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1 Introduction

For the last two decades, classical calculus has been extended to modern
fuzzy and fuzzy fractional calculus, like differential equations to frac-
tional order and fuzzy fractional order. The fuzzy fractional calculus
has been given much attentions by the researchers due to its significant
applications and realistic description of many physical and biological
phenomenon [15, 18, 12, 13, 14, 21]. Some real-life problems have been
model by partial differential equations, because during the study of natu-
ral phenomena, we often faced several variables simultaneously[9, 10, 17].
Even some time partial differential equations is not the best option to
study real life problems due to fuzziness in the problems.

Over the past decades, a significant development in fractional cal-
culus has been used widely by the researchers. Fractional operators are
much better at explaining the physical phenomena (Biological popula-
tion models, predator-prey models, infectious diseases models, etc) more
accurately compared to ordinary operators. The time-fractional cauchy
reaction-diffusion equation is a fractional partial differential equation
that deals with the study of fluid velocity and convection temperature
dynamics [1, 3, 16]. The concepts of fuzzy fractional integral, Caputo
partial differentiability based on generalized Hukurara differentiability
for the fuzzy multivariable functions, and fuzzy fractional partial differ-
ential equations are examined by H. Viet Long et al. [19]. The fuzzy
Caputo-Katugampola fractional differential equations in fuzzy space are
considered in [11], and under generalized Lipschitz condition, the exis-
tence and uniqueness of the solution are proved.

In the following, We consider generalized Hukuhara partial differen-
tiability of the solution and an analytical fuzzy triangular solution of
time-fractional Cauchy Reaction-Diffusion equation with fuzzy triangu-
lar initial conditions, is achieved using the fuzzy Sumudu transform.

The rest of this paper is organized as follows. In Section 2, some
notations and preliminaries used throughout the paper is introduced.
In Section 3, we define the definition of fuzzy Sumudu transform and
prove some properties. We obtain an analytical fuzzy triangular solution
for the time-fractional Cauchy Reaction-Diffusion equation by the fuzzy
Sumudu transform based on the type of Caputo gH-differentiability in
Section 4. Some examples are given in the final section to illustrate our
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theory.

2 Basic Preliminaries

In this section, we introduce notations, definitions, and preliminary facts
used throughout this paper. We use E to show the fuzzy numbers space,
and T is the set of all triangular fuzzy numbers, which is defined by an
ordered triple A = (a1, a9, a3), where a; < ag < ag.

For 0 < r <1 denote [A]" = {5 e R"[A(6) > r} =[A(r), AT (r)].

The r-level set [A]" is a closed interval for all » € [0, 1], and for every
triangular fuzzy number A = (a1, as, a3), we have A~ (r) = a;+(ag—aq1)r
and A*(r) = ag — (a3 — ag)r.

The Hausdorff distance between fuzzy numbers is given by D : E x
E — Rt U{0} as in [4]

DA B) = sup d(lA], (8]
= swp max {JA(r) = B~(1)], |A4*(r) — B ()]}
relo, 1]

where d is the Hausdorff metric [1].

Now consider A = (a1, a2,a3) And B = (b1, be, b3) are two triangular
fuzzy numbers. The generalized Hukuhara difference, A,y B, is defined
as follows

.A @gH B = (min{al — bl, ag — bg}, ag — bg,max{al — bl,ag — bg}) (1)

Let ] € R? and v : J — E is a fuzzy function. A fuzzy function
P(6,t) = (%(5, t),12(6,t), ¥3(9, t)) is called a triangular fuzzy function
provided that 11 (d,t), 1¥2(0,t) and 13(d, t) are real-valued functions such

that ¥1(9,t) < 9(d,t) < 1b3(d,t) for all (4,t) € J.
2.1 Fuzzy Differentiation

Definition 2.1. ([8]) The first generalized Hukuhara partial derivative
( [gH-p]-derivative for short) of a fuzzy value function (d,t) : J — E
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at (0o,t0) € J concerning variable t is a function % such that

(0o, to) lim Y(do, to + k) Ogn (o, to)
ot k50 k ’

provided that W € E.

Definition 2.2. (See [3]) Let ¥(d,t) and % are triangular fuzzy
functions and [gH-p]-differentiable at (6,t) € J. Moreover. there aren’t
any switching points on J and 11(6,t),1%2(0,t) and ¥3(d,t) are differen-
tiable at (6o,t0). Then is called

(1). ¥(0,t) is [(i) — p|-differentiable with respect to t at (6,t) € J if

8¢(6,t) — (81/)1(57'5) 81/12(57t) 81113(5@)
ot ot ot ot :

(ii). (0,t) is [(17) — p|-differentiable with respect to t at (0,t) € J if

3¢(5,t) — < 31#3 (67t) 37702 (évt) 811’1 (évt) >
ot ot ot ' ot :

Definition 2.3. (See [2], [20]) Let (d,t) be a fuzzy function which
[gH-p[-differentiable for t up to order one. The generalized Hukuhara
fractional Caputo derivative (0,t) of order « is defined as follows

C a _ 1 i 8¢(5) 5) 1
5ot = oy ) 25 g

where 0 < a < 1.
Let (0,t) is a triangular fuzzy function and [gH-p]-differentiable,
then

o (4,t) is (1)—Caputo gH-differentiable w.r.t t, if gHQ?”L/J((S,t) eT
for all (0,t) € J and

a1 (0,0) = ( CD™i(6.1), “Da(81), “Dus(8,1)).

o (4,t) is (2)—Caputo gH-differentiable w.r.t t, if gCH”D?dJ((F, t)e T
for all (0,t) € J and

Cu50(0,6) = ( “Ds(6,1), “Dua(6,0), D (0,1)).
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2.2 Fuzzy Integration

Let ¥ : J — T be a triangular continuous fuzzy function. Based on the
results in [5] and [3], we have

/abw(é,t)dt— (/ab¢1(5,t)dt,/abwg(é,t)dt,/abwg(é,t)dt). )

Moreover,

00 P
/ V(30 = Jim [ (6 0t

In fact

/Oow(é,t)dt—7}5%0</Pw1(5,t)dt, /ng(é,t)dt,/ng(d,t)dt>

provided that the limits exist as a finite numbers.

Lemma 2.4. Consider a and b, a.b > 0 are real constants. If 1(d,t)
and p(0,t) are triangular fuzzy functions, then,

i), [ (a »(8,t) B b (s, t))dt —a [ (5, t)dt &b [ o5, t)dt.

ii). [y° <a¢5t)@gHb (5t)>dt—af0 Y(0,t)dt S b [1° ¢(4, t)dt.

Proof. Since the proofs of case (i) and (ii) are similar, here we will
prove case (ii). Let us consider a and b are positive real constants. By

5
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equation (1) and equation (2) we have

/Oo a 1(8,t) Sgn b (5t)>dt:
0

s (mm a1 (5,1) — bpa(6.), awa(8.6) — bis(6.1) ).
an((S,t) b(pg(&,t),
max {31/11(5: t) - b‘Pl(év t)a aw?)(dv t) - b903(57 t)}) ds,

- (min{a/oooq/)l(é,t)dt—b/ooowl(é,t)dt

a/ooo ¢3(5,t)dt—b/0°° e(6.1)dt (3)
a/ooo Yo (0,t)dt — b/oOo w2(0,t)dt

, max{a/ooo P1(0,t)dt — b/ooo ©1(9,t)dt

a/ooo bs(6,t)dt — b /OOO ¢3(5,t)dt}>
—a /0 (5, )dt S b /O ~ (8, t)dt ()

Now, consider a and b are negative real constants. Therefore

/Ooo a(d,t)dt = /OOO (a?ﬂs(&t),awz(é,t),a@bl(é,t))dt

- (a/(]m¢3(5,t)dt,a/0m ¢2(5,t)dt,a/ooo 1/11(5,t)dt)
- a(/ooowl(é,t)dt,/ooo wg(é,t)dt,/ooolbg(é,t)dt
_ a / (6 t)dt (5)

Similar to Eq.(3) and using Eq.(5), for negative constants a and b, we
observe that

/OOO <a¢(5 t)dt ©gr b (9, t)) / (5, t)dt @gHb/oo (5, t)dt
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That is, proving the claim. O
Proposition 2.5. ([19]) Let ¥(d,t) be a continuous fuzzy function.

i). If is [i-p]-differentiable w.r.t t, with no switching point on R x [a, b]
then %—f is integrable on [a,b] and

boy(s.t)
/a PO s = (5. b) & (5,0,

ii). If ¢ is [ii-p/-differentiable w.r.t t, with no switching point on R x
[a,b] then %—lf is integrable on [a,b] and

/b awg?t)dt = (=1)¥(8,a) © (=1)9(4,b).

Proposition 2.6. Let h(t) be a positive and decreasing continuous real
valued function and v is a [gH-p/-differentiable respect to t at every
(0,t) € J such that there are not any switching points on J.

i). Suppose that k(6,t) = h(t)y(d,t) and ¥ (9,t) is [i-p/-differentiable
w.r.t t, then k(0,t) is [i-p/-differentiable w.r.t t and

/bh(t)awgz’t)dt — k(5,b) © k(5,a) & /b(—l)h’(t)w(é,t)dt

ii). Ifk(d,t) = h(t)y(0,t) and ¥(0,t) is [ii-p/-differentiable w.r.t t, then
k(d,t) is [ii-p/-differentiable w.r.t t and

0 (6, 1)

b b
/h(t)atdt:(—1)k(5,a)@(—1)k(5,b)@gH/ ' ()1 (6, t)dt.

a

7
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Proof. Let ¥(d,t) is [i-p|-differentiable w.r.t t. h(t) be a positive and
decreasing continuous real valued function, then h(t) > 0 and A'(t) < 0

() 2280 ¢ ()

Op1(6,1) 2(6,t) a6,
:h(t>< 181; ’ 28‘5 ’ 36t )
S(='(6)) (11(6. ), 1206, ), s (0, 1))

- (A8 400 08

& = W (0 (6.6, =H ()6, ), ~H (t)s(6.))

= (b0 22D )60, m(1) 209

ot
(00,0, 100 20D s 6,1)

ot
_ 0k(6,t)
-0
Therefore k(d,t) be [i-p]-differentiable w.r.t t and

Ok(6,t) _ . 9Y(d,t) /
5o = M) == & (CDI(0)v (5, 1), (6)

Take the integral both side of equation (6). Using Proposition 2.5
and taking into account the fact that k(d,t) is [i-p]-differentiable w.r.t t

ot

The other case can be proved in the same way. O

/b h(t)%(é’ t)dt = k(4,b) © k(d,a) ® /b —h!(t)2 (6, t)dt.

3 The Fuzzy Sumudu Transform

In this section, the fuzzy Sumudu transform is defined for a fuzzy func-
tion, and some properties for this fuzzy transform will be proved. Let 2
be a set defined as

2l = {¢(5,t)| dM, 1 and/or 15 > 0 such that

[t]

D(qb(é,t),O) < Me7i fort € (—1)7 x [O,OO)}a
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where D is Hausdorff distance, the constant M should be a finite, while
71 and 7o donot have to exist simultaneously and each can be infinite.

For every ¢(0,t) € 2, the Sumudu transform with respect to t,
St[1(6,t)] is defined by

Jo~ 0(0, &) exp[—t]dt, 0<E<m,

Se[v(6,t)] = (7)
fo (0, &) exp[—t]dt, -1 <& <0.

If a fuzzy function is defined for non-negative t, the fuzzy Sumudu trans-
form of this function is just defined for non-negative & [6]. All equations
in this paper will be defined for t > 0, and henceforward £ belongs to
[0, T 2) .

Let w = &t, then for every fuzzy function (6,t) defined for t > 0,
equation (7) can be written as

wi6.0] = 3 / exp () pw)dw =UEE),  Eclom). ()
Provided the integral exists for some &.

Definition 3.1. Let h(t) be a real-valued piecewise continuous function,
and ¥(0,t) is a triangular fuzzy continuous function. The convolution
of two functions h(t) and 1(6,t) fort > 0 is given by

(6 h) (5, 1) /Mc (t — Q).

Lemma 3.2. Consider 1(0,t) and ¢(6,t) are fuzzy functions whose the
fuzzy Sumudu transform exist. Let a and b are two real constants such
that a,b >0 (ora,b <0) . Hence

i). a Si[y(6,t)] ©gu b St[p(d,t)] = Sila ¥(d,t) ©gm b ¢(6,1)].

if). a S (6. £)] @ b Su[6(6.t)] = Sela ¥(6.6) & b (3, 1)].

9
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Proof. Using equation (8) and Lemma 2.4 , we conclude that

a S¢fa t)] 6gH b St[¢(5 t)]

f/ a exp (5 t)dt@gHé/ b exp( ¢ )gzﬁ(é t)dt
= £/0 a exp ? Y(0,t) Sgu b exp( : )gb(é t))d

_ 2/000 exp (?) <a W$(6,) Ogr b ¢(5,t))dt
= Sila ¥(d,t) ©gu b ¢(4,1)].

The proof for part (ii) will be obtained similarly. O

Theorem 3.3. Let ¢(d,t) be [gH-p/-differentiable in J with respect to t
provided that the type of [gH-p]-differentiability does not change in J.

i). If ¢(0,t) is [i-p/-differentiable with respect to t then
0 (6, 1t)
U2 ] = ¢ (Si0(6.01 0 0(6.0)).
ii). If ¢(6,t) is [ii-p/-differentiable with respect to t then

2409 _ 2((_1>¢<5, 0) Sgn (~1)Se[$(5,1))).

Proof.Let 1(d,t) be [i-p]-differentiable with respect to t. According to
the definition of the fuzzy Sumudu transform for a fuzzy function and
Proposition 2.6, we have

9 (6, =B 2(6,
Sil w(g)t - /0 5eXp(gt) wét t)dt

B —t\ O (0, t
= Jm ; Eexp( ot

3
= lim {exp( p>¢5p9 =1(4,0)

p—oo &

@gz/pexp( ;)w(a t)d]

_ é[stw(é,t)]@lb(é,o)]
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Now, let ¢(d,t) be [ii-p]-differentiable with respect to t. So, as in
the procedure outlined above

oY (4,t) B *1 —t\ 0Y(0,t)
Sil=% 1 = /0 co () Tt

L 1 ~1 —p
= lim [_ g;u((s, 0)& - o (?)1/1(5,29)

@5711521 /Op exp (;)dj(é,t)dt}

_ 2( —1(5,0) Oy (_1>St[¢(57t)>}‘

So, the desired result was obtained. O

Theorem 3.4. (Convolution Theorem) Assume that (6,t) is a tri-
angular fuzzy continuous function on [0,00) and h(t) is a real-valued
piecewise continuous function on [0,00). Then

S, # ] = s(st o st[h(tn).

Proof. By using the definition of the fuzzy Sumudu transform, we have

siv.olosmo] = (¢ [ ew()ue0)

(2 /000 exp (?)h(a)da)
_ ;2 /0 h ( /0 " exp (;1<<+ o)) (s, <>d<> h(o)do.

Let o is fix in the interior integral and substitute t = ( + o and d¢ = dt,
then

S (5,0)] © Syh(t)] = ;2 /0 Oo[ /U " exp (_gt)qb(é,t—o—)dt}h(o)do—

_ ;2/000 [/:oexp (?>w(5,t—0)h(0)dt} do.
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Using this fact that ¥ (d,t) = <w1(6,t),z/a(d,t),z/g(d,t)) and equation
(2) yield to

Si[1(0, )] © Si[h(t)]

_ ;(/OOO [/:O exp <?>¢1(5,t _ a)h(a)dt] do,
/OOO [/:O exp <_§t>1/}2(6,t . a)h(a)dt} do,
/Ooo [/:o exp (?)wg(a,t - o)h(a)dt] da).

Now, using Theorem 3.2 in [8], we can reverse the order of integration

Se[(6,t)] © Si[h(t)] =

oG ono
T sl
£l
B < / [/ $1(6,t = o) d]
2/ exp ( [/ Ua(6,t — ) do—]dt
é/o [/ $s(8,t — o) da}dt)

Then we obtain

Si[(5,6)] ® S[h(t)] = ( / exp ( [ / ¥(6,t — o) da]dt)

~ gSilvnl
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Theorem 3.5. If0 < a <1 and ¥(4,t), (fgt Y are fuzzy continuous on

[0,00). Moreover $yy®94)(8,t) is fuzzy continuous on [0,00). Then
i). If ¥(6,t) is (1)-Caputo gH-differentiable, then
Silou D5 (6,1)] = £S5, t)] © £ *(5,0).
ii). If ¢(4,t) is (2)-Caputo gH-differentiable, then
Si SuD3Y(5,t)] = (=1)§"Y(8,0) © (—1)§ Sy [1h(4, 1))

Proof. By Definition 2.3 we have

o B 1 t _a 09(0,T)
gCH©1¢(57t) = 1“(1—a)/0(t_T) TdT
_ 1 —a . 09(,t)
= r(1—a)<t <)

According to the assumptions of the theorem in case (i), ¥(d,t) is (1)-
Caputo gH-differentiable. Applying the fuzzy Sumudu transform for
both sides of the above equation and by Theorem 3.4 conclude that
1 _ dp(6,t)
C a _ «a )
S §D100.0] = 5y — oy (S 10 8I=5).

Given that S¢[t7%] = (7*T'(1 — «) [6] and Theorem 3.3 can be conclude
that

St[ SHDv(,t)] = E°Si[Y(8,1)] © £ Y(4,0).

Furthermore, a similar approach can be applied to (2)-Caputo gH-differentiable
function. O

Example 3.6. Let ¢(0,t) = kf(d,t) such that k is a fuzzy triangular
number and f(4,t) is a real-valued continuous function, then

st = ¢ / exp ()RS (5. O)at
= 5/ exp f(0,t)dt
- k:st[f(&tﬂ

Table A.1 in the article [6] can be used to get Sy [f(é,t)]
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4 The Fuzzy Sumudu Transform Iterative Method
(FSTIM)

In this section, we present the derivation of a fuzzy solution for the fuzzy

time-fractional partial differential with fuzzy initial condition as

{ CuDp(5,) = L(5,1) @ g(5,t), (t>0,60€R), 0<a<l
(9)

$(9,0) = ¢(9),

where gHQ? be the fuzzy Caputo fractional partial derivative with
respect to t, L is a linear operator, g(d,t) = (gl(é,t),gg(d,t),gg(d,t)) is

a given fuzzy continuous function and ¢(J) = ((;51(5), $2(0), $3(9)) is the

fuzzy initial condition.
Let us apply the fuzzy Sumudu transform on both sides of equation

(9)
st[ gCH@gzp(a,t)} - s, [Lw(a, t)} @ Sy [g(d, t)} . (10)

e Let ¢(d,t) is (1)-Caputo gH-differentiable. Theorem 3.5 concludes
that

Si[1(0,t)] = 1(5,0) ® E*Se[Lp(6,£)] © £7Se[g(6,8)].  (11)

We apply the inverse Sumudu transform on both sides of the equa-
tion (11)

W(6,t) = S7! [1#(5, 0)} @St {gast [w(a, t)H @St {gast [9(5, t)H .
Assume that

6.0 = 00) @5 e8] |

KwE.0) =5 s [Lo.0)] |
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So, equation (11) can be rewritten as follows,

w(éat) - f(5,t) @K(iﬁ(&t))a (12)

where f(d,t) is a known fuzzy function, and K is a linear operator
of ¥. Now, suppose that the solution of equation (9) is as follows

$(6,8) =D i(6,1).
=0

K is a linear operator, then

K (Y 0i0.0) = > K(@ils,1)).
=0 =0

Consequently, equation (12) can be rewritten as

D il6,t) = o(5,t) @ Y K (16, 1)),
i=0

i=0
and the following recursive equation is obtained
¢0(57 t) = f((S, t)
(13)
Um+1(90,t) = K (¢ (0,1)), m=0,1,...

Finally, the (1)-Caputo gH-differentiable solution of equation (9)
is given as

¢(57t) = f(évt) D Z wm(évt) (14)
m=1

Let 9(0,t) be (2)-Caputo gH-differentiable. By the process dis-
cussed in detail in the previous part, we obtain the following re-
cursive equation

Yo(8,t) = ¢(8) © (~1)S! [5ast {Q(M)H’ (15)

VYm+1(0,t) = S(—1) K (¢ (4, 1)), m=0,1,...
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Finally, the (2)-Caputo gH-differentiable solution of equation (9)
is given as

Y(0,8) = o(8,8) & D tm (5, 1), (16)

m=1

5 Examples

In this section, the proposed method is utilized to study some examples
of the fuzzy time-fractional Cauchy equations. The computations asso-
ciated with the examples are performed using Mathematica software.

Example 5.1. Consider the following time-fractional Cauchy equation

2
G008, t) = 2EQY @ Z(5v(6,1))

%(6,0) = (0.1,4.5, 7.8) (17)

Let 1(4,t) be (1)-Caputo gH-differentiable. Applying the fuzzy Sumudu
transform with respect to t on both sides of of equation (17)

bo(6,t) = (0.1,4.5,7.8),
Di(6,t) = ST [gast[%g’gt)ﬂ @S ! [gast [§(5<0.1,4.5,7.8))H

— 57! {5“ (0.1,45, 7.8)]

<0.1,4.5,7.8>t"
Ia+1)
> (0.1,45,7.8)t
sy = s (Lot
0.1,4.5,7.8)
® s;! [gast[aaé(é( F(a—i—l)) )H
<0.1,4.5,7.8>t20‘
T(2a+1)
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200
Ua(8t) = S;l[gast[%(é<0';’éz’1?t >]]

(0.1,4.5, 7.8)t3a
I'Ba+1)

(0.1,4.5, 7.8)tm°‘
I(ma+1)

Therefore, the (1)-Caputo gH-differentiable solution of the problem (17)
is

wm(éa t) =

(0.1, 45, 7.8) o (0.1, 45, 7.8) gmo
5,t) = (0.1,4.5,7.8
V.0 = (00,4578) @ TatD) Y Timas)
- (0.1,4.5,7.8>Ea(t°‘) (18)
where is F,(z) the Mittag-Leffler function [7]
Ba(z) =S — 2
) = T(aj+1)

The r—cut of this solution, (4, t;7) = [0.1 + 4.47,7.8 — 3.3r] E(t%), for
different values of @ and 0 < r < 1, are showed in Figures 1.

(a). a = 3. (b). a =

Wl
—~
o
\‘_/
Q
Il
—

Figure 1: Plots of (0, ¢;7) = [0.1+4.47,7.8 — 3.3r| E,(t*) for different
values of a and r € [0, 1].

17
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Example 5.2. Consider the following time-fractional Cauchy reaction-
diffusion equation

1
gCHthlb((S t) = a }ﬁ’éé”) OgH <%, &f, %>5DawsonF(\/f)

(19)
b(6,0) = (0.45, 10.66, 195)

where Dawson function is defined as DawsonF(z) = exp(—z?) [, exp(t?)dt.

Applying the fuzzy Sumudu transform with respect to t on both sides
of equation (19). We want to find a (2)-Caputo differentiable solution,
then, we will use equations (15) and (16)

Silg(6,8)] = ¢(6,0)
2
o e (s[24lY]
SgH St[(?/% 10\/>6 \1/%>5DawsonF(\f)})
e )@St[(?/f mfG f>5DawsonF(\/i)])
o Cos [
we have

0.4 10.6 0.26/€ 5.30v€ 9.56\/€
D F =
St[(f Nz \f)(s awson (\0} <1+§’ 1+¢° 1+§>
Under process discussed in detail in Section 4, we obtain the following
recursive equation

Yo(d,t) = (0.45, 10.64, 195) @(—1)St1[<
_ (0.45, 10.66, 195)

® (0.25(exp(—t) ~ 1), 5.38(exp(—t) — 1), 9.56(exp(—t) — 1)),

0.20¢ 5.30& 9.5(55)“
148 1+81+4¢

0 (6, t)H 7

Umi1(0,t) = @(—1)Sgl[§ast[ 062

m=20,1,...
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We have ¢,+1(9,t) = 0 and, by iteration, the following exact (2)-Caputo
gH-differentiable solution is obtained

P(d,t) = (O.Qé(exp(—t) +1),5.30(exp(—t) + 1),9.56 (exp(—t) + 1))

(a). (6.1). (b). CuDFv(5,).

1

Figure 2: Plots of ¢(d,t) and §H®f¢(5,t) for r = %

To illustrate the behavior of the (2)-Caputo gH-differentiable solu-

tion , ¥(d,t;r) = [0.2 + 5.17,9.5 — 4.2r]0(exp(—t) + 1), ¥(,¢;r) and

1
gHDth(é,t;r) are presented in Figure 2 (a) and (b) for r = 3, respec-
tively. As can be see in Figure 2(b), the position of lower cut(blue) and
1

upper cut(red) for gHC‘wa(é,t) is changed. It shows that, ¢(d,t) is

(2)-Caputo gH-differentiable with respect to t.

Example 5.3. Consider the following time-fractional Cauchy reaction-
diffusion equation

Cpp(5,t) = LU0 oy D (exp(—8)3(5,1))
(20)
¥(6,0) = <exp(5),6.5exp(6), 1lexp(5)>

Using the general recurrence relation (13), the (1)-Caputo differentiable
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solution of equation (20) is obtained by

Po(0,t) = (exp(5), 6.5 exp(d), 11 exp(5)> ,

<exp(5), 6.5exp(d), 11 exp(é))ta

ilot) = Fla+1) ’
<exp(5), 6.5exp(d), 11 exp(é))tza
v2(60) = I(2a+1)
(exp(é), 6.5exp(d), 11 exp(é))tmo‘
wm(&t) =

I'(ma+1)
and
b(o,t) = exp(a),6.5exp(5),11exp(5))

( e 20 mo
( t t t )
(

+1"(01-1—1) +F(2a—|—1) + +1"(moz-|—1)

exp(6),6.5exp(d), 11 exp(0) ) Eo(t%)

(a). V(5.1). (b). CyDFv(5,).

1
Figure 3: Plots of ¢(4,t) and 5H©t2w(5,t) for r = 1.
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To illustrate the behavior of the (1)-Caputo gH-differentiable solu-
1
tion of this fuzzy Cauchy problem, (4, t) and gH’Df (0, t) are presented

in Figure 3 (a) and (b) for r = 1, respectively. As can be seen in Figure 3

1
(b), the position of lower cut(blue) and upper cut(red) for gCHﬁflb(é, t)
does not change. It show that, (d,t) is (1)-Caputo gH-differentiable
with respect to t.

6 Conclusions

In this article, we have considered the time-fractional Cauchy Reaction-
Diffusion equation in the fuzzy concept. We have studied this equa-
tion under the generalized Hukuhara Caputo partial differentiability.
To find the analytical solution of the proposed equation, we have used
the fuzzy Sumudu transform method. The final results, show that the
fuzzy Sumudu transform method is very efficient and more realistic to
solve the time-fractional Cauchy Reaction-Diffusion equation.
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