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Abstract. Let G = (V (G), E(G)) be a graph. A Roman dominating
function φ is a coloring of the vertices of G with the colors {0, 1, 2}
such that every vertex colored 0 is adjacent to at least one vertex col-
ored 2. The weight of φ is defined as

∑
x∈V (G) φ(x). The weight of a

Roman dominating function on G whose weight is minimum, is called
the Roman domination number of G. In this paper, we compute the
Roman domination number of comaximal ideal graph for all Artinian
commutative rings.
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1 Introduction

Let G = (V (G), E(G)) be a graph. By N(x), we mean the neighborhood
of a vertex x. For a positive integer n, the complete graph with n vertices
and its complement are denoted by Kn and Kn, respectively.
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Let S be a subset of V (G). If every vertex of V (G) \ S is adjacent
to at least one vertex in S, then S is called a dominating set of G. The
domination number of G, denoted by γ(G), is the minimum cardinal-
ity of a dominating set in G. The Roman domination of a graph is an
interesting variant of the domination which is introduced implicitly in
[11, 12]. Since then, there have been several articles on Roman domina-
tion [6, 13, 15]. It was Emperor Constantine’s defence strategy to assign
two armies at any region which is adjacent to a region that is defence-
less. Suppose S0, S1 and S2 are subsets of V (G) which are mutually
disjoint such that their union is V (G). By a function φ = (S0, S1, S2) on
G, we mean a function φ : V (G) → {0, 1, 2} such that φ(x) = j for all
x ∈ Sj (j = 0, 1, 2). A Roman dominating function on G is a function
φ = (S0, S1, S2) on G satisfying the condition that every vertex x for
which φ(x) = 0 is adjacent to at least one vertex y for which φ(y) = 2.
In other words, a Roman dominating function is a coloring of the ver-
tices of G with the colors {0, 1, 2} such that every vertex colored 0 is
adjacent to at least one vertex colored 2.

Clearly, γ(G) ≤ |S1| + |S2|. The weight of a Roman dominating
function φ = (S0, S1, S2) is defined as

∑
x∈V (G) φ(x) = |S1| + 2|S2|. A

γR-function on G is a Roman dominating function on G whose weight
is minimum. The weight of a γR-function on G, denoted by γR(G), is
called the Roman domination number of G. For terms in graph theory
not given here, the reader is referred to [16].

Throughout this paper, all rings are commutative with identity. We
denote the Jacobson radical of a ring A by J(A). Also, the set of all
ideals and the set of all maximal ideals of A are denoted by I(A) and
Max(A), respectively. If |Max(A)| = 1, then A is called a local ring.

When we associate a graph with an algebraic structure a great num-
ber of questions arise from the translation of graph-theoretic parameters.
We recommend to the reader the references [1, 2, 3, 5, 8, 9]. The co-
maximal ideal graph of a commutative ring A, denoted by C(A), was
first introduced in [17] and then has been studied by several authors, for
instance see [10, 14]. It is a simple graph whose vertices are the proper
ideals I of A such that I ⊈ J(A), and two vertices I and J are adjacent
if and only if I + J = A.

Here, we present some auxiliary results which will be used several
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times in the sequel.

Proposition 1.1. ([6, Proposition 1]). For any graph G, γ(G) ≤
γR(G) ≤ 2γ(G).

Proposition 1.2. ([6, Proposition 2]). For any graph G of order n,
γ(G) = γR(G) if and only if G ∼= Kn.

Theorem 1.3. ([7, Theorem 2.23]). If A is a ring, |Max(A)| ≥ 3 and
γ(C(A)) is finite, then |Max(A)| = γ(C(A)).

Corollary 1.4. ([7, Corollary 2.25]). Let A be a ring. Then γ(C(A)) = 1
if and only if A ∼= F1 ×A1, where F1 is a field and A1 is a local ring.

Corollary 1.5. ([7, Corollary 2.26]). Let A be a ring. Then γ(C(A)) = 2
if and only if A ∼= A1×A2, where (Ai,mi) is a local ring and m1,m2 ̸= 0.

In this paper, the Roman domination number of comaximal ideal
graphs is studied. We prove that if A is a ring, then there exists a
γR-function on C(A) say φ = (S0, S1, S2) such that S2 ⊆ Max(A). Let
A ∼= A1 × · · · × An be a ring such that n ≥ 4 and (Ai,mi) is a local
ring, for i = 1, . . . , n. We show that if at most one of Ai’s is not a field,
then γR(C(A)) = 2n − 1; otherwise, γR(C(A)) = 2n. Also, the Roman
domination number of C(A) is computed for all Artinian commutative
rings A.

1.1 Main Results

In this article, we assume that the domination number of C(A) is finite.
We start with the following key theorem.

Theorem 1.6. Let A be a ring. Then the following statements hold:

(i) If φ = (S0, S1, S2) is a γR-function on C(A), then the elements
of S2 are pairwise incomparable.

(ii) If φ = (S0, S1, S2) is a γR-function on C(A), then each maximal
ideal of A contains at most one ideal in S2.

(iii) There exists a γR-function φ = (S0, S1, S2) on C(A) such that
S2 ⊆ Max(A).
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Proof. (i) By contradiction, assume that I1, I2 ∈ S2 and I1 ⊆ I2. We
know that φ is a Roman dominating function whose weight is minimum.
Then ϕ = (S0, S1 ∪ {I1}, S2 \ {I1}) is a Roman dominating function on
C(A) with a weight less than φ, a contradiction. Hence, the elements of
S2 are pairwise incomparable.

(ii) Let M be a maximal ideal of A. By contrary, first suppose that
M contains at least three distinct ideals I1, I2 and I3 in S2, that is,
I1, I2, I3 ⊆ M . By the previous part, M /∈ S2, so if M ∈ S0, then ϕ =
(S0\{M}, S1∪{I1, I2, I3}, S2∪{M}\{I1, I2, I3}) and ifM ∈ S1, then ϕ =
(S0, S1∪{I1, I2, I3}\{M}, S2∪{M}\{I1, I2, I3}) is a Roman dominating
function on C(A) with a weight less than φ, a contradiction. Next,
assume that M contains two distinct ideals I1 and I2 in S2. Therefore,
M /∈ S2. In what follows, we consider two cases.

Case 1. |S2| = 2. Since M is not adjacent to I1 and I2, so M ∈
S1. Hence, the Roman dominating function ϕ = (S0, S1 ∪ {I1, I2} \
{M}, {M}) with a weight less than φ leads to a contradiction.

Case 2. |S2| > 2. Let I3 ∈ S2 \ {I1, I2}. Then there exists M ′ ∈ Max(A)
such that I3 ⊆ M ′. Since I3 ⊈ M , so M ̸= M ′. Also, M is adjacent to I3
and hence, M ∈ S0. On the other hand, I1 ⊈ M ′ or I2 ⊈ M ′. Without
loss of generality, assume that I2 ⊈ M ′ which implies thatM ′ is adjacent
to I2. Now, if I3 ̸= M ′ (resp. I3 = M ′), then the Roman dominating
function ϕ = (S0∪{I2, I3}\{M,M ′}, S1∪{I1}, S2∪{M,M ′}\{I1, I2, I3})
(resp. ϕ = (S0∪{I2}\{M}, S1∪{I1}, S2∪{M}\{I1, I2})) with a weight
less than φ concludes a contradiction.

(iii) Let φ = (S0, S1, S2) be a γR-function on C(A). Suppose that
S2 = {I1, . . . , It}, Mi is a maximal ideal of A and Ii ⊆ Mi, for i =
1, . . . , t. By Part (ii), the maximal ideals M1, . . . ,Mt are pairwise dis-
tinct and Ii ⊈ Mj , for each j ̸= i. There are two following cases:

Case 1. |S2| = 1. Thus, S2 = {I1}. We may assume that I1 = M1;
otherwise, M1 is not adjacent to I1 and hence, M1 ∈ S1 which yields
that ϕ = (S0, S1 ∪ {I1} \ {M1}, {M1}) is a γR-function on C(A), so we
consider ϕ instead of φ.

Case 2. |S2| ≥ 2. So, we deduce that Mi /∈ S1, for i = 1, . . . , t. We
may assume that S2 = {M1, . . . ,Mt}; otherwise, consider ϕ = (S0 ∪
{I1, . . . , It} \ {M1, . . . ,Mt}, S1, {M1, . . . ,Mt}) instead of φ. □

Lemma 1.7. Let n > 1 be a positive integer number, F1, . . . , Fn be
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fields, (A1,m1) be a local ring and let A ∼= F1 × · · · × Fn × A1. Then
γR(C(A)) ≤ 2γ(C(A))− 1.

Proof. Let S1 = {0×· · ·×0×A1}, S2 = {0×F2×· · ·×Fn×A1, F1×0×
F3×· · ·×Fn×A1, . . . , F1×· · ·×Fn−1×0×A1} and S0 = V (C(A))\(S1∪
S2). Then φ = (S0, S1, S2) is a Roman dominating function on C(A) of
weight 2n+1. Clearly, γ(C(A)) = n+1 and so γR(C(A)) ≤ 2γ(C(A))−1.
□

Now, we are in a position to prove one of the main results.

Theorem 1.8. Let A ∼= A1 × · · · × An be a ring such that n ≥ 4 and
(Ai,mi) is a local ring, for i = 1, . . . , n. If at most one of Ai’s is not a
field, then γR(C(A)) = 2n− 1; otherwise, γR(C(A)) = 2n.

Proof. According to Theorem 1.6, suppose that φ = (S0, S1, S2) is a
γR-function on C(A) such that S2 ⊆ Max(A). Let Mi be the maximal
ideal of A whose ith component is mi, for i = 1, . . . , n. With no loss of
generality, assume that S2 = {M1, . . . ,Mt}, with t ≤ n. We have the
following cases:
Case 1. |S2| = 1, that is S2 = {M1}. Clearly, {I ∈ V (C(A))|I ⊂ M1} ⊆
S1. Then {m1×J2×· · ·×Jn|Ji = 0, Ai, for i = 2, . . . , n}\{M1,m1×0×
· · ·×0} ⊆ S1. Therefore, γR(C(A)) = |S1|+2|S2| ≥ 2n−1−2+2 > 2n−1,
for each n ≥ 4. If at most one of Ai’s is not a field, then by Lemma
1.7, γR(C(A)) ≤ 2n− 1, a contradiction. Otherwise, by Proposition 1.1,
γR(C(A)) = 2n.
Case 2. |S2| ≥ 2. Then {I ∈ V (C(A))|I = J1 × · · · × Jn, Ji ⊴Ai, for i =
1, . . . , n, and Jj ⊆ mj for j = 1, . . . , t} ⊆ S1.

Now, if at most one of Ai’s is not a field, then there are two following
subcases:
Subcase 1. Ai is a field, for every i, 1 ≤ i ≤ n. Then we conclude that
γR(C(A)) = |S1|+2|S2| ≥ 2n−t − 1+ 2t ≥ 2n− 1, for each n ≥ 4. Thus,
by Lemma 1.7, γR(C(A)) = 2n− 1.
Subcase 2. Ak is not a field, for some k, 1 ≤ k ≤ n. If 1 ≤ k ≤ t, then
|S1|+2|S2| ≥ 2n−t+1−2+2t > 2n−1. This contradicts Lemma 1.7 which
is impossible. If t+1 ≤ k ≤ n, then |S1|+2|S2| ≥ 3× 2n−t−1 − 2+ 2t ≥
2n− 1. According to Lemma 1.7, γR(C(A)) = 2n− 1.

Otherwise, a simple calculation gives that γR(C(A)) = |S1|+2|S2| >
2n− 1, for each n ≥ 4. Hence, by Proposition 1.1, γR(C(A)) = 2n. This
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completes the proof. □
Clearly, if A ∼= A1×· · ·×An is a ring such that n ≥ 4 and (Ai,mi) is

a local ring, for i = 1, . . . , n, then γR(C(A)) ≥ 7. Next, we determine all
Artinian rings A with γR(C(A)) ≤ 6. Throughout the rest of the paper,
A is an Artinian ring with |Max(A)| > 1. By the structure theorem of
Artinian rings [4, Theorem 8.7], there exists an integer n > 1 such that
A ∼= A1 × A2 × · · · × An and (Ai,mi) is a local ring for all 1 ≤ i ≤ n.
Clearly, C(A) is not a null graph. Note that if φ = (S0, S1, S2) is a
γR-function on C(A), we may assume that S2 ̸= ∅. First, we show that
γR(C(A)) ̸= 1.

Lemma 1.9. If A is a ring, then γR(C(A)) ̸= 1.

Proof. By contradiction, suppose that γR(C(A)) = 1. Then γ(C(A)) =
1 and so γR(C(A)) = γ(C(A)) = 1. According to Proposition 1.2, C(A)
is a null graph, which is impossible. □

Now, we determine all rings A with γR(C(A)) = 2.

Theorem 1.10. Let A be a ring. Then γR(C(A)) = 2 if and only if
A ∼= F1 ×A1 such that F1 is a field and A1 is a local ring.

Proof. First, suppose that A ∼= F1 × A1 such that F1 is a field and A1

is a local ring. We may assume that S2 = {0× A1}, S0 = V (C(A)) \ S2

and S1 = ∅. Clearly, every vertex of S0 is adjacent to 0 × A1. Thus,
φ = (S0, S1, S2) is a Roman domination function on C(A) of weight 2.
Hence, γR(C(A)) = 2.

Conversely, assume that γR(C(A)) = 2. Then γ(C(A)) ≤ 2. Since
C(A) is not a null graph, γ(C(A)) = 1. By Corollary 1.4, we find that
A ∼= F1 × A1, where F1 is a field and A1 is a local ring. The proof is
complete. □

In the next theorem, we study the case that γR(C(A)) = 3.

Theorem 1.11. Let A be a ring. Then γR(C(A)) = 3 if and only if
A ∼= A1×A2 such that (A1,m1) and (A2,m2) are local rings, m1,m2 ̸= 0,
and |I(Ai)| = 3, for some i = 1, 2.

Proof. First, consider γR(C(A)) = 3. According to Theorem 1.6, sup-
pose that φ = (S0, S1, S2) is a γR-function on C(A) such that S2 ⊆
Max(A). It is clear that |S1| = |S2| = 1. Since C(A) is not a null graph,
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γ(C(A)) ≤ 2. If γ(C(A)) = 1, then by Corollary 1.4, A ∼= F1 × A1

such that F1 is a field and A1 is a local ring. Theorem 1.10 shows
that γR(C(A)) = 2, a contradiction. Therefore, γ(C(A)) = 2. By
Corollary 1.5, A ∼= A1 × A2 such that (Ai,mi) is a local ring and
mi ̸= 0, for every i = 1, 2. Next, we prove that |I(Ai)| = 3, for
some i = 1, 2. By contradiction, suppose that |I(A1)|, |I(A2)| ≥ 4. We
know that V (C(A)) = {I1 × A2|I1 ◁ A1} ∪ {A1 × I2|I2 ◁ A2}. Let
J ∈ S2. Since S2 ⊆ Max(A), we may assume that J = m1 × A2. Let
I ∈ I(A1)\{0,m1, A1}. Then J and the vertices of the set {I×A2, 0×A2}
are non-adjacent. This yields that J and at least 2 vertices are non-
adjacent. So |S1| should be at least 2, a contradiction. Therefore,
|I(Ai)| = 3, for some i = 1, 2.

Conversely, suppose that A ∼= A1 × A2 such that A1, A2 are local
rings, m1,m2 ̸= 0, and |I(A1)| = 3. Then V (C(A)) = {0×A2,m1×A2}∪
{A1 × I2|I2 ◁ A2}. Let S0 = {A1 × I2|I2 ◁ A2}, S1 = {0 × A2} and
let S2 = {m1 × A2}. Clearly, φ = (S0, S1, S2) is a Roman dominating
function on C(A) of weight 3. Therefore, γR(C(A)) = 3. □

The following theorem shows that for every ring A with γR(C(A)) =
4, there are two possibilities.

Theorem 1.12. Let A be a ring. Then γR(C(A)) = 4 if and only if one
of the following holds:

(i) A ∼= A1×A2 such that A1, A2 are local rings and |I(A1)|, |I(A2)| ≥
4.

(ii) A ∼= F1 × F2 × F3 such that Fi is a field, for each i = 1, 2, 3.

Proof. If (i) holds, then by Proposition 1.1 and Corollary 1.5, γR(C(A))
∈ {3, 4}. Since |I(A1)|, |I(A2)| ≥ 4, Theorem 1.11 shows that γR(C(A)) ̸=
3. Therefore, γR(C(A)) = 4. Now, consider (ii) holds. By Theo-
rem 1.11 and Proposition 1.1, we find that γR(C(A)) ≥ 4. Let S0 =
{0×F2 ×F3, F1 ×F2 × 0, 0×F2 × 0}, S1 = {F1 × 0× 0, 0× 0×F3} and
S2 = {F1 × 0 × F3}. It is not hard to see that S2 dominates S0. So,
φ = (S0, S1, S2) is a Roman dominating function on C(A) of weight 4.
Therefore, γR(C(A)) = 4.

Conversely, suppose that γR(C(A)) = 4. From Theorem 1.6, suppose
that φ = (S0, S1, S2) is a γR-function on C(A) such that S2 ⊆ Max(A).
Hence, |S1| = 0, |S2| = 2 or |S1| = 2, |S2| = 1. If |S1| = 0, |S2| = 2,
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then we find that γ(C(A)) = 2. By Corollary 1.5 and Theorem 1.11,
we conclude that (i) holds. Now, consider |S1| = 2, |S2| = 1. We have
γ(C(A)) ∈ {2, 3}. There are two following cases:
Case 1. γ(C(A)) = 2. Then by Corollary 1.5, we conclude that A ∼=
A1 × A2 such that (Ai,mi) is a local ring, for i = 1, 2 and m1,m2 ̸=
0. If |I(Ai)| = 3, for some i = 1, 2, then by Theorem 1.11, we have
γR(C(A)) = 3, a contradiction. Therefore, (i) holds.
Case 2. γ(C(A)) = 3. Then by Theorem 1.3, we find that A ∼= A1×A2×
A3 such thatA1, A2, A3 are local rings. We prove that (ii) holds. Assume
to the contrary that A1 is not a field. Suppose that I = I1×I2×I3 ∈ S2.
Three following subcases hold:
Subcase 1. I1 ̸= A1. Since I ∈ Max(A), I = m1 × A2 × A3. Hence, I
and all the vertices of the set {0×A2 × 0, 0× 0×A3,m1 ×A2 × 0} are
non-adjacent.
Subcase 2. I2 ̸= A2. Hence, I1 = A1, I3 = A3. Then I and all the
vertices of the set {0×0×A3, A1×0×0,m1×0×A3} are non-adjacent.
Subcase 3. I3 ̸= A3. We know that I1 = A1, I2 = A2. Then I and all the
vertices of the set {0×A2×0, A1×0×0,m1×A2×0} are non-adjacent.

By the above subcases, we find that |S1| ≥ 3, a contradiction. There-
fore, A1 is a field. Similarly, A2 and A3 are fields and (ii) holds. □

Now, we determine all rings A whose comaximal ideal graphs have
a Roman domination number equal to 5.

Theorem 1.13. Let A be a ring. Then γR(C(A)) = 5 if and only if
A ∼= F1×F2×A1, where Fi is a field, for i = 1, 2 and (A1,m1) is a local
ring with m1 ̸= 0.

Proof. First, suppose that A ∼= F1 × F2 × A1, F1 and F2 are fields,
and (A1,m1) is a local ring with m1 ̸= 0. By Lemma 1.7, γR(C(A)) ≤
5. On the other hand, Proposition 1.2 and Theorem 1.12 show that
γR(C(A)) = 5 and the proof is complete.

Conversely, assume that A ∼= A1×· · ·×An, for some positive integer
n, (Ai,mi) is a local ring, for 1 ≤ i ≤ n, and γR(C(A)) = 5. By Theorem
1.6, suppose that φ = (S0, S1, S2) is a γR-function on C(A) such that
S2 ⊆ Max(A). Then we have |S1| = 1, |S2| = 2 or |S1| = 3, |S2| = 1. It
is clear that γ(C(A)) ∈ {3, 4}.

First, consider γ(C(A)) = 4. By Theorem 1.3, we have A ∼= A1 ×
A2×A3×A4, where (Ai,mi) is a local ring, for 1 ≤ i ≤ 4. Clearly, |S1| =
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3, |S2| = 1. Let I = I1 × I2 × I3 × I4 ∈ S2. Without loss of generality,
we may assume that I1 ̸= A1. Set A = {0× J2 × J3 × J4|Ji = 0, Ai, for
i = 2, 3, 4}\{0}. Clearly, I and at least 6 vertices of A are non-adjacent.
This yields that |S1| ≥ 6, a contradiction. Therefore, γ(C(A)) ̸= 4, and
so γ(C(A)) = 3. Then Theorem 1.3 shows that A ∼= A1 × A2 × A3,
(Ai,mi) is a local ring, for all 1 ≤ i ≤ 3. We claim that two rings of Ai’s
are fields. By contradiction, we may assume that A1, A2 are not fields.
Two following cases hold:

Case 1. |S1| = 3, |S2| = 1. Let I = I1 × I2 × I3 ∈ S2. There are the
following subcases:

Subcase 1. I3 = A3. Then I ∈ {m1×A2×A3, A1×m2×A3}. Therefore, I
and all vertices of the set {0×0×A3, 0×m2×A3,m1×m2×A3,m1×0×A3}
are non-adjacent. This contradicts |S1| = 3.

Subcase 2. I3 ̸= A3. Then I1 = A1, I2 = A2. Hence, I and all vertices of
the set {0×A2×0,m1×A2×0, A1×0×0, A1×m2×0} are non-adjacent.
This contradicts |S1| = 3.

Case 2. |S1| = 1, |S2| = 2. Let I = I1 × I2 × I3, J = J1 × J2 × J3 ∈ S2.
Since S2 ⊆ Max(A), Ii = Ai or Ji = Ai, for every i, 1 ≤ i ≤ 3. With no
loss of generality, assume the following subcases:

Subcase 1. I1 = A1, J1 ̸= A1, I2 ̸= A2, J2 = A2. Then {0× 0×A3,m1 ×
0×A3} ⊆ S1 and so |S1| ≠ 1. This is a contradiction.

Subcase 2. I1 = A1, J1 ̸= A1, I3 ̸= A3, J3 = A3. Then {0×A2 × 0,m1 ×
A2 × 0} ⊆ S1. This yields that |S1| ≠ 1, a contradiction.

The above cases show that two rings of Ai’s are fields and the claim is
proved. Now, by Part (ii) of Theorem 1.12, we find that A ∼= F1×F2×A1

such that F1 and F2 are fields and A1 is a local ring with |I(A1)| ≥ 3
and the proof is complete. □

Finally, we answer the question of when the Roman domination num-
ber is equal to 6.

Theorem 1.14. Let A be a ring. Then γR(C(A)) = 6 if and only if
A ∼= A1 × A2 × A3, where Ai is a local ring for every i = 1, 2, 3, and at
most one of Ai’s is a field.

Proof. Let A ∼= A1 ×A2 ×A3 and at most one of Ai’s is a field. Thus,
γ(C(A)) = 3. Hence, by Proposition 1.1, we have 3 ≤ γR(C(A)) ≤ 6.
Therefore, by Theorems 1.11, 1.12 and 1.13, we are done.
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Now, suppose that γR(C(A)) = 6. By Theorem 1.6, assume that
φ = (S0, S1, S2) is a γR-function on C(A) such that S2 ⊆ Max(A).
By Propositions 1.1 and 1.2, 3 ≤ γ(C(A)) ≤ 5. First, assume that
γ(C(A)) = 5, and A ∼= A1 × · · · × A5 such that (Ai,mi) is a local ring,
for all 1 ≤ i ≤ 5. Thus, we conclude that |S1| = 4 and |S2| = 1. Let
I = I1 × · · · × I5 ∈ S2. We may assume that I1 ̸= A1. Clearly, I is
not adjacent to at least 14 vertices of {0 × J2 × · · · × J5|Ji = 0, Ai, for
i = 2, . . . , 5} \ {0}, a contradiction.

Next, suppose that γ(C(A)) = 4, and A ∼= A1 × · · · × A4, where
(Ai,mi) is a local ring, for all 1 ≤ i ≤ 4. Hence, |S1| = 4, |S2| = 1
or |S1| = 2, |S2| = 2. If |S1| = 4, |S2| = 1, then we assume that I =
I1 × · · · × I4 ∈ S2 and I1 ̸= A1. Similarly, I is not adjacent to at least 6
vertices of {0×J2×J3×J4|Ji = 0, Ai, for i = 2, 3, 4}\{0}, a contradiction.
If |S1| = 2, |S2| = 2, then suppose that I = I1×· · ·×I4, J = J1×· · ·×J4 ∈
S2. Since S2 ⊆ Max(A), we may assume that I1 = S1, J1 ̸= A1, I2 ̸=
A2, J2 = A2. Then {0× 0×A3× 0, 0× 0× 0×A4, 0× 0×A3×A4} ⊆ S1

and hence, |S1| ≥ 3, a contradiction.

Finally, suppose that γ(C(A)) = 3. Thus, A ∼= A1 × A2 × A3 such
that (Ai,mi) is a local ring, for all 1 ≤ i ≤ 3. By Theorems 1.12 and
1.13, we find that at most one of Ai’s is a field. The proof is complete.
□

As an immediate consequence of Theorems 1.8 and 1.10–1.14, we
have the following results.

Corollary 1.15. Let A ∼= A1 × · · · × An be a ring such that n ≥ 2 and
(Ai,mi) is a local ring for i = 1, . . . , n. Then

γR(C(A)) =



2, if n = 2, and mi = 0, for some i = 1, 2;
3, if n = 2, m1,m2 ̸= 0, and |I(Ai)| = 3, for some

i = 1, 2;
4, if n = 2 with |I(A1)|, |I(A2)| ≥ 4 or n = 3 with

m1,m2,m3 = 0;
5, if n = 3 and two of Ai’s are fields and another

is not a field;
6, if n = 3 and at most one of Ai’s is a field;
2n− 1, if n ≥ 4 and at most one of Ai’s is not a field;
2n, otherwise.
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A graph G is called a Roman graph if γR(G) = 2γ(G). From the
above corollary, we conclude the next result.

Corollary 1.16. Let A ∼= A1 × · · · × An be a ring such that n ≥ 2 and
(Ai,mi) is a local ring for i = 1, . . . , n. Then C(A) is a Roman graph if
and only if one of the following holds:

(i) n = 2 and mi = 0, for some i = 1, 2.
(ii) n = 2 with |I(A1)|, |I(A2)| ≥ 4.
(iii) n ≥ 3 and at least two of Ai’s are not fields.

We close this paper by the following example.

Example 1.17. Let m = pα1
1 · · · pαs

s > 1 be an integer, where pi’s are
distinct primes and αi’s are positive integers and let Zm be the integers
modulo m. Then the following statements hold:

(i) γR(C(Zm)) = 2 if and only if m = p1p
α2
2 .

(ii) γR(C(Zm)) = 3 if and only if m = p21p
α2
2 , α2 ≥ 2.

(iii) γR(C(Zm)) = 4 if and only if m = pα1
1 pα2

2 , α1, α2 ≥ 3 or m =
p1p2p3.
(iv) γR(C(Zm)) = 5 if and only if m = p1p2p

α3
3 , α3 ≥ 2.

(v) γR(C(Zm)) = 6 if and only if m = pα1
1 pα2

2 pα3
3 , α2, α3 ≥ 2.

(vi) γR(C(Zm)) = 2s− 1 if and only if s ≥ 4 and m = p1 · · · ps−1p
αs
s .

(vii) γR(C(Zm)) = 2s if and only if s ≥ 4 and m = pα1
1 · · · pαs

s ,
αs−1, αs ≥ 2.
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