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Abstract. The goal of this paper introduces a generalized concept
which is called the orthogonally Jensen s-functional equation, on triple
Lie algebras while preserving orthogonality and presents its additive
properties with preserving orthogonality. Further, the orthogonally
triple Lie hom-derivation associated with Jensen s-functional equation
on orthogonally triple Lie algebras, are described. Ultimately, based
on fixed point method with the orthogonally conditions, we approach
to delve into stability of Hyers-Ulam sense and hyperstability of this
s-functional equation and the triple Lie hom-derivation with preserving
orthogonality on orthogonally triple Lie algebras.
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1 Introduction and Auxiliary Concepts

It seems that the pioneering use of ternary operations (TOs) with cubic
matrices introduced by Cayley as an outstanding mathematician, in the
19th century. In fact, a TO is an n-ary operation with n = 3, such
that for any given three elements of a set B, mixes them to form a
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single element of B. Generally, the non-trivial TO is formulated by the
following composition rule for s, x,w ∈ B:

(s, x,w)̊ι̊ȷk =
∑
ℓ,m,n

sn̊ιℓxℓ̊ȷmwmkn, ι̊, ȷ̊, k = 1, 2, . . . ,ℵ, ℵ ∈ N.

Following this innovation concept, n-ary algebraic structures have been
developed and have been applied across a broad spectrum of disciplines,
particularly those incorporating TOs [14, 27]. These include but are not
limited to data processing, the realm of quantummechanics, the intricate
domain of mathematical physics, and notably in Nambu mechanics as
evidenced by the references [25, 37, 41].

In 2006, Amyari and Moslehian introduced groundbreaking concepts
related to ternary algebras [2]. A ternary algebra B, equipped with
a TO, (s1, s2, s3) 7→ [s1, s2, s3] mapping from B3 to B, constitutes a
complex space where the operation is linear in the first and third ar-
guments, and conjugate linear in the second argument, both respect
to C [2]. It is associative in that for each s̊ι ∈ B, the equality[

[s1, s2, s3], s4, s5
]
=

[
s1, [s2, s3, s4], s5

]
=

[
s1, s2, [s3, s4, s5]

]
,

holds, according to established results in [7]. Further, it adheres to the
norm conditions,∥∥[s1, s2, s3]∥∥ ≤ ∥s1∥ · ∥s2∥ · ∥s3∥,

∥∥[s, s, s]∥∥ = ∥s∥3,

and such a ternary algebra B forms a B-space is referred to as a ternary
Banach algebra.

On the other hand, Lie algebras are a fundamental key in scope of
mathematics that are named after the Norwegian mathematician Sophus
Lie (1842-1899). In 1893, the work of Scheffers compiled much of the
foundational knowledge of Lie algebras based on Lie’s own lectures in
Leipzig [32]. A Banach algebra can be defined as a Lie algebra, with the
Lie product of the form:

[s1, s2] :=
1
2(s1s2 − s2s1), si ∈ B.

Extending this, for a triple Lie algebra, the product is defined by [29],[
[s1, s2], s3

]
:= 1

2

(
[s1, s2]s3 − s3[s1, s2]

)
, si ∈ B.
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Lie theory’s application extends beyond mathematics to include fields
such as Physics, Engineering, Mathematical Finance, and Economics
due to its problem-solving capabilities [21]. An application of Lie groups
and algebras can be seen in Lie-Poisson dynamics, which are essential to
formulate basic physical equations, that vividly demonstrate Lie-Poisson
dynamics of Euler’s equations for rigid body dynamics [44]. These equa-
tions make use of a Lie-Poisson bracket that is derived from the Lie
algebra of infinitesimal rotations which highlights how the principles of
Lie algebra and Poisson brackets are applied for analyzing the dynamic
behavior of rigid bodies, showcasing the interplay between mathemati-
cal structures and physical systems [8, 24, 35]. In this regard, Lo and
Lui demonstrate the use of Lie algebra techniques in evaluating financial
derivatives, especially those involving multiple assets in [33, 34].

In 1940, Ulam introduced the concept of stability in functional equa-
tions (FEs) which raised the question of whether functions that are ap-
proximately solutions to a FE are also close to being true solutions of
that equation [48]. This inquiry sparked a new area of study focused
on investigating the stability properties of FEs, delving into the nuances
in the input of a FE that impact the proximity of the output to the
true solution. In 1941, Hyers became the first to provide a positive re-
sponse in Theorem 1.1, to Ulam’s query within the context of B-spaces
for additive functions [20].

Theorem 1.1 ([20]). Assume that Y and B be a normed and a Banach
spaces respectively, and k : Y → B be a mapping such that for a given
ε > 0, the inequality∥∥k(s+ s̀)− k(s)− k(s̀)

∥∥ ≤ ε, ∀s, s̀ ∈ Y,

holds. Then there exists a unique additive mapping u : Y → B, with
∥k(s)− u(s)∥ ≤ ε for each s ∈ Y.

Subsequently, in 1978, Rassias expanded Hyers’ work by introducing
the generalized stability of Hyers-Ulam (HU) and a novel stability con-
cept utilizing a control function for additive mappings, in Theorem 1.2.

Theorem 1.2 ([45]). Let Y,B be real normed spaces with B complete,
and k : Y → B be a mapping such that for each s◦ ∈ Y, the mapping
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h(s) = k(s s◦) is continuous on R. If for a given ε ≥ 0, the inequality,∥∥k(s+ s̀)− k(s)− k(s̀)
∥∥ ≤ ε

(
∥s∥ξ + ∥s̀∥ξ

)
, 0 ≤ ξ < 1,

holds for s, s̀ ∈ Y, then there exists a unique linear mapping u : Y → B
such that

∥k(s)− u(s)∥ ≤ ε∥s∥ξ
1−2ξ−1 , ∀s ∈ Y.

Later, in 1994, Gǎvruţa modified control function of Rassias to
φ(s, s̀) and demonstrated its stability in the next Theorem 1.3.

Theorem 1.3 ([17]). Let (G,+) be an abelian group, (B, ∥ · ∥) be a
B-space, and consider a mapping φ : G × G → R≥0 with

φ̂(s, s̀) :=

∞∑
k=0

1
2k
φ
(
2ks, 2ks̀

)
<∞, s, s̀ ∈ G.

If k : G → B be a mapping such that for each s, s̀ ∈ G,∥∥k(s+ s̀)− k(s)− k(s̀)
∥∥ ≤ φ(s, s̀),

then there exists a unique mapping u : G → B such that for s, s̀ ∈ G, we
have u(s+ s̀) = u(s) + u(s̀), and

∥k(s)− u(s)∥ ≤ 1
2 φ̂(s, s).

The investigation into the stability of FEs, fixed point (F.P) theory,
linear operators, Fibonacci numbers, and optimization theory across dif-
ferent spaces, has been pursued by numerous scholars [1, 13, 39]. The
study of stability in the realm of FEs on B-spaces, Obloza [40], in 1993,
initiated the examination of stability for linear FEs. This opened up
avenues for extensive research into the stability of fractional differen-
tial equations (FDEs), with several researchers extending UH stability
to this domain [11, 19, 28, 36]. Aruchamy et al. in [3], studied the exis-
tence and stability results for the fractional nonlinear reaction-diffusion
equation involving the Caputo fractional derivative with respect to the
time variable of order α ∈ (0, 1), of the form:

C
0D

α
ξu(s, ξ) = D

∂2u(s,ξ)
∂s2

+

∫ ξ

0
a(ξ− r)∂

2u(s,r)
∂s2

dr + g
(
ξ, u(s, ξ)

)
,
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for s ∈ Ω := (0, L), ξ ≥ 0, with the positive kernel function a(ξ− r) and{
u(s, 0) = u0(s), s ∈ Ω,
u(s, ξ) = 0, s ∈ ∂Ω, ξ ≥ 0.

Definition 1.4 ([15]). A binary relation ⊥ ⊆ B×B, for the set B ̸= ∅
has property orthogonally set (O-set) whenever there exists s◦ ∈ B such
that, for each s ∈ B either s⊥s◦ or s◦⊥s, and this O-set is denoted
by (B,⊥).

We will investigate some examples of O-sets based on the expressed
concepts.

Example 1.5. Let B = Z. Define s⊥s̀ if and only if s̀
s≡ 1. Then

(B,⊥) is an O-set. Further, 1⊥s for every s.

Example 1.6. Let B = R≥0. Define s⊥s̀ if s s̀ ≤ min
{
s, s̀

}
. To get the

desired result, it is enough to put s = 0.

Example 1.7. In the inner product space B with the inner product
⟨·, ·⟩, we define s⊥s̀ if and only if ⟨s, s̀⟩ = 0. One can easy check that
0⊥s for each s ∈ B and (B,⊥) is an O-set.

The O-set (B,⊥) is said to have property orthogonally generalized
metric space (O-metric space), if (B, d) be a generalized metric space
and denoted by (B,⊥, d). We say a sequence

{
sn
}
n∈N in O-set (B,⊥)

be an orthogonally sequence (O-sequence) if either sn⊥sn+1 or sn+1⊥sn
for n ∈ N. Additionally, an O-sequence

{
sn
}
n∈N ⊆ B is called orthogo-

nally Cauchy (O-Cauchy) when limℓ,n→∞ d
(
sℓ, sn

)
= 0. By concluding

that, we say (B,⊥, d) is O-complete whenever every O-Cauchy sequence
converges in B. In O-metric space (B,⊥, d), a mapping k : B → B is
said to be orthogonally continuous (⊥-continuous) in s ∈ B if, for each
O-sequence

{
sn
}
n∈N ⊆ B with sn → s, we have, k(sn) → k(s). Fur-

ther, a mapping k is called orthogonal contraction (⊥-contraction) via
Lipschitz constant 0 ≤ γ < 1 when, for s, s̀ ∈ B,

d
(
k(s), k(s̀)

)
≤ γ d(s, s̀), s⊥s̀.

We say k is orthogonally preserving (⊥-preserving) if each s⊥s̀ implies
k(s)⊥ k(s̀).
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Example 1.8. Let B = [0, 1) ⊂ R and d be the standard metric on B.
Define the mapping k(s) =

√
s and s⊥s̀ if s s̀ ≤ s. Then, B is a ⊥-

contraction.

Example 1.9. Let B = [0, 10) and d be the standard metric on B.
Define the mapping k(s) = s2 and s⊥s̀ if s ≤ s̀ ≤ 1

2 and ss̀ ≤ s.
Easily, one can see B is a ⊥-contraction. However, B isn’t a contraction
because, for s = 0.4 and s̀ = 0.9, we have,

d
(
k(s), k(s̀)

)
= d

(
81
100 ,

4
25

)
= 0.65 > γ d

(
9
10 ,

4
10

)
.

This notion has been extensively explored in literatures [18, 22, 30].
Chandok et al. proposed some weaker orthogonal mathematical equa-
tion type of contraction mappings in the setting of metric spaces en-
dowed with an orthogonal relation, as well as certain sufficient criteria
for the existence of F.Ps for this class of mapping and used their results
to investigate the solution and stability of Hyers-Ulam- Rassias - Wright
sense, for the following Volterra type integral equation:

u(s) =
∫ s

0
g
(
s, r, u(r)

)
+𝟋(s), s ∈ Ω,

under some Lipschitz conditions [10]. Nazam et al. by introducing
(Ψ,Φ)-orthogonal interpolative contractions, investigated different con-
ditions on the functions Ψ,Φ : (0,∞) → R to prove the existence of F.Ps
of set-valued (Ψ,Φ)-orthogonal interpolative contractions such that, for
s, s̀ ∈ B,

Ψ (k(s, s̀)H(T s, T s̀)) ≤ Φ
((
d(s, T s)

)γ(
d(s̀, T s̀)

)1−γ
)
, (1)

where k is a strictly ⊥-admissible mapping, 0 < γ < 1, s /∈ T (s),
s̀ /∈ T (s̀),

H(B1, B2) = max

{
sup
p∈B1

d(p,B2), sup
a∈B2

d(a,B1)

}
> 0,

B1, B2 in the set of all non-empty bounded and closed subsets of B,
Pcb(B), and to solve a FDE involving Caputo-Fabrizio derivative in O-
complete, of the form:{ CFDα

s u(s) = g
(
s, u(s)

)
, s ∈ Ω,

u(0) = 0, Iαu(1) = u′(0),
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where u ∈ C(Ω) and g : (Ω × R) → R with a few conditions [38]. In
2018, Bahraini et al. in [6], demonstrated the innovative use of the
O-set concept to extend a generalization of Diaz-Margolis’s F.P theo-
rem [12]. In 2019, Park et al. introduced hom-derivations on Banach
algebras [42]. Then, Jahedi and Keshavarz proved ternary additive-
quadratic hom-derivations [23].

In this research, motivated by the mentioned works, we first intro-
duce orthogonally Jensen s-functional (Jsf), s ̸= 0, ±1 is a real number
and orthogonally triple Lie hom-derivations on orthogonally triple Lie
algebras, respectively. Then, we explore the FE of the form,

3 Jsf
(
s1+s2+s3

3

)
− Jsf(s1)− Jsf(s2)− Jsf(s3)

= s
[
Jsf(s1 + s2 + s3) + Jsf(s1)

− Jsf(s1 + s2)− Jsf(s1 + s3)
]
, (2)

for s̊ı ∈ B (̊ı = 1, 2, 3) with s1⊥s2, s1⊥s3, s2⊥s3, as a category of or-
thogonally additive mappings. A C−linear orthogonally mappings (⊥-
mappings) kh, kd : B → B are called the orthogonally triple Lie homo-
morphism and derivation, respectively, whenever

kh

([
[s1, s2], s3

])
=

[[
kh(s1), kh(s2)

]
, kh(s3)

]
,

and

kd

([
[s1, s2], s3

])
=

[
[kd(s1), s2], s3

]
+

[
[s1, kd(s2)], s3

]
+

[
[s1, s2], kd(s3)

]
.

Definition 1.10. Consider an orthogonally triple Lie homomorphism
kh : B → B. The C−linear ⊥-mapping khd : B → B is called an
orthogonally triple Lie hom-derivations, when

khd

(
[[s1, s2], s3]

)
=

[
[khd(s1), kh(s2)], kh(s3)

]
+

[
[kh(s1), khd(s2)], kh(s3)

]
+

[
[kh(s1), kh(s2)], khd(s3)

]
,

for each s̊ı ∈ B, ı̊ = 1, 2, 3.
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Further, we establish the stability of HU sense for the orthogonally
Jensen s-FE and orthogonally triple Lie hom-derivations among orthog-
onally triple Lie algebras through the application of the next key Theo-
rem 1.11.

Theorem 1.11 ([6]). In O-complete metric space (B, d,⊥), consider a
⊥-preserving, ⊥-continuous and ⊥-contraction Jsf : B → B with Lip-
schitz constant 0 < γ < 1. Assume that for fixed s◦ ∈ B we have
either s◦⊥s or s⊥scirc, for all s ∈ B and consider the “O-sequence of
successive approximations with initial element s◦”:

s◦, Jsf(s◦), J
2
sf(s◦), . . . , J

n
sf(s◦), . . . .

Then, either

d
(
Jnsf(s◦), J

n+1
sf (s◦)

)
= ∞, ∀n ≥ 0,

or there is n0 ∈ N such that, d
(
Jnsf(s◦), J

n+1
sf (s◦)

)
<∞ for every n > n0.

If the second alternative holds, then

i) The O-sequence of {Jnsf(s◦)} is convergent to a F.P, s∗ of Jsf .

ii) s∗ is the unique F.P of Jsf in

B∗ =
{
s ∈ B : d

(
Jnsf(s◦), s

)
<∞

}
.

iii) If s∗ ∈ B, then d(s, s∗) ≤ 1
1−γ

d
(
s, Jsf(s)

)
.

2 Main Results

In this section, let s ̸= 0,±1, γ ∈ T1 :=
{
γ ∈ C : |γ| = 1

}
and B be a

orthogonally triple Lie algebra. For simplicity of work, we define

V⊥ :=
{
s1, s2, s3 ∈ B : s1⊥s2, s1⊥s3, s2⊥s3

}
.

In the sequel, we investigate the orthogonally Jensen s-FE which is an
additive mapping and stability of HU for the triple Lie hom-derivations
with preserving orthogonality. In Subsection 2.2, our focus shifts to
examining the hyperstability of FE (2) and the triple Lie hom-derivations
with preserving orthogonality such that, this investigation is conducted
through Gǎvruţa’s control function, which serves as a pivotal tool in our
analysis.
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2.1 Stability of the Triple Lie Hom-Derivations

Before delving into the proof of the main theorem in this section, it is
imperative to establish the additivity of the ⊥-mapping Jsf .

Proposition 2.1. If the proposed FE (2) holds true for each s̊ι ∈ V⊥,
ι̊ = 1, 2, 3, then the ⊥-mapping Jsf : B → B can be characterized as
additive with ⊥-preserving.

Proof. Suppose that Jsf fulfills condition FE (2). Setting s̊ι = 0, ι̊ =
1, 2, 3, in FE (2), we get Jsf(0) = 0. Substituting s2 = s3 = 0 into (2),
we get,

3 Jsf(s1) = Jsf(3s1). (3)

By using (3) and putting s1 = s2 = s3 in FE (2), we have

2 Jsf(s1) = Jsf(2s1).

Again putting s2 = −s1 and s3 = 0, we get Jsf(−s1) = −Jsf(s1). Finally,
replace s3 = 0 in FE (2) and employ (3), we have

Jsf(s1 + s2) = Jsf(s1) + Jsf(s2).

Thus Jsf : B → B is an ⊥-mapping with additive property. □
In the following proposition, we investigate Jsf is an C−linear ⊥-

mapping.

Proposition 2.2. If a ⊥-mapping Jsf : B → B satisfies

3 Jsf

(
γ[s1+s2+s3]

3

)
− γ Jsf(s1)− γ Jsf(s2)− kd

(
Jsf(s3)

)
= s

[
Jsf

(
γ[s1 + s2 + s3]

)
+ γ Jsf(s1)

− γ Jsf(s1 + s2)− γ Jsf(s1 + s3)
]
, (4)

for every s̊ι ∈ V⊥, ι̊ = 1, 2, 3 and γ ∈ T1, then the ⊥-mapping Jsf : B →
B is an orthogonally C−linear.

Proof. By Proposition 2.1 Jsf is an orthogonally additive. Considering
s2 = s3 = 0 in FE (4), we get Jsf(γs1) = γJsf(s1). Following the same
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logic as in the proof of [43, Theorem 2.1], the mapping Jsf is established
to be C−linear ⊥-mapping. □

Theorem 2.3 discusses regarding stability of orthogonally Jensen s-
FE with Gǎvruţa’s control function on orthogonally triple Lie algebras
approach orthogonally F.P theorem. Consider kd, ψ : B3 → R≥0 such
that for some 0 < λ < 1,

kd

(
s1
3 ,

s2
3 ,

s3
3

)
≤ λ

3 kd(s1, s2, s3), (5)

and
ψ
(
s1
3 ,

s2
3 ,

s3
3

)
≤ λ

33
ψ(s1, s2, s3), (6)

for each s̊ι ∈ V⊥, ι̊ = 1, 2, 3. When setting s̊ι = 0, ι̊ = 1, 2, 3, we find
that δ(0, 0, 0) = 0 and ψ(0, 0, 0) = 0. From inequalities (5) and (6), it
follows that,

lim
ȷ̊→∞

3ȷ̊kd

(
s1
3̊ȷ
, s2
3̊ȷ
, s3
3̊ȷ

)
= 0, lim

ȷ̊→∞
33̊ȷψ

(
s1
3̊ȷ
, s2
3̊ȷ
, s3
3̊ȷ

)
= 0. (7)

In the upcoming theorem, we establish the stability of UH for FE (2) by
employing the F.P theorem with ⊥-preserving.

Theorem 2.3. Let function kd : B3 → R≥0 satisfies in inequality (5)
and Jsf : B → B be a mapping such that,∥∥∥3 Jsf (γ[s1+s2+s3]

3

)
− γ Jsf(s1)− γ Jsf(s2)− γ Jsf(s3)

− s
[
Jsf

(
γ[s1 + s2 + s3]

)
+ γ Jsf(s1)

− γ Jsf
[
s1 + s2

]
− γ Jsf

[
s1 + s3

]]∥∥∥
≤ kd(s1, s2, s3), (8)

for every s̊ι ∈ V⊥, ι̊ = 1, 2, 3 and γ ∈ T1. Then under these con-
ditions, there exists a unique C−linear ⊥-mapping T : B → B with
⊥-preserving, for which

∥Jsf(s1)− T (s1)∥ ≤ 1
1−λkd(s1, 0, 0). (9)

Proof. Letting γ = 1 and s2 = s3 = 0 in (8), we get∥∥3 Jsf ( s13 )− Jsf(s1)
∥∥ ≤ kd(s1, 0, 0). (10)

Let Υ be the set of all mappings Jsf : B → B such that, Jsf(0) = 0 and
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Jsf(s1)⊥ 3 Jsf
(
s1
3

)
or 3 Jsf

(
s1
3

)
⊥ Jsf(s1).

Now, for every Jsf , J́sf ∈ Υ, we consider the metric is expressed by,

d
(
Jsf , J́sf

)
= inf

{
λ ∈ (0,∞) :

∥∥Jsf(s1)− J́sf(s1)
∥∥

≤ λkd(s1, 0, 0), ∀s1 ∈ V⊥

}
,

and define the orthogonality relation ⊥ within Υ for each Jsf , J́sf ∈ Υ in
the manner described below,

J́sf⊥Jsf ⇔ J́sf(s1)⊥Jsf(s1) or Jsf(s1)⊥J́sf(s1),

for each s1 ∈ V⊥. Demonstrating that (Υ, d) constitutes an O-metric
space is straightforward. Now, we consider the C−linear ⊥-mapping, Ω̂ : Υ → Υ,

Ω̂
(
Jsf(s1)

)
= 3 Jsf

(
s1
3

)
.

Ω̂ maintains orthogonality. Therefore, for any Jsf , J́sf ∈ Υ with Jsf⊥J́sf
and it is given that d(J́sf , Jsf) = ε, then,∥∥Jsf(s1)− J́sf(s1)

∥∥ ≤ εkd(s1, 0, 0), ∀s1 ∈ V⊥.

So ∥∥Ω̂(Jsf(s1))− Ω̂
(
J́sf(s1)

)∥∥ =
∥∥∥3 Jsf ( s13 )− 3 J́sf

(
s1
3

) ∥∥∥
≤ 3ε kd

(
s1
3 , 0, 0

)
≤ 3ελ3kd(s1, 0, 0) = λεkd(s1, 0, 0),

and
d
(
Ω̂(Jsf), Ω̂(J́sf)

)
≤ λε, ∀ s1 ∈ V⊥.

This means that

d
(
Ω̂(Jsf), Ω̂(J́sf)

)
≤ λd

(
Jsf , J́sf

)
,

and so Ω acts as a strictly ⊥-contractive self-mapping on Υ, charac-
terized by a Lipschitz constant λ. Moreover, Ω̂ exhibits ⊥-continuity.
Specifically, if

{
J
ȷ̊
sf

}
represents an O-sequence within Υ converging to
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some Jsf ∈ Υ, then given any ε > 0, there is a λ > 0, where λ < ε, and
an integer ȷ̊ ∈ N such that,∥∥∥Jȷ̊sf(s1)− Jsf(s1)

∥∥∥ ≤ λkd(s1, 0, 0).

According to Theorem 1.11, a mapping T : B → B exists that meets
the criteria below.

I) T serves as a F.P for Ω̂, meaning,

T (s1) = 3T
(
s1
3

)
, ∀ s1 ∈ V⊥. (11)

The mapping T represents a singular F.P of Ω. This denotes the
existence of a unique ⊥-mapping that fulfills (11), with a certain
λ > 0 meeting the condition,

∥Jsf(s1)− T (s1)∥ ≤ λkd(s1, 0, 0), ∀ s1 ∈ V⊥.

II) d
(
λȷ̊ Jsf , T

)
→ 0 as ȷ̊→ ∞. This implies,

lim
ȷ̊→∞

3ȷ̊ Jsf
(
s1
3̊ȷ

)
= T (s1), ∀ s1 ∈ V⊥.

III) d
(
Jsf , T

)
≤ 1

1−λd
(
Jsf , Ω̂(T )

)
, which implies,∥∥Jsf(s1)− T (s1)

∥∥ ≤ 1
1−λ kd(s1, 0, 0), ∀ s1 ∈ V⊥.

It follows from (7) and (8) that,∥∥∥3 T (
s1+s2+s3

3

)
− T (s1)− T (s2)− T (s3)

− s
[
T (s1 + s2 + s3)− T (s1)

− T (s1 + s2)− T (s1 + s3)
]∥∥∥

= lim
ȷ̊→∞

3ȷ̊
∥∥∥3 Jsf ( s1+s2+s3

3i+1

)
− Jsf

(
s1
3̊ȷ

)
− Jsf

(
s2
3̊ȷ

)
− Jsf

(
s3
3̊ȷ

)
− s

[
Jsf

(
s1+s2+s3

3̊ȷ

)
+ Jsf

(
s1
3̊ȷ

)
− Jsf

(
s1+s2
3̊ȷ

)
− Jsf

(
s1+s3
3̊ȷ

) ]∥∥∥
≤ lim

ȷ̊→∞
3ȷ̊kd

(
s1
3i
, s2
3̊ȷ
, s3
3̊ȷ

)
= 0, ∀s̊ι ∈ V⊥, ι̊ = 1, 2, 3.
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So

3T
(
s1+s2+s3

3

)
− T (s1)− T (s2)− T (s3)

= s
[
T (s1 + s2 + s3) + T (s1)

− T (s1 + s2)− T (s1 + s3)
]
,

for s̊ι ∈ V⊥, ι̊ = 1, 2, 3.

By proposition 2.2, T : B → B is an C−linear ⊥-mapping. □
In the next theorem, we apply Gǎvruţa’s control function to establish

the stability of triple Lie hom-derivations while⊥-preserving through the
orthogonal F.P theorem approach.

Theorem 2.4. Let ψ : B3 → R≥0 be functions such that, there exists
an 0 < λ < 1 satisfying in inequality (6) and J́sf , Jsf : B → B are
mappings satisfying (8) and∥∥∥J́sf([[s1, s2], s3])− [

[J́sf(s1), J́sf(s2)], J́sf(s3)
]∥∥∥ ≤ ψ(s1, s2, s3), (12)

∥∥∥Jsf([[s1, s2], s3])− [
[Jsf(s1), J́sf(s2)], J́sf(s3)

]
−

[
[J́sf(s1), Jsf(s2)], J́sf(s3)

]
−

[
[J́sf(s1), J́sf(s2)], J́sf(s3)

]∥∥∥ ≤ ψ(s1, s2, s3), (13)

for s̊ι ∈ V⊥, ι̊ = 1, 2, 3. Under these conditions, there exist unique
orthogonally triple Lie homomorphism, hom-derivation kh, khd : B →
B, respectively, which∥∥J́sf(s1)− kh(s1)

∥∥ ≤ 1
1−λψ(s1, 0, 0),∥∥Jsf(s1)− khd(s1)

∥∥ ≤ 1
1−λψ(s1, 0, 0). (14)

Proof. Following the same logic as in the proof of Theorem 2.3, for
s1 ∈ V⊥, can define the mappings,

kh : B → B,

kh(s1) = lim
ȷ̊→∞

3ȷ̊ J́sf
(
s1
3̊ȷ

)
,


khd : B → B,

kh(s1) = lim
ȷ̊→∞

3ȷ̊ Jsf
(
s1
3̊ȷ

)
.

(15)
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Eqs. (12) and (15) imply,

∥∥kh

([
[s1, s2], s3

])
−

[
[kh(s1), kh(s2)], kh(s3)

]∥∥
= lim

ȷ̊→∞
33̊ȷ

∥∥∥J́sf ([[ s13̊ȷ , s23̊ȷ ] , s33̊ȷ ])
−

[[
J́sf

(
s1
3̊ȷ

)
, J́sf

(
s2
3̊ȷ

)]
, J́sf

(
s3
3̊ȷ

)] ∥∥∥
≤ lim

ȷ̊→∞
33̊ȷ ψ

(
s1
3̊ȷ
, s2
3̊ȷ
, s3
3̊ȷ

)
= 0.

Hence, the mapping kh is a triple Lie homomorphism with ⊥-preserving.
It follows from (13) and (15), we have

∥∥khd

([
[s1, s2], s3]

)
−

[
[khd(s1), s2], s3

]
+
[
[s1, khd(s2)], s3

]
+

[
[s1, s2], khd(s3)

]∥∥
= lim

ȷ̊→∞
33̊ȷ

∥∥∥Jsf ([[ s13̊ȷ , s23̊ȷ ] , s33̊ȷ ])
−

[[
Jsf

(
s1
3̊ȷ

)
, J́sf

(
s2
3̊ȷ

)]
, J́sf

(
s3
3̊ȷ

)]
−

[[
J́sf

(
s1
3̊ȷ

)
, Jsf

(
s2
3̊ȷ

)]
, J́sf

(
s3
3̊ȷ

)]
−

[[
J́sf

(
s1
3̊ȷ

)
, J́sf

(
s2
3̊ȷ

)]
, Jsf

(
s3
3̊ȷ

)] ∥∥∥
≤ lim

ȷ̊→∞
33̊ȷ ψ

(
s1
3̊ȷ
, s2
3̊ȷ
, s3
3̊ȷ

)
= 0.

Hence, the mapping khd : B → B is an orthogonally triple Lie hom-
derivations. □

Theorem 2.3 generalized the result of Rassias’ theorem, by the fol-
lowing definition

kd(s1, s2, s3) := θ
[
∥s1∥r + ∥s2∥r + ∥s3∥r

]
, ∀ θ, r ∈ R>0, r ̸= 1.

We have the following corollary.

Corollary 2.5. Let r ̸= 1 and θ be nonegative real numbers and Jsf :
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B → B be a mapping satisfying Jsf(0) = 0 and∥∥∥3 Jsf (γ[s1+s2+s3]
3

)
− γ Jsf(s1)− γ Jsf(s2)− kd(Jsf(s3))

− s
[
Jsf(γ[s1 + s2 + s3]) + γ Jsf(s1)

− γ Jsf(s1 + s2)− γ Jsf(s1 + s3)
]∥∥∥

≤ θ
[
∥s1∥r + ∥s2∥r + ∥s3∥r

]
,

for each s̊ι ∈ V⊥, ι̊ = 1, 2, 3, γ ∈ T1. Then, under these condition, there
exists a unique C−linear ⊥-mapping T : B → B with ⊥-preserving,
such that ∥∥Jsf(s1)− T (s1)

∥∥ ≤


2θ

2r−2∥s1∥
r, r > 1,

2θ
2−2r ∥s1∥

r, r < 1,
(16)

for s̊ι ∈ V⊥, ι̊ = 1, 2, 3.

Proof. By putting λ = 2r−1, r > 1 and λ = 21−r, r < 1 in relation (16),
the desired results are obtained. □

In Theorem 2.4, by taking λ = 2r−1 and λ = 21−r, whenever r > 1,
r < 1, respectively and

ψ(s1, s2, s3) := θ
[
∥s1∥r + ∥s2∥r + ∥s3∥r

]
, ∀ s̊ι ∈ V⊥, ι̊ = 1, 2, 3,

where r and θ are nonnegative real numbers, we obtain the following
result.

Corollary 2.6. Consider two elements r ̸= 1 and θ of R>0, let

ψ(s1, s2, s3) = θ
[
∥s1∥r + ∥s2∥r + ∥s3∥r

]
, (17)

and assume J́sf , Jsf : B → B, are functions satisfying (8), (12) and (13).
Then there exist orthogonally triple Lie homomorphism kh and hom-
derivations khd such that,

∥∥J́sf(s1)− kh(s1)
∥∥ ≤ 2θ

2r−2∥s1∥
r,∥∥Jsf(s1)− khd(s1)

∥∥ ≤ 2θ
2r−2∥s1∥

r,
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and 
∥∥J́sf(s1)− kh(s1)

∥∥ ≤ 2θ
2−2r ∥s1∥

r,∥∥Jsf(s1)− khd(s1)
∥∥ ≤ 2θ

2−2r ∥s1∥
r,

for r > 1 and r < 1, respectively.

2.2 On the Hyperstability of Orthogonally Triple Lie Hom-
Derivations

The initial result on hyperstability was originally presented in [9] and
focused on particular ring homomorphisms. The concept of hyperstabil-
ity refers to a functional equation that is considered hyperstable if every
approximate solution of the equation is, in fact, an exact solution. On
the other hand, the Ulam stability problem questions the existence of
an exact solution. For further details on hyperstability, see [26, 31].

In this subsection, by leveraging the orthogonally F.P technique, we
investigate hyperstability of FE (2).

Theorem 2.7. Let there is ψ : B3 → R≥0 such that,

lim
ȷ̊→∞

1
3̊ȷ

kd

(
0, 3ȷ̊s2, 3

ȷ̊s3
)
= 0. (18)

Moreover, suppose that Jsf : B → B is mapping such that,∥∥∥3 Jsf (γ[s1+s2+s3]
3

)
− γ Jsf(s1)− γ Jsf(s2)− kd

(
Jsf(s3)

)
− s

[
Jsf

(
γ[s1 + s2 + s3]

)
+ γ Jsf(s1)

− γ Jsf(s1 + s2)− γ Jsf(s1 + s3)
]∥∥∥

≤ kd(0, s2, s3). (19)

Under these conditions, it is a C−linear ⊥-mapping T : B → B with
⊥-preserving.

Proof. Letting γ = 1 and s2 = s3 = 0 in (19), we get Jsf(3s1) = 3 Jsf(s1)
and by using induction on ȷ̊ ∈ N we get,

Jsf(s1) = 3ȷ̊ Jsf
(
s1
3̊ȷ

)
.
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Hence, we have

3ȷ̊
∥∥∥3 Jsf ( s1+s2+s3

3̊ȷ+1

)
− Jsf

(
s1
3̊ȷ

)
− Jsf

(
s2
3̊ȷ

)
− Jsf

(
s3
3̊ȷ

)
− s

[
Jsf

(
s1+s2+s3

3̊ȷ

)
+ Jsf

(
s1
3̊ȷ

)
− Jsf

(
s1+s2
3̊ȷ

)
− Jsf

(
s1+s3
3̊ȷ

) ]∥∥∥
≤ 3ikd

(
0, s2

3̊ȷ
, s3
3̊ȷ

)
= 0,

for every s̊ι ∈ V⊥, ι̊ = 1, 2, 3, ȷ̊ ∈ N. So, by ȷ̊ → ∞ and using (18), we
get

3 Jsf

(
(s1+s2+s3)

3

)
− Jsf(s1)− Jsf(s2)− kd

(
Jsf(s3)

)
− s

[
Jsf(s1 + s2 + s3) + Jsf(s1)

− Jsf(s1 + s2)− Jsf(s1 + s3)
]
= 0,

for s̊ι ∈ V⊥, ι̊ = 1, 2, 3. Therefore, Jsf is an C−linear ⊥-mapping. □
In the subsequent theorem, our focus shifts to examining the hyper-

stability of orthogonally triple Lie hom-derivation. This investigation is
conducted through Gǎvruţa’s control function, which serves as a pivotal
tool in our analysis. By leveraging the orthogonally F.P technique, we
delve into the intricacies of the equation’s hyperstability properties.

Theorem 2.8. Suppose there exist function ψ : B3 → R≥0 such that,

lim
ȷ̊→∞

1
33̊ȷ
ψ
(
0, 3ȷ̊s2, 3

ȷ̊s3

)
= 0, ∀ s̊ι ∈ V⊥, ι̊ = 1, 2, 3.

Moreover, suppose that J́sf , Jsf : B → B are mappings satisfying (19)
and ∥∥∥J́sf([[s1, s2], s3])− [

[ζ(s1), J́sf(s2)], J́sf(s3)
]∥∥∥ ≤ ψ(0, s2, s3),∥∥∥Jsf([[s1, s2], s3])− [

[Jsf(s1), J́sf(s2)], J́sf(s3)
]

−
[
[J́sf(s1), Jsf(s2)], J́sf(s3)

]
−
[
[J́sf(s1), J́sf(s2)], Jsf(s3)

]∥∥∥ ≤ ψ(0, s2, s3),
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for s̊ι ∈ V⊥, ι̊ = 1, 2, 3. Then J́sf and Jsf are orthogonally triple Lie
homomorphism and orthogonally triple Lie hom-derivation, respectively.

Proof. The methodology employed in the proof bears resemblance to
that of Theorem 2.7, showcasing a parallel structure in the analytical
approach. □

In the ensuing corollary, our focus shifts towards exploring the hyper-
stability of FE (2) through control function of Rassias with ⊥-preserving.

Corollary 2.9. Let θ, r ∈ R>0 with r ̸= 1 and Jsf : B → B is mapping
such that,∥∥∥3 Jsf (γ[s1+s2+s3]

3

)
− γ Jsf(s1)− γ Jsf(s2)− γ kd(Jsf(s3))

− s
[
Jsf

(
γ[s1 + s2 + s3]

)
+ γ Jsf(s1)

− γ Jsf(s1 + s2)− γ Jsf(s1 + s3)
]∥∥∥

≤ θ
[
∥s2∥r + ∥s3∥r

]
.

Under these conditions, it is a C−linear ⊥-mapping T : B → B with
⊥-preserving.

Now, in the following corollary, our focus shifts towards exploring
the hyperstability of orthogonally triple Lie hom-derivation by control
function of Rassias.

Corollary 2.10. Let θ, r ∈ R>0 with r ̸= 1 and J́sf , Jsf : B → B are
mappings such that,∥∥∥J́sf([[s1, s2], s3])− [

[J́sf(s1), J́sf(s2)], J́sf(s3)
]∥∥∥ ≤ θ

[
∥s2∥r + ∥s3∥r

]
,

and ∥∥∥Jsf([[s1, s2], s3])− [
[Jsf(s1), Jsf(s2)], Jsf(s3)

]
−

[
[Jsf(s1), Jsf(s2)], J́sf(s3)

]
−

[[
J́sf(s1), J́sf(s2)

]
, Jsf(s3)

]∥∥∥
≤ θ

[
∥s2∥r + ∥s3∥r

]
.

Then J́sf and Jsf are orthogonally triple Lie homomorphism and orthog-
onally triple Lie hom-derivation, respectively.
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3 Conclusion

Given the significance of orthogonal sets, triple Lie and Banach algebras,
triple Lie derivations, and their practical applications in various fields
such as engineering and mathematical physics, mathematical finance
and economics. We introduced the new concept of orthogonally Jensen
equation and orthogonally triple Lie hom-derivations on orthogonally
triple Lie algebras. After that, we solved some examples of the concept
of O-sets that can be O-set and ⊥−contraction.

Finally, through the utilization of the F.P method with ⊥-preserving,
we have successfully demonstrated that orthogonally triple Lie hom-
derivations and the FE (2) exhibit stability and hyperstability properties
when applied to orthogonally triple Lie algebras. As the orthogonally
Jensen s-functional equation, on triple Lie algebras while ⊥-preserving,
are applicable in different fields of science, so one can extend different
models and analytic techniques by means of the generalized Jensen s-
functional equation for various science processes in the next research
studies [4, 5, 16, 46, 47].
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