
Journal of Mathematical Extension
Vol. 18, No. 11, (2024) (4) 1-28
ISSN: 1735-8299
URL: http://doi.org/10.30495/JME.2024.3171
Original Research Paper

Accelerating Data Envelopment Analysis
Calculations with Big Data

R. Hosseinzadeh
Tabriz Branch, Islamic Azad University

N. Azarmir Shotorbani
Tabriz Branch, Islamic Azad University

Y. Jafari∗

Shabestar Branch, Islamic Azad University

J. Vakili
University of Tabriz

Abstract. The conventional approach in Data Envelopment Analysis
(DEA) involves solving n linear programming (LP) problems to evaluate
the efficiency of Decision-Making Units (DMUs), based on m inputs and
s outputs, where n is the total number of DMUs. As the number of in-
puts, outputs, or DMUs increases, the computational complexity grows,
leading to a steep rise in processing time for solving the standard mod-
els. This paper proposes an innovative method that significantly reduces
computation time by leveraging parallel processing. The methodology
consists of five distinct stages: (1) selecting a subset of DMUs using a
specialized algorithm; (2) identifying the top-performing DMUs within
the selected subset; (3) isolating non-essential DMUs located in the con-
vex hull of the subset; (4) iteratively refining the selection to exclude
additional inefficient units; and (5) determining the full set of efficient
DMUs. By systematically introducing and filtering subsets, the pro-
posed approach reduces the problem’s dimensionality, making it more

Received: October 2024; Accepted: February 2025
∗Corresponding Author

1

2 R. HOSSEINZADEH et al.

computationally tractable. The effectiveness of the method is demon-
strated through its application to a dataset and is compared against
existing approaches.

AMS Subject Classification: 90C08; 68T09.
Keywords and Phrases: Data Envelopment Analysis (DEA), Big
Data, Parallel processing.

1 Introduction

Data Envelopment Analysis (DEA), first introduced by [8] and later
expanded by [2], is a non-parametric method used to assess the per-
formance of a homogeneous set of Decision-Making Units (DMUs) with
similar inputs and outputs. In the DEA framework, n linear program-
ming (LP) models are solved to measure the efficiency of DMUs, where
n represents the total number of DMUs. The number of DMUs, along
with the number of inputs and outputs, directly influences the complex-
ity of the model, determining the number of constraints and variables.
However, in the context of large-scale datasets, the increased compu-
tational burden becomes a critical challenge. As the number of units
grows, the run time required to solve standard DEA models escalates
dramatically. A significant body of research has explored theoretical
approaches to reducing the computational time required to solve DEA
models. For instance, Ali [1] introduced an approach that first iden-
tifies non-dominated DMUs and subsequently reduces the number of
decision variables by systematically eliminating those associated with
inefficient DMUs. Building on this, Dula and Helgason [15] proposed
a method to reduce the size of LPs for a subset of DMUs, thereby ad-
dressing computational challenges. Similarly, in [4], efforts were made
to minimize the time required to evaluate the performance of all DMUs
by leveraging multiple parallel processors. This approach integrated
Ali’s method [1] with a hierarchical division (HD) technique to partition
DMUs into smaller, more manageable groups of approximately equal
size. Further advancements include the work in [16], which introduced
a novel algorithm specifically designed to solve smaller LPs, resulting
in significantly reduced computational time. Extensive testing of this
algorithm has shown that it is computationally superior to standard ap-
proaches across various problem types. Additionally, [18] proposed a

ACCELERATE DEA CALCULATIONS WITH BIG DATA 3

distinct method that connects the problem of model size reduction with
returns to scale, offering a new approach to improve DEA efficiency.
In addressing returns to scale techniques, the method presented in [18]
extracts the anti-decremental and anti-incremental returns to scale for
efficient DMUs from the variable returns to scale (VRS) of these units.
From this, a subset of efficient DMUs under constant returns to scale
(CRS) can be identified. Similarly, two other notable methods focusing
on both returns to scale and the reduction of computational complex-
ity are discussed in [6] and [20]. The former proposes an approach to
expedite the handling of problems under VRS when the dimensionality
is relatively low, while the latter applies a multi-step method to isolate
efficient DMUs and designs a simulation algorithm to estimate run times
for large datasets, also considering VRS. For further insights, references
[13, 19, 14, 17, 10, 26] provide valuable contributions. Specifically, [13]
examines the influence of three parameters: the number of DMUs, the
number of inputs and outputs (i.e., dimensionality), and the ratio of
efficient units (density). Meanwhile, [19] proposes a hierarchical anal-
ysis method using lexicographic parametric programming to ease DEA
computations, particularly for small-scale problems. Shortly thereafter,
[14] introduced an effective method known as Build-Hull (BH) to signif-
icantly reduce the run time required to identify all efficient units. Dula
and Lope’s work [17] offers a procedural approach tailored to big data,
presenting a theoretical and specific method designed for dynamic condi-
tions where data are continually evolving. Furthermore, [10] proposes an
algorithm that addresses the challenge of LP size constraints when deal-
ing with large-scale datasets, allowing for the computation of efficiency in
a reasonable number of iterations, without excessive time requirements.
Big data often involves high-dimensional datasets, which can complicate
analysis. Techniques such as Principal Component Analysis (PCA) and
Multiple Correspondence Analysis (MCA) can be employed to reduce
dimensionality before applying DEA, and interpretability [7]. In [9] A
review article has been presented that highlights recent advancements
in data envelopment analysis with big data. In [26], two algorithms
are introduced to handle large-scale DMUs by splitting them into two
modes: one input and one output, as well as multiple inputs and multi-
ple outputs. Moreover, [25] highlights the limitations of traditional DEA

4 R. HOSSEINZADEH et al.

models when dealing with complex or large network structures, sug-
gesting new opportunities for developing techniques to solve non-linear
network DEA models. [3] develops a Network DEA model to evaluate
the optimistic and pessimistic efficiency of sustainable supply chains,
incorporating undesirable outputs. [21] evaluates airline operational ef-
ficiency using big data analytics and DEA, analyzing monthly efficiency
scores. [24] addresses the shortcomings of traditional mean-variance
portfolio strategies by proposing a stock selection scheme integrating
DEA and multi-source data, combined with SVM for price prediction.
[12] addresses the curse of dimensionality in Data Envelopment Analy-
sis (DEA) by proposing improved decomposition-based algorithms with
multithreading and novel termination criteria. [23] introduces four DEA
models to integrate streaming and statistical data for performance eval-
uation, considering undesirable outputs. Finally, [11] presents a hybrid
algorithm that utilizes a density-increasing mechanism alongside refer-
ence set selection. In this article, we have presented an algorithm to
reduce the volume of calculations. In the algorithm, subproblems have
been created with reduced dimensions, thereby requiring fewer compu-
tations to solve them. By eliminating inefficient units, the number of
units decreases throughout the process, Ultimately, it leads to the identi-
fication of all efficient units in much less time. In this study, we focus on
an input-oriented model under VRS technology, noting that the number
of efficient DMUs identified under VRS is typically greater than those
under CRS. Consequently, this increases the size and complexity of the
VRS model. The model size under VRS is typically larger than under
CRS. For our implementation, we utilize MATLAB 2018a on a system
equipped with 16 cores, 32 GB of RAM, and a 64-bit Windows 2016
operating system. It is important to note that various programming ap-
proaches may yield different performance outcomes, as factors such as
software selection, hardware configuration, system settings, and installed
programs can significantly influence the run time for performance eval-
uation of a sample DMU. Our results demonstrate that the reduction in
run time achieved by our method surpasses that of existing techniques.
Using a computer with only 16 processors, our method shows consid-
erable improvements in run time compared to the method proposed in
[20], which introduced an effective approach for reducing computational

ACCELERATE DEA CALCULATIONS WITH BIG DATA 5

complexity in large-scale DEA problems. In our approach, we begin by
selecting a sub-sample of DMUs and identifying the non-essential DMUs
within this subset. In subsequent iterations, we incrementally add more
DMUs, progressively eliminating inefficient units. We have obtained all
efficient units in less time and have shown that our method works faster
than existing methods in the presence of big data. This paper is divided
into four sections. The basic definitions of DEA and the interpretations
are presented in Section 2. The method is developed in Sections 3. The
run time of the proposed method is compared with the existing methods
in Section 4. Finally, conclusions are given in Section 5.

2 Data Envelopment Analysis

First, we provide some basic definitions to explain the concepts and in-
terpretations used in this study. Consider a set of n observations, Φ =
{DMU1,DMU2, . . . ,DMUn} where each DMUj produces s non-negative
outputs y1j , y2j , . . . , ysj using m non-negative inputs x1j , x2j , . . . , xmj .
Also, let the input and output vectors of DMUj be denoted by xj =
(x1j , . . . , xmj)

t ∈ Rm
+ and yj = (y1j , . . . , ysj)

t ∈ Rs
+, respectively, where

the superscript t denotes the transpose operation. Moreover, assume
that J = {1, 2, . . . , n}. The production possibility set (PPS) is repre-
sented by T and is defined as follows.

T = {(x,y) ∈ Rm
+ × Rs

+|y can be produced by x}.

The definition of the PPS depends on the production technology or the
postulates selected by the manager. Banker et al. (1984) considering
some postulates in [2] as the production technology based on postulates
1-4 below:
1. The observed activities (xj , yj), j = 1, . . . , n, belong to T .
2. If (x, y) ∈ T , any activity (x̄, ȳ) with x̄ ≥ x and ȳ ≤ y is included in
T .
3. If (x, y) ∈ T and (x̂, ŷ) ∈ T , then (λx+ (1− λ)x̂, λy + (1− λ)ŷ) ∈ T
for all λ ∈ [0, 1].
4. T is the intersections of all T̂ satisfying postulates 1,2 and 3.

Thus, if postulates are satisfied, then T becomes the following PPS

6 R. HOSSEINZADEH et al.

whose technology is the variable returns to scale (VRS).

Tv = {(x,y)|
∑
j∈J

λjxj ≤ x,
∑
j∈J

λjyj ≥ y,
∑
j∈J

λj = 1, λj ≥ 0, j ∈ J}.

Since in DEA, the goal is evaluating the performance of DMUs and com-
paring them to each other, therefore, we have the following definitions.

Definition 2.1. It is said that DMUA = (xA,yA) dominates DMUB =
(xB,yB) if

(−xA,yA) ≥ (−xB,yB) & (xA,yA) ̸= (xB,yB).

By assumption that DMUA = (xA,yA) ∈ Φ and ηA shows the set
of all DMUs of Φ which dominate DMUA, the following definition is
presented.

Definition 2.2. DMUA ∈ Φ is called a non-dominated DMU if ηA = ∅.

Now, let η show the set of all non-dominated observed DMUs in

{DMU1,DMU2, . . . ,DMUn}

Definition 2.3. DMUA is called an efficient DMU if and only if it is
not dominated by any other DMU in Tv. We denote the set of efficient
DMUs with ζ.

It is clear that η ⊆ Φ, ζ ⊆ η and it is possible η ̸⊆ ζ.

Example 2.4. The Tv constructed by decision-making units A to E
shown in the figure will be as follows:

ACCELERATE DEA CALCULATIONS WITH BIG DATA 7

Figure 1: The Tv constructed by decision-making units A to F

Then, we have:

Φ = {DMUA,DMUB,DMUC ,DMUD,DMUE ,DMUF }

ηA = ηB = ηC = ηE = ∅ , ηF = {DMUB}

ηD = {DMUB, DMUC , DMUF }

η = {DMUA, DMUB, DMUC , DMUE}

ζ = {DMUA, DMUB, DMUC}

We know that in the standard input-oriented BCC, the goal is to re-
duce the input level with ratio θ so that (θxl,yl) ∈ Tv. So, envelopment
model for evaluation DMUl is as follows:

Min θl

s.t. (θxl,yl) ∈ Tv

8 R. HOSSEINZADEH et al.

According to the definition of Tv, we have:

Min θl

s.t.
n∑

j=1
λjxj ≤ θlxl,

n∑
j=1

λjyj ≥ yl, (1)

n∑
j=1

λj = 1,

λj ≥ 0, j = 1, 2, . . . , n.

Now, consider Φu ⊆ Φ with |Φu| = p where |.| shows the cardinality of
a set. In general, p can be any natural number less than or equal to
n, i.e., |Φu| = p ≤ n. It is obvious that the PPS corresponding to the
DMUs in Φu is as follows.

T u
v = {(x,y)|

p∑
k=1

λkx
u
k ≤ x,

p∑
k=1

λky
u
k ≥ y,

p∑
k=1

λk = 1, λk ≥ 0, k = 1, . . . , p}.

Note Φu ∩ ζ can be an empty set. Here, without losing generality, we
can assume that

DMUu
k = (xu

k ,y
u
k), k = 1, . . . , p

show the selected DMUs in the sub-sample Φu. The radial VRS model
based on the sub-sample Φu for DMUl, l ∈ J as a DMU under evaluation
is as follows:

Min θul

s.t.
p∑

k=1

λkx
u
k ≤ θlxl,

p∑
k=1

λky
u
k ≥ yl, (2)

p∑
k=1

λk = 1,

λk ≥ 0, k = 1, 2, . . . , p.

ACCELERATE DEA CALCULATIONS WITH BIG DATA 9

Definition 2.5. DMUl has the best performance in Φu if θu∗l ≥ 1 where
θu∗l denotes the optimal value of (2).

The DMU with the best performance is not necessarily efficient in Tv.
We consider the set of DMUs wiht the best performance at Φu with βu.
In model (2), we have a decrease in the number of variables compared
to model (1). Thus, using model (2), we encounter an LP problem with
a much smaller number of decision variables, so the run time to solve
the VRS model (2) is significantly reduced.

Theorem 2.6. T u
v ⊆ Tv.

Proof.

(X̄, Ȳ) ∈ T u
v =⇒ ∃λ̄j (j ∈ Φu) ∋: X̄ ≤

∑
j∈Φu

λ̄jxj ,

Ȳ ≥
∑
j∈Φu

λ̄jyj ,∑
j∈Φu

λ̄j = 1,

λ̄j ≥ 0, j ∈ Φu

Suppose λ̄j = 0 ∀j ∈ Φ \ Φu, then we have:

∃λ̄j (j ∈ Φ) ∋: X̄ ≤
∑
j∈Φ

λ̄jxj ,

Ȳ ≥
∑
j∈Φ

λ̄jyj ,∑
j∈Φ

λ̄j = 1,

λ̄j ≥ 0, j ∈ Φ

so (X̄, Ȳ) ∈ Tv, therefore T u
v ⊆ Tv. □

Theorem 2.7. Inefficient DMUs in T u
v , is inefficient in Tv.

Proof. Assume that (xl, yl) is inefficient in T u
v . So it is θu∗l < 1 in

solving the following problem:

Min θul
(θul xl, yl) ∈ T u

v

10 R. HOSSEINZADEH et al.

Because T u
v ⊆ Tv, we have θ∗l ≤ θu∗l , we will have so θ∗l < 1 and the

theorem is proved. □

3 A Way to Reduce Run Time

Before presenting our method to speed up the evaluation method of
DMUs, first consider the method developed by [20]. In their method, by
removing inefficient units and reducing the volume of the problem, they
have significantly reduced the calculation time compared to the tradi-
tional method, we were also able to reduce the calculation time compared
to their method with a different algorithm. Although the method pro-
posed by [20] reduces the computational volume, interestingly, applying
their method, especially in large problems with large numbers of units
and dimensions has some deficiencies. The basis of this method is that
it removes inefficient units by using a sub-sample. If the number of re-
moved units is not large enough, the computational volume will still be
large and the problem will remain. An instance will clarify the afore-
mentioned shortfall. Imagine a problem with 50000, 10 + 10 decision
units(10+ 10 is the number of inputs/outputs), applying the method of
[20], by removing the inefficient units, the number of remaining units
are 32182 that is to say, 64% of units remains. As another example
with the same number but a different dimension, 50000 units with 9+9
dimensions, at the end of the first stage, 26598 units remain, i.e. 53% of
units remain. The examples shed light on an obvious shortfall, the time
of solving the problems or the run time. In other words, the method
[20] suffers from the high run time, especially when the number of units
and dimensions of the problem is increasing. As Figure 2 shows, for the
problem with 50000 units, as the dimension of the problem increases,
the number of inefficient units is slightly removed. Also, the time for
problem solving is increasing as well.

ACCELERATE DEA CALCULATIONS WITH BIG DATA 11

Figure 2: Amount of units left after removing some inefficient units in
the first stage using the method in [20] (Number of DMUs: 50000)

For the case of 50000 units with dimensions of 9+9 input and output,
it takes 16 hours to solve. According to the calculated time, it is clear
that the calculation time for the problem of 50000 units with dimensions
of 9 + 9 is estimated twice compared with the time for the problem of
50000 units with dimensions of 8 + 8. As a result, if the dimension
increases, in the case of real big data, the computation time can increase
also. In addition to calculation time, more memory is needed to solve
the problem. However, we emphasize that their method is very useful
and effective compared to previous methods.

To solve the mentioned deficiencies of method [20], a novel approach
is presented. In this approach, some units can be selected and the in-
efficient units are removed. Repeating this approach, in the following
iterations, other units are added to the sample. Consequently, some
other inefficient units are removed and the approach is repeated. Doing
the approach contentiously, the eliminated number of inefficient units
are increasing, thus, the volume of the problem is significantly reduced,
especially, in problems with large numbers and dimensions.

Figure 3 is a flowchart of the proposed algorithm for our method.

12 R. HOSSEINZADEH et al.

Figure 3: Flowchart of our proposed algorithm

ACCELERATE DEA CALCULATIONS WITH BIG DATA 13

To select the sub-sample, assume that ⌊ · ⌋ is the rounding function
that rounds a number to the nearest integer. Theorem proposed by [1]
to construct a sub-sample with cardinality p. DMUl is located on the
frontier of Tv based on one of the following equations,:

xil = min{xij |j = 1, 2, . . . , n}, i = 1, 2, . . . ,m,

yrl = max{yrj |j = 1, 2, . . . , n}, r = 1, 2, . . . , s.

In this way, the numbers of DMUs are selected (i.e., m + s DMUs at
maximum) to use the following command to select the rest of the DMUs
to assign an initial value to the remaining DMUs ζ in a short run time.
For each unselected DMUl, we consider the Figure 4 that is a flowchart
for determining sub-sample. In the flowchart of Figure 4, the DMUs
were sorted in descending order according to the assigned scores, and
the remaining DMUs (to construct a sub-sample of size p) were selected
with the highest scores. In this method, DMUs that have higher values
than the third quarter of the output values and lower values than the
first quarter of the input values have a better chance of entering the
sub-sample.

In this method, from a sample of 10, 000 DMUs, only 100 DMUs
are selected p =

√
10000. Of course, when the density is large (for

example 10% or more), we know that a sub-sample with a size of 100
does not include more efficient DMUs. This method is powerful enough
to determine more inefficient DMUs in a short time. In other words,
this method can reduce the size of the original sample to a sub-sample
with a smaller size. Thus, the search for all efficient DMUs can continue
on a sub-sample with high density but with a smaller size.

Therefore, in solving the models and comparing our method with
their method, we have used the sample selection method for both meth-
ods in the same way.

To highlight the strength of the proposed method in comparison with
the method of [20], a computer with the following properties is used:16
processors, 32 GB memory, a 64-bit operating system, Windows Service
2016, and Matlab 2018a. With parallel processing, MATLAB uses a
par-for-loop to perform a series of parallel loop calculations to reduce
run time. As far as we know, to run iterations in parallel, all steps must

14 R. HOSSEINZADEH et al.

Figure 4: Flowchart of selecting sample

ACCELERATE DEA CALCULATIONS WITH BIG DATA 15

be independent of each other. After finding a set of efficient DMUs, par-
for-loop was used to measure the efficiency of inefficient DMUs. Data
are randomly generated in the range [0, 1]. Over 100 executions are
employed by the software in different numbers and dimensions. The
difference between the times we obtained and the times in the article [20]
is that we used more processors and a more advanced system. But what
is important is that the conditions for our proposed method and their
method in this study are the same. For example, selecting the sample,
the computer system used, the number of processors, the number of
samples selected, and

Theorem 3.1. Removing inefficient units from the problem does not
affect identifying the efficiency of units.

Proof. In the evaluation of DMUs, the DMU is imaged to the efficiency
frontier. Hence (θ∗l xl, yl) ∈ Tv, so (θ∗l xl, yl) is a convex combination of
units on the frontier and we know that inefficient units are an interior
point, so in the evaluation of units, λ corresponding to inefficient units
will be zero in the optimal solution, so removing them from the problem
will not affect the final solution. □

Corollary 3.2. If there are all efficient units in a sub-sample, after
evaluation, the efficiency of the units is obtained.

Theorem 3.3. At the end of the algorithm, all efficient units are iden-
tified.

Proof. In each iteration, the inefficient units are removed based on the
sub-sample. From Theorem 2.7, we know that DMUs inefficient in T u

v ,
are inefficient in Tv, and according to Theorem 3.1, removing inefficient
units from the problem has no effect on identifying the efficiency of
units, and according to corollary 3.2, at the end of the algorithm, which
is evaluated for the remaining units, no efficiency unit has been removed
and all efficient units are identified. □

Theorem 3.4. The algorithm is convergent.

Proof. The number of iterations is limited, and in each iteration, a finite
number of linear programming problems are solved. After all iterations

16 R. HOSSEINZADEH et al.

are completed, a finite number of problems are solved, and the algorithm
ends. □

According to the aforementioned theorem, the proposed algorithm is
convergent. However, in the run of the proposed algorithm, the simplex
method is extensively used to solve linear programming problems. With
a low probability, the simplex method may stop at a non-optimal basic
feasible solution due to degeneracy and fail to reach the optimal solu-
tion, a situation referred to as cycling. In [5], two methods, namely the
”Lexicographic cycling prevention rule” and ”Bland’s rule,” are intro-
duced to address this issue. The Lexicographic rule provides a criterion
for selecting the output variable to prevent cycling at a basic feasible so-
lution. Bland’s rule, on the other hand, proposes a criterion for selecting
both input and output variables to ensure that the algorithm converges
to the optimal solution.

It is worth noting that the identification of efficient units for prob-
lems with a large amount of data is important in several ways. The
efficiency and inefficiency of the decision-making units are obtained by
comparing the units together. When we have efficient units, it is not
necessary to solve a large-scale problem to determine the inefficiency
of an inefficient unit, and it is only enough to build the set of produc-
tion possibilities related to the efficient units and evaluate the inefficient
unit, the reference set of It is determined between the efficient units and
a pattern can be specified for the inefficient unit to reach the efficiency
frontier. It should be noted that in calculating the inefficiency of the
units, the dimensions of the problem have been reduced and the compu-
tational volume has been reduced. In our method and [20] method, all
the efficient units are identified, but in both methods, the inefficiency
of the inefficient units is not calculated, our method is faster than their
method. Having efficient units, we can calculate the inefficiency of the
inefficient units with a problem with a smaller volume.

In solving linear programming problems by the simplex method, the
number of constraints in the computational complexity is an important
factor, because the basis of the simplex method is the use of base B
corresponding to the columns of basic variables. B is a square matrix
whose number of rows and columns is equal to the number of constraints,
so the more the number of constraints increases, the larger the matrix B

ACCELERATE DEA CALCULATIONS WITH BIG DATA 17

will be, and since the various factors in the simplex table are determined
according to the matrix B, as the matrix B increases Calculations will
also increase. On the other hand, we know that in the problem with
n units and m inputs and s outputs, the BCC envelopment model has
m + s + 1 constraints and n + 1 variables, and in the multiplier form,
the number of constraints is n + 1 and the number of variables is m +
s + 1. Because n + 1 >> m + s + 1 is and as we said, the number
of constraints is decisive in increasing the calculation, we prefer to use
the envelopment form instead of the multiplier form. It should also be
noted that the maximum number of feasible bases for a problem also
depends on the number of variables. The maximum number of feasible

bases is

(
n+m+ s+ 1

m+ s+ 1

)
, and the larger n is, the larger this number

will be. In our proposed algorithm, the number of sub-sample units is
much less compared to the total units, and therefore we are faced with
smaller problems with much less computational volume. Also, in each
iteration, a large number of inefficient units are removed, and therefore,
fewer problems are solved in subsequent iterations. By reducing the
dimensions of the problem and by removing inefficient units, we finally
reduced the time complexity.

We know that in the traditional DEA method (with n DMUs, m
inputs, and s outputs), n problems are solved with m+s+1 constraints
and n+1 variables. In this case, the maximum operation for evaluating
all DMUs is equal to:

D1 = n

(
n+m+ s+ 1

m+ s+ 1

)
(n+ 1)(m+ s+ 2)

In the [20] method, if the number of inefficient DMUs removed is
l. As mentioned earlier, we assume that the number of members of the
sub-sample is equal to p = ⌊

√
n⌋. In this case, we will have n problems

with m + s + 1 constraints and p + 1 variables, and at the end of the
algorithm, we will have n − l problems with m + s + 1 constraints and
n− l + 1 variables. In such a case, the maximum number of operations
to solve all problems is equal to:

D2 = n

(
p+m+ s+ 1

m+ s+ 1

)
(p+ 1)(m+ s+ 2)+

18 R. HOSSEINZADEH et al.

(n− l)

(
n− l +m+ s+ 1

m+ s+ 1

)
(n− l + 1)(m+ s+ 2)

Note that p is very small compared to n, it is clearly that D1 >> D2

In the proposed method, if the number of iterations equals C and the
number of inefficient DMUs removed in each iteration is li (i = 1, . . . , c).
As we said, we assumed that the number of members of the sub-sample
in the ith iteration is equal to pi = ⌊

√
ni − li⌋, which ni is, the number

of remaining units in each iteration. In this case, we will have
c∑

i=1
(ni−li)

problems withm+s+1 constraints and pi+1 variables, and at the end of
the algorithm we will have nc−lc problems withm+s+1 constraints and
nc− lc+1 variables. In such a case, the maximum number of operations
to solve all problems is equal to:

D3 =
c−1∑
i=1

(ni − li)

(
pi +m+ s+ 1

m+ s+ 1

)
(pi + 1)(m+ s+ 2)+

(nc − lc)

(
nc − lc +m+ s+ 1

m+ s+ 1

)
(nc − lc + 1)(m+ s+ 2)

Note that pi is very small compared to n, it is clear that D1 >> D3.
Note that, n1 = n, l1 = 0 and p1 = p. so,

D2 −D3 = (n− l)

(
n− l +m+ s+ 1

m+ s+ 1

)
(n− l + 1)(m+ s+ 2)−

c−1∑
i=2

(ni − li)

(
pi +m+ s+ 1

m+ s+ 1

)
(pi + 1)(m+ s+ 2)−

(nc − lc)

(
nc − lc +m+ s+ 1

m+ s+ 1

)
(nc − lc + 1)(m+ s+ 2)

Now, if in certain iterations more inefficient units are eliminated, we

have: D2 > D3 Note that in the combination

(
n

m

)
increasing n causes

a huge increase in the combination value. In fact, both contain a phrase

like x

(
y

z

)
, where x is greater in D2 and y in D3.

ACCELERATE DEA CALCULATIONS WITH BIG DATA 19

4 Empirical Analysis of the Proposed Method

We first examined the proposed method for data with a small number
of DMUs. The number of iterations in the following tables presents
the units that move into the sample in several steps as described in
the previous section. As the results depict the differences in the run
time of the proposed method and method [20] in the presence of small
dimensions and different data sets, are insignificant. As stated before,
the difference in run time are significant in the presence of large numbers
and dimensions. Suppose that Tkh indicates the run time of their method
(in seconds) [20] and Ti indicates the run time of the proposed method
with i iteration (in seconds). An example for 5000 units with different
dimensions is run and the results are compared to elicit the strength of
the proposed method.

Table 1: Comparison of the run time of method in [20] and our proposed
method, with 2 and 3 iterations for problems with different dimensions.

Number of units Dimensions Tkh T2 T3

5000 1+1 7.85 7.56 7.95

5000 2+2 8.14 7.57 8.52

5000 3+3 8.58 8.13 9.87

5000 4+4 10.14 9.96 11.52

5000 5+5 27.90 14.46 16.70

As Table 1 present, for 5000 DMUs with 1+1 dimensions, the differ-
ence is almost imperceptible, but for 5000 units with 5 + 5 dimensions,
the run time with two iterations in the first stage is almost halved. With
more iteration, it is naturally possible that the time will gradually be-
come longer than the previous iterations because the same number of
deleted units may have been done enough in the same previous iteration
and the iteration will only increase the time unnecessarily. Therefore
the number of iterations may be different for different problems. We
have considered the number of iterations experimentally, therefore the
run time mentioned is not necessarily the best time for our method,
and it may be possible to achieve a better time by changing the num-
ber of iterations. Thus the times mentioned for the proposed method

20 R. HOSSEINZADEH et al.

are the upper bound for the best possible time. Suppose PT indicates
Percentage reduction in run time with optimal iteration (percent).

We now run the problem for 50000 units with different dimensions:

Table 2: Comparing the run time of the method in [20] and our pro-
posed method, with different numbers of iterations, for different dimen-
sions.

N. of units Dimensions Tkh T2 T3 T4 T5 T6 PT

50000 1+1 90.16 78.47 - - - - 12.66%

50000 2+2 123.81 80.61 - - - - 34.89%

50000 3+3 133.43 86.71 147.6 - - - 35.01%

50000 4+4 213.41 158.92 140.69 152.25 - - 33.95%

50000 5+5 380.86 - - 344.92 250.90 290.30 34.12%

As we can see, for a large number of units with small dimensions,
the difference in run time, considering the randomness of the data, is
about 12 to 35% and as the size of the problem increases, this difference
will naturally increase. Given that we have used parallel processing
with 16 cores to run our method, and at the same time we run the [20],
method with the same 16 cores, the calculation time of the method of
[20], which used 8 cores in parallel processing, has been reduced. For
example, they calculated the run time for a problem with 50000 DMU
with 5 + 5 dimensions of 1039 seconds. In our method, by using 16
parallel processors their time is reduced to approximately 381 seconds,
i.e. 63% reduction in time only due to the increase in the number of
processors in parallel processing. On the other hand, by applying the
proposed method, we have been able to reduce the 34% in the same 381
seconds and reduce it to approximately 251 seconds.

Table 3: Comparison of the run time of the method in [20] and our
proposed method, with different numbers of iterations, (dimensions: 6+
6).

N. of units Dimensions Tkh T6 T7 T8 PT

50000 6+6 1690.79 935.39 933.76 1023.90 44.77%

For 50000 units with dimensions of 6+6, the run time of our method
is reduced by 44% compared to the method of [20].

ACCELERATE DEA CALCULATIONS WITH BIG DATA 21

To show the effect of increasing the iteration, we have run the prob-
lem with 50000 units and dimensions of 7 + 7 in different iterations,
which can be seen in the Table 4:

Table 4: Comparison of the run time of the method in [20] and our
proposed method, with different numbers of iterations, (dimensions: 7+
7).

N. of units Dimensions Tkh T2 T3 T4 T5 T6

4870.88 4749.27 4161.19 3101.22 2718.09 2477.71
50000 7+7 T7 T8 T9 T10 T11 PT

2400.58 2287.98 2176.07 2288.67 2298.78 44.67%

For 50000 units with dimensions of 7 + 7 with 9 iterations, the run
time of our proposed method is reduced by 44% compared to the method
of [20], which shows the need for iteration in the first stage. The chart
below shows the time reduction for 7 + 7 in different iterations.

Figure 5: Comparison diagram of the run time of the method in [20]
and our proposed method, with different iterations, (dimensions: 7+7).

Table 5: Comparison of the run time of method in [20] and our proposed
method, with different numbers of iterations, for larger problems.

N. of units Dimensions Tkh T9 T11 T13 T14 PT

50000 8+8 16014.73 7498.97 6919.01 7436.23 - 56.79%

50000 9+9 39496.67 - - - 16631.12 57.89%

50000 10+10 95891.46 - - - 41066.81 57.17%

22 R. HOSSEINZADEH et al.

In their article, [20] calculated the run time of 50000 units with di-
mensions of 9 + 9 with 8 cores, 59994.77 seconds, i.e. approximately 16
hours and a half. We calculated their method with 16 cores, 39496.67
seconds which is approximately 11 hours. By applying our proposed
method, we reduced the time to 16631.12 seconds, which is approxi-
mately 4 hours and a half. This means that we have a 57% reduction
in run time compared to the method of [20]. This difference in time is
more noticeable in 10 + 10 and the time difference is about 15 hours
and a half. This demonstrates the efficiency of our proposed method in
problems with a large number of units and large dimensions compared
to their method [20]. Note that the number of iterations is considered
experimentally and that they are not necessarily optimal.

The real data used in the article:
E-GRID is a comprehensive source of data on the environmental char-
acteristics of all electric power generated in the United States. These
environmental characteristics include air emissions for nitrogen oxides,
sulfur dioxide, carbon dioxide, methane, and nitrous oxide. This infor-
mation can be used in DEA analysis of a plant’s efficiency and its im-
pact on its carbon footprint. GRID2016 was released in February 2016
and includes data from 1996 through 2023. The data for some years
and some particular DMUs were not available. Overall, we could select
22444 power plants (DMUs) and the following DEA inputs and outputs.
The two inputs are (1) plant annual total heat used to generate the elec-
tricity, measured in Millions of British Thermal Units (MMBtu), and (2)
net generator (nameplate) capacity measured in Megawatt (MW) units.
The outputs include (1) good output: the net electricity generated in
MW hours (MWh), and (2-4) three bad outputs: annual NOx, SO2,
and CO2 emissions, all measured in tons emitted, respectively. Each
bad output is treated by subtracting the maximum value of the corre-
sponding year from the recorded output value so that they can be used
as DEA outputs [22].

Table 6: Comparison of the run time of method of [20] and our proposed
method, for E-GRID data.

N. of units Dimensions Tkh T4 PT

22444 2+4 567.52 36.17 93.63%

ACCELERATE DEA CALCULATIONS WITH BIG DATA 23

In our method, we successfully eliminated 21,718 ineffective units with
4 iterations, while the [20] removed 13,512 ineffective units. As a result
of eliminating a larger number of ineffective units, we faced a smaller
problem compared to their method, leading to A decrease of 93 percent
in run time compared to their approach.

The following figures show a comparison of our method with the
method of [20].

Figure 6: Comparison diagram of the run time of the proposed method
with the method in [20].

5 Conclusion

Reducing runtime in the presence of big data has garnered significant
attention among DEA researchers. In this study, we developed an ef-
fective method to minimize the computational time required to solve
large-scale DEA problems. By injecting sub-samples in multiple stages
during the initial phase of our method, we were able to achieve sub-
stantial reductions in runtime for problems involving large numbers of
DMUs and high-dimensional datasets. The need for such methods be-
comes increasingly critical as the size and complexity of DEA models
grow. Moreover, our approach can be adapted to other DEA models
beyond the one presented here. In fact, in this article, we were able
to present an algorithm designed to reduce the volume of calculations.
The algorithm creates subproblems with reduced dimensions, thereby

24 R. HOSSEINZADEH et al.

Figure 7: Comparison diagram of the run time of the proposed method
with the method in [20].

requiring fewer computations to solve them. By eliminating inefficient
units, the total number of units decreases throughout the process. Ul-
timately, this approach enables the identification of all efficient units
in significantly less time. In the proposed algorithm, efficient units are
identified. To determine the efficiency of units, utilizing only the efficient
units is sufficient. Therefore, instead of dealing with a large number of
units, we use the efficient units to assess efficiency. Thus, when one or
more new decision-making units are added to the problem, it is enough
to calculate their efficiency in the presence of the efficient units. If a new
efficient unit is identified, it is added to the set of efficient units, and
then all units are evaluated based on the updated set of efficient units.
Since we use efficient units for evaluation, the volume of calculations is
significantly reduced compared to traditional methods. In other applica-
tions of Data Envelopment Analysis (DEA), such as determining returns
to scale, ranking units, pattern recognition, identifying congestion, re-
source allocation, sensitivity analysis, and so on, various methods have
been proposed. Most of these methods rely on the efficient frontier. For
instance, in most pattern recognition methods, the goal is to introduce a
pattern for inefficient units, which involves determining how to reach the
efficient frontier. Therefore, efficient units are sufficient for identifying

ACCELERATE DEA CALCULATIONS WITH BIG DATA 25

patterns for inefficient units. Future research could explore determin-
ing the optimal number of iterations for high-dimensional problems and
investigating the potential benefits of combining our method with the
Build-Hull (BH) approach. This could further enhance the efficiency of
solving large-scale DEA problems.

References

[1] A.I. Ali, Streamlined computation for data envelopment analysis,
European Journal of Operational Research, 64(1) (1993), 61-67.

[2] R.D. Banker, A. Charnes and W.W. Cooper, Some models for esti-
mating technical and scale inefficiencies in data envelopment anal-
ysis, Management Science, 30(9) (1984), 1078-1092.

[3] T. Badiezadeh, R.F. Saen and T. Samavati, Assessing sustainabil-
ity of supply chains by double frontier network DEA: A big data
approach, Computers & Operations Research, 98 (2018), 284-290.

[4] R.S. Barr, M.L. Durchholz, Parallel and hierarchical decomposition
approachesfor solving large-scale data envelopment analysis models,
Annals of Operations Research, 73 (1997), 339-372.

[5] M. S., Bazaraa, J. J., Jarvis, H. D., Sherali Linear Programming
and Network Flows, Sep28, John Wiley & Sons, USA (2011).

[6] W.C. Chen, W.J. Cho, A procedure for large-scale DEA computa-
tions, Computers & Operations Research, 36(6) (2009), 1813-1824.

[7] N. Castellano, R.D. Cobbo and L. Leto, Using Big Data to enhance
data envelopment analysis of retail store productivity, International
Journal of Productivity and Performance Management, 73 (2023),
213-242.

[8] A. Charnes, W.W. Cooper and E. Rhodes, Measuring the ineffi-
ciency of decision making units, European Journal of Operational
Research, 2(6) (1978), 429-444.

26 R. HOSSEINZADEH et al.

[9] V. Charles, T. Gherman and J. Zhu, Data Envelopment Analysis
and Big Data: A systematic literature Review with bibliometric
analysis, International Series in Operations Research & Manage-
ment Science , 312 (2021), 1-29.

[10] W.C. Chen, S.Y. Lai, Determining radial efficiency with a large
data set by solving small-size linear programs, Annals of Operations
Research, 250(1) (2017), 147-166.

[11] J. Chu, Y. Rui, D. Khezrimotlagh and J. Zhu, A general com-
putational framework and a hybrid algorithm for large-scale data
envelopment analysis, European Journal of Operational Research,
316(2) (2024), 639-650.

[12] A. Dellnitz, Big data efficiency analysis: Improved algorithms for
data envelopment analysis involving large datasets, Computers &
Operations Research, 137 (2022), 105553.

[13] J.H. Dula, A computational study of DEA with massive data sets,
Computers & Operations Research, 35(4) (2008), 1191-1203.

[14] J.H. Dula, An algorithm for data envelopment analysis, INFORMS
Journal on Computing, 23(2) (2011), 284-296.

[15] J.H. Dula, R.V. Helgason, A new procedure for identifying the
frame of the convex hull of a finite collection of points in multidi-
mensional space, European Journal of Operational Research, 92(2)
(1996), 352-367.

[16] J.H. Dula, R.V. Helgason and N. Venugopal, An algorithm for iden-
tifying the frame of a pointed finite conical hull, INFORMS Journal
on Computing, 10(3) (1998), 323-330.

[17] J.H. Dula, F. J. Lopez, DEA with streaming data, Omega, 41(1)
(2013), 41-47.

[18] J. H. Dula, R. M. A. Thrall, Computational framework for acceler-
ating DEA, Journal of Productivity Analysis, 16(1) (2001), 63-78.

ACCELERATE DEA CALCULATIONS WITH BIG DATA 27

[19] P.J. Korhonen, P. A. Siitari, A dimensional decomposition approach
to identifying efficient units in large-scale DEA models, Computers
& Operations Research, 36(1) (2009), 234-244.

[20] D. Khezrimotlagh, J. Zhu and W. Cook, and M. Toloo, Data en-
velopment analysis and big data, European Journal of Operational
Research, 274(3) (2018), 1047-1054.

[21] Z.A. Rachman, Big data analytics in airlines: Efficiency evaluation
using DEA, International Conference on Information and Commu-
nication Technology (ICoICT), (2019), 1-6.

[22] L.M. Seford,J. Zhu, A response to comments on modeling undesir-
able factors in efficiency evaluation, uropean Journal of Operational
Research, 161(2) (2005), 579-581.

[23] J. Wu, Y. Pan, and Z. Zhou, Assessing environmental perfor-
mance with big data: A DEA model with multiple data re-
sources,Computers & Industrial Engineering, 177 (2023), 109041.

[24] Z. Zhou, M. Gao, and H. Xiao and R. Wang and W. Liu, Big data
and portfolio optimization: A novel approach integrating DEA with
multiple data sources, Omega, 104 (2021), 102479.

[25] J. Zhu, DEA under big data: data enabled analytics and network
data envelopment analysis, Annals of Operation Research, 309(2)
(2022), 761-783.

[26] Q. Zhu, J. Wu and M. Song, Efficiency evaluation based on data
envelopment analysis in the big data context, Computers & Oper-
ations Research, 98 (2017), 291-300.

Roya Hosseinzadeh
PhD student of mathematics
Department of Mathematics
Tabriz Branch, Islamic Azad University
Tabriz, Iran

E-mail: hosseinzadeh13@gmail.com

Nima Azarmir Shotorbani

28 R. HOSSEINZADEH et al.

Assistant Professor of Mathematics
Department of Mathematics
Tabriz Branch, Islamic Azad University
Tabriz, Iran

E-mail: azarmir nim@yahoo.com

Yasser Jafari
Assistant Professor of Mathematics
Department of Mathematics
Shabestar Branch, Islamic Azad University
Shabestar, Iran

E-mail: yassermath2006@gmail.com

Javad Vakili
Associate Professor of Mathematics
Department of Mathematics, Statistics and Computer Science
University of Tabriz
Tabriz, Iran

E-mail: j.vakili@tabrizu.ac.ir

	1 Introduction
	2 Data Envelopment Analysis
	3 A Way to Reduce Run Time
	4 Empirical Analysis of the Proposed Method
	5 Conclusion
	References

