
z 0 0 z 0 0 y 0
0 0 0 0 0 0 0 0
= o---o| . . o
0 0 0 0 0 0 0 0
«
we get the result that
z 0 - 0 z 0 0
0 0 0 00 0
. . O...O .
00 --- 0 00 --- 0
B
2 0 0
0 0 0
0 0 0
or
y O 0
0 0 0
€ M,,(P)

15
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Then we conclude that 2 C P or y € P. Consequently, P is an
(a, B)-prime hyperideal of H. [

Recall from [14] that a mapping ¢ from the multiplicative hyper-
ring (Hi,+1,01) into the multiplicative hyperring (Hag, +2,092) refers
to a hyperring good homomorphism if ¥ (a +1 b) = ¥(a) +2 1(b) and
¥(a o1 b) =1(a) oz () for all a,b € Hj.

Theorem 3.27. Assume that Hy and Hs are two multiplicative hyper-
rins, 1 : Hy — Hs a hyperring good homomorphism and o, 3 € Z7T.

(i) If Py is an (a, B)-prime hyperideal of Ho, then ¢~'(P) is an
(a, B)-prime hyperideal of Hy.

(ii)  If 4 is surjective and Py is a an («, B)-prime C-hyperideal of Hy
with Ker(y) C Py , then ¢(P1) is an («, B)-prime hyperideal of
Hs.

Proof. (i) Let 2% oy 1 C ¢~ 1(P,) for some z,7; € H;. Then we
have (2% o1 1) = ¥(x)* og Y(x1) C P, as 1 is a hyperring good
homomorphism. Since P is an («a, §)-prime hyperideal of Hs, we have
Y(zP) = ((x))? C Py which means 27 C ¢~ 1(P) or ¥(z1) € Py
which implies 21 € ¥~ 1(P;). Consequently, 1»~!(P) is an (o, 3)-prime
hyperideal of Hj.

(ii) Let y* o2 y1 C ¢(Py1) for y,y1 € Ha. Then ¢(z) = y and ¢(z1) =
yifor some x,z1 € Hj because 1 is surjective. Hence ¢ (z® oy x1) =
Y(x)* og Y(x1) C Y(P1). Now, pick any a € z® oy x1. Then ¢¥(a) €
P(z® o1 21) C (P1) and so there exists b € P; such that i(a) = ¥(b).
Then we have ¥(a — b) = 0 which means a — b € Ker(y)) C P; and so
a € P,. Therefore % oy z1 C P, as P; is a C-hyperideal. Since P; is
an (o, B)-prime hyperideal of H;, we obtain 2® C Py or 1 € P;. This
implies that y® = ¢ (2?) C(Py) or y1 = ¥(x1) € (P;). Thus ¢(Py) is
an (o, f)-prime hyperideal of Ho. O

Now, we have the following result.

Corollary 3.28. Let Py and Py be two hyperideals of H with P, C P
and o, 3 € Z*. Then Py is an («, 8)-prime hyperideal of H if and only
if P/ Py is an («, B)-prime hyperideal of H/P;.
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Proof. Consider the homomorphism 7 : H — H/P; defined by w(z) =
x 4+ P;. Then the claim follows from Theorem 3.27 as 7 is a good
epimorphism. O

4 Weakly (a, 5)-Prime Hyperideals

In this section, we introduce the class of the weakly («, 5)-prime hyper-
ideals as an expansion of the («, 3)-prime hyperideals and investigate
some of their properties.

Definition 4.1. Assume that P is a proper hyperideal of H and «, 5 €
Z*. P is said to be a weakly (o, 3)-prime hyperideal if 0 ¢ 2oy C P
for z,y € H implies that z® C P or y € P.

Example 4.2. Consider the ring (Zg,®,®) where 2 @ y and T © y
are remainder of % and %Y, respectively, where + and - are ordinary
addition and multiplication for all Z,y € Zg. Define the hyperoperation

z oy = {7y, 2zy, 3zy,dzy, dry, 62y, 7ry}. Then the hyperideal @ =
{0,4} of (Zg,®, o) is weakly (3,1)-prime but it is not (3, 1)-prime.

Theorem 4.3. Assume that the zero hyperideal of H is a C-hyperideal
such that its radical is prime. If P is a weakly (o, 8)-prime C-hyperideal
of H for a, B € 7%, then rad(P) is prime. In particular, 2® C P for
each © € rad(P) — rad(0).

Proof. Let z oy C rad(P) for z,y € H. Then there exists n € Z*
such that ™ o y™ C P. Assume that a € 2™ and b € y", so a® o b C P.
If 0 € a® o b, then a® o b = 0 as the zero hyperideal of H is a C-
hyperideal. Since radical of the hyperideal is prime, we have a € rad(0)
or b € rad(0). This means z € rad(0) or y € rad(0). Then we get the
result that x € rad(P) or y € rad(P). Assume that 0 ¢ a® o b. Since P
is a weakly (m, n)-prime hyperideal of H, we get either a® C Porb € P.
Since P is a C-hyperideal, a® C %" or b € y”, we have 2" C P which
implies € rad(P) or y* C P which means y € rad(P), as needed.
Now, take any x € rad(P) —rad(0). Assume that n is the least positive
integer with ™ C P. Since x ¢ rad(0), we conclude that 0 ¢ 2% o 2"~ 1.
Let y € 2" So 0 ¢ 2oy C P. Since P is a weakly (m,n)-prime
hyperideal and y ¢ P, we get 2® C P, as required. O
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Theorem 4.4. If every proper hyperideal of H is weakly (o, 3)-prime
such that a, 8 € Z" and o > B, then every prime C-hyperideal of H is
mazximal.

Proof. Suppose that [ is a prime C-hyperideal such that it is not maxi-
mal. Let J be a proper hyperideal such that I C J. Take any x € J —1I.
Put P = (z**!). Therefore we have 0 ¢ 2% oz C P. By the hy-
pothesis, we have 2 C P or z € P. In the first possibilty, we obtan
28 C 22t o r for some r € H which means 0 € 2° — 2zt or N 1. Then
2P — ot or C T, also 27 o (1 — 22 Bl o) C 2P — 22T o r. Hence
2P o (1 -2 P+l or) C I. Since 2% ¢ I and I is a prime hyperideal,
we get 1 — 2 A+l o C T C J which means 1 € J, a contradiction.
In the second possibilty, we get a contradiction by a similar argument.
Consequenntly, every prime C-hyperideal of H is maximal. O

Let P be a weakly (a, 3)-prime C-hyperideal of H and z,y € H. We
say that (z,y) is an (a, B)-zero of P if 0 € 2% oy, 2’ ¢ P and y ¢ P.

Proposition 4.5. Let P be a weakly («, 8)-prime C-hyperideal of H and
and (z,y) be an (a, B)-zero of P where o, 3 € ZF. Then the following
hold:

(i) 0€(x+a)®oy forallac P.
(i) 0€xz®o(y+a) forallac P.

(iii)  If the hyperideal zero of H is a strong C-hyperideal, then x%oca = 0
for alla € P.

Proof. (i) Let (x,y) be an («, 3)-zero of P and 0 ¢ (z+a)® oy for some
a € P. Since 0 € x* oy and P is a C-hyperideal of H, we conclude that
2*oy C P. Therefore 0 ¢ (z+a)*oy C a®oy+3%, (7)z* "oa’oy C P.
Since P is a weakly («,3)-prime hyperideal of H and y ¢ P, we get
(x4 a)? C P. On the other hand, since (z,y) is an (a, 3)-zero of P and
2P ¢ P, we get the result that (z + a)® ¢ P which is a contradiction.
Thus 0 € (z +a)*oy for all a € P.

(ii) Let 0 ¢ 2% o (y + a) for some a € P. Hence 0 ¢ %o (y +a) C
x*oy+x*o0a C P as P is a C-hyperideal of H. Since P is a weakly
(v, B)-prime hyperideal of H and 2 ¢ P, we obtain y + a € P and so
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y € P which is a contradiction. Consequently, 0 € z% o (y + a) for all
a € P.

(iii) Assume that 2% oa # 0 for some a € P. Then there exists
u € x% o a such that u # 0. By (ii) we have 0 € 2% o (y + a). Since the
hyperideal zero of H is a strong C-hyperideal and 0 € 2% o (y + a) C
z%oy+x%oa, we get x¥oy+x*oa = 0. Moreover, since 0 € x%oy and
0#u € x%oa, we get u=0+u € z¥oy+x*oa which is a contradiction.
Hence z® oa =0 for all a € P. O

Recall from [I] that an element x € G is nilpotent if there exists
an integer ¢ such that 0 € x!. The set of all nilpotent elements of G is
denoted by T.

Theorem 4.6. Let P be a weakly (o, B)-prime C-hyperideal of a strongly
distributive multiplicative hyperring H and (z,y) be an («, 5)-zero of P
where o, 3 € ZT. Then

(i)  If the hyperideal zero of H is a strong C-hyperideal, then xoa C Y
for alla € P.

(ii)  If the hyperideal zero of H is a C-hyperideal, yoa C Y for all
a€P.

Proof. (i) Since z%oa = 0 for all a € P, by Proposition 4.5 (3), we get
the result that xoa C Y.

(ii) Take any a € P. Since 0 € (x+a)® oy by Proposition 4.5(1) and
the hyperideal zero of H is a C-hyperideal, we get ((z 4+ a) o y)* = 0.
This means that (z +a) oy C Y. Also, since 0 € z® oy and the
hyperideal zero of H is a C-hyperideal, we have (z o y)® = 0 which
implies z oy C Y. Since H is a strongly distributive multiplicative
hyperring, we have aoy = (z +a)oy —x oy C T, as needed. g

Theorem 4.7. Let {P;}icr be a family of weakly (o, B)-prime hyperide-
als of H and D(P;) = {x € H | 2° C P;} for all i € I where o, 3 € Z*.
If D(P;) = D(Fj) for alli,j € I, then (\;c; P; is a weakly (., B)-prime
hyperideal of H.

Proof. Assume that 0 ¢ z® oy C (,c; P; for z,y € H but y ¢ N;c; Pi.
Therefore we conclude that y ¢ P; for some j € I. Since P; is a weakly
(o, B)-prime hyperideal of H and 0 ¢ x“oy C P;, we get the result that
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2 C P;. This implies that z € D(P;) and so = € D(P;) for all i € I by
the hypothesis. Then z# C Micr Pi- This shows that (;; P; is a weakly
(c, B)-prime hyperideal of H. O

Let I be a finite sum of finite products of elements of H. Consider
the relation v on a multiplicative hyperring H defined as zvyy if and
only if {z,y} C I, namely, zyy if and only if {z,y} C 3, Hielj 2
for some z1,...,2, € H and I;,J C {1,...,n}. v* denotes the transitive
closure of 7. The relation v* is the smallest equivalence relation on H
such that the set of all equivalence classes, i.e., the quotient G/~*, is a
fundamental ring. Assume that X is the set of all finite sums of products
of elements of H. We can rewrite the definition of v* on H, namely, zv*y
if and only if there exist z1,..., 2z, € H such that z; = x, 2,41 = y and
ULy .oy Uy € 3 where {z;, zi41} C u; for 1 < i < n. Suppose that v*(x)
is the equivalence class containing x € H. Define v*(x) @ v*(y) = v*(2)
for every z € v*(z) + v*(y) and v*(z) ©® v*(y) = 7v*(w) for every w €
v*(z) ov*(y). Then (H/v*,@®,®) is a ring called a fundamental ring of

icl

Theorem 4.8. Assume that P is a hyperideal of H. Then P is a weakly
(a, B)-prime hyperideal of (H,+, o) if and only if P/v* is a weakly (e, B)-
prime ideal of (H/v*, ®,®).

Proof. Let P/y* H/~*.
roof. (=) Let 0 # x©---©x Oy € P/y* for some z,y € H/y

(6%
Hence we have z = v*(a) and y = v*(b) for some a,b € H. This means
tht oo fy * .. * *b = * o b- S'
at 2O 0zoy = y'(a) O 07 (a) 07" (b) = 7*(a” 0 b). Since

@ «

v*(0) # ~v*(a® o b) € P/vy*, we get 0 ¢ a®ob C P. Since P is a weakly
(v, B)-prime hyperideal of H, we get the result that «® C P or b € P.
This implies that = ~* *(a) = ~*(aP) € P/~*

is implies tha x@ﬁ@x ¥ (a) ®-- @y (a) = v*(a”) /~* or

B

y =v*(a) € P/v*. Consequently, P/~* is a weakly («a, §)-prime ideal of
H/~*.

(«<=) Suppose that 0 ¢ a® ob C P for some a,b € H. Then we
have v*(a),v*(b) € H/~v* and so v*(0) # 7" (a) ©® --- ©v*(a) ©v*(b) =

v*(a® o b) € P/v*. Since P/v* is a weakly («, 8)-prime ideal of H/~v*,
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we obtain v*(a) ® --- ®v*(a) = v*(a®) € P/y* which implies a® C P

B

or v*(b) € P/~* which means b € P. Thus P is a weakly (o, )-prime
hyperideal of H. O

Let (Hi,+1,01) and (Hg,+2,02) be two multiplicative hyperrings
with nonzero identity. The set Hy x Ho with the operation 4+ and the
hyperoperation o defined as

(z1,22) + (y1,92) = (¥1 +1 Y1, 32 +2 ¥2)

(z1,22) o (y1,y2) = {(x,y) € Hy X Hy | © € x1 01 Y1,y € T2 02 Y2}
is a multiplicative hyperring [27]. Now, we present some characteriza-
tions of weakly («, 3)-prime hyperideals on cartesian product of com-
mutative multiplicative hyperring.

Proposition 4.9. Let (Hy,+1,01) and (Ha, +2,02) be two multiplicative
hyperrings with scalar identities 1g, and lg,, respectively, P a proper
nonzero hyperideal of Hy x Hs, and o, 3 € Z*. If P is weakly (o, 3)-
prime, then it has one of the following cases:

(i) P = Py x Hy such that Py is an («, 8)-prime hyperideal of H;.
(il) P = Hj x Py such that Py is an («, B)-prime hyperideal of Ho.

Proof. Suppose that P = P; x P is a nonzero weakly («, 3)-prime
hyperideal of Hy x Hs such that P, and P» are hyperideals of H; and
Ho, respectively. Let us assume P; and P» are proper, and P; # 0. Take
any 0 # x € P;. Therefore we have (0,0) ¢ (15,,0)%0(z,1x,) C P X Ps.
Since P is a nonzero weakly (o, 3)-prime hyperideal of Hy x Ha, we get
the result that (1z,,0)% C Py x Py or (z,1g,) € P; x P,. It follows
that 1y, € Py or 1y, € P». Then P, = H; or P, = Hy. This is a
contradiction. Let us consider P; is proper and P, = Hs. Now, we
shows that P; is an («a, 8)-prime hyperideal of Hy. Let 2% oy y C P; for
z,y € Hy. Hence we get (0,0) ¢ (x,17,)% o (y,1m,) € P x Hs and so
we have (z, 1H2)5 C Py x Hy or (y,1m,) € P1 x Hy. This implies that
8 C Py or y € P;. Similarly, it can be seen that if P, = H; and Ps is a
proper hyperideal of Hy, then P is («, 3)-prime. O

Theorem 4.10. Assume that H = Hy X --- x H,, where Hy,--- , H,, are
commutative multiplicative hyperrings, P a proper nonzero hyperideal of
H and o, B € Z+. Then the following are equivalent.
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(i) P is a weakly (o, B)-prime hyperideal of H.

(il) P =H; x--+x P x---x Hy such that P; is an («, 3)-prime
hyperideal of H; for some i € {1,--- ,n}.

(iii) P is an («, B)-prime hyperideal of H.

Proof. (i) = (ii) Let P = P; x --- x P, is a weakly («, )-prime
hyperideal of H. We use the induction on n. If n = 2, then the claim is
true by Proposition 4.9. Let the claim be true for n — 1. Assume that
I =P x - -xP,_1. So P=1IxP,. Then we conclude that I is an («a, §3)-
prime hyperideal of Hy X ---x Hy_1 and P, = Hyor I = Hy x---xH,_1
and P, is an («a, #)-prime hyperideal of H, by Proposition 4.9. In the
first possibility, we obtain I = Hy X --- X P; X - -+ x Hy_1 such that P; is
an («, B)-prime hyperideal of H; by induction hypothesis and P, = H,.
This shows that P = Hy x --- x P; x --- x H,_1 x H,, such that P; is an
(c, B)-prime hyperideal of H;. In the second possibility, we have I; = H;
foralli € {1,--- ,n—1} and P, is an («a, §)-prime hyperideal of H,,. It
follows that P = Hy X -+ X H,_1 X P, where P, is is an («, 8)-prime
hyperideal of H,.

(ii) = (iii) Without loss of generality, we assume that P is an
(c, B)-prime hyperideal of H; and P; = H; for all i« # 1. Let us as-
sume (1,22, ,Tn)*0 (Y1,Y2, "+ ,Yn) C P1 X Hy X -+ x Hy, such that
(y1,Y2, - ,Yn) ¢ Prx Ha X ---x Hy. This implies that {01351 C P; and
y1 ¢ Py. Since P is an («, 8)-prime hyperideal of Hy, we get w[f C P.
It follows that (1,2, ,2,)? C Py x Hy x - - - x H, and this completes
the proof.

(iii) = (i) It is straightforward. O

5 Conclusions

In this paper, we generalized the concept of («, §)-prime ideals in mul-
tiplicative hyperrings by introducing («, 3)-prime hyperideals. We pro-
vided several key results explaining the structure of this concept. The
stability of these hyperideals in various hyperring-theoretic construc-
tions was examined. Furthermore, we extended this notion to weakly
(c, B)-prime hyperideals and presented several properties of this con-
cept. Finally, we offered characterizations of the weakly (c, 3)-prime
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hyperideals on the cartesian product of commutative multiplicative hy-
perrings.

6

Future work

Definition 6.1. Assume that ¢ : HZ(H) — HZI(H) U {2} is a map
where HZ(H) is the set of hyperideals of a commutative multiplicative
hyperring H and «, 3 € Z". A proper hyperideal P in H refers to a

¢-(

, B)-prime hyperideal if 2*oy C P —¢(P) for 2,y € H, then z° C P

ory € P.
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