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1 Introduction

The famous mathematician Leonard Euler introduced the Gamma func-
tion in 1720, which helped to develop the factorial concept from positive
integers to real and complex numbers. After that, Bohr and Mollerup
proved the uniqueness of theorem for the Gamma function in 1722. Later
Krull investigated the solutions of the difference equation g(x + 1) −
g(x) = f(x) in 1948 [5]. After that, the Gamma−type functions sat-
isfying the functional equations g(x + 1) = g(x)f(x) were studied by
Roger Webster in 1997[7]. Gamma−type functions are solutions of this
equation under some unique conditions, and their unique conditions can
be considered as a generalization of Bohr and Mollerup’s theorem. In
2001, while M.H. Hooshmand was studying ultra power and ultra ex-
ponential functions, he introduced limit summability of functions [2].
The limit summability that he introduced has a very close relation-
ship with the mentioned topics and consists of a wider range of func-
tions. In that topic, all real and complex functions f whose domain in-
cludes natural numbers are considered. He showed that the logarithm of
Gamma−type functions can be considered a limit summand functions in
the topic of limit summability. Furthermore he proved a generalization
of Bohr−Mollerup and Webster’s theorems in the uniqueness theorem
for limit summand functions (see [2, 4]). In 2010, Muller and Schneider
introduced the concept of fractional sums and semi−Euler factorization
[6]. In 2016 and 2017, Hooshmand introduced two other types of summa-
bility named analytic summability and trigonometric summability [3].
From 2018 to the present, he and his students have conducted further
studies on the different types of summability and related topics such as
limit summability of order two, derivative and integral of limit summand
functions, Euler-type constants, etc.

1.1 Limit summability of functions

Here, we give a summary of limit summability from [2]. Let f be a real
or complex function with Z+ ⊆ Df . The summand set of Df is defined
by

Σf := {x : x+ Z+ ⊆ Df} = {x : {x+ 1, x+ 2, ....} ⊆ Df}.
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For function f, the functional sequence fσn is defined as follows

fσn(x) := xf(n) +
n∑

k=1

(
f(k)− f(x+ k)

)
; x ∈ Σf .

by setting
Rn(f, x) := Rn(x) = f(n)− f(x+ n),

we have

fσn(x) = xf(n) +
n∑

k=1

Rk(x).

w We obtain

fσn(x)− fσn−1(x) = Rn(x)− xRn−1(1); x ∈ Σf , n > 1, (1)

and

fσn(x)− fσn(x− 1) = f(x) +Rn(x); x ∈ Σf + 1 = Σf ∩Df . (2)

The limit function of fσn(x) and Rn(f, x) are denoted by fσ(x) and
R(f, x) (or R(x)) and fσ(x) is called the limit summand function of
f(x). Note that if 0 ∈ Df , then fσ(0) = 0, fσ(−1) = −f(0), and
1 ∈ Dfσ if and only if Rn(1) is convergent. The necessary condition for
limit summability of f at x is

lim
n→∞

(Rn(x)− xRn−1(1)) = 0.

This shows that if 1 ∈ Dfσ , then R(x) = R(1)x, for all x ∈ Dfσ . Function
f is a limit summable at x0 ∈ Σf (resp. on S ⊆ Σf ) if the functional
sequence fσn(x) is convergent at x0 ∈ Σf (resp. on S). Hence

Dfσ = {x ∈ Σf ; f is limit summable at x}.

The function f is called uniformly limit summable on S ⊆ Σf if fσn(x)
is uniformly convergent on S. If R(1) = 0, then

fσ(x) = f(x) + fσ(x− 1); x ∈ Dfσ + 1, (3)

so

fσ(m) =

m∑
j=1

f(j); m ∈ Z+.
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Example 1.1. The complex function f defined by f(z) = bz for | b |< 1
is limit summable and fσ(z) =

b
b−1(b

z − 1).
The real function h(x) = log x with Dh = R+ is limit summable and

hσ(x) = log Γ(x+ 1) and the function g(x) = 1
x is not summable.

Fix s ∈ R and consider the function f(x) := xs with the restricted
domain

Df =

{
[0,+∞) s > 0

(0,+∞) s < 0
.

Then, we have

Σf =

{
[−1,+∞) s > 0

(−1,+∞) s < 0

This function, for any negative real number s is limit summable and we
have

fσ(x) =


∑∞

n=1(n
s − (n+ x)s) −1 < s < 0

ψ(x+ 1) + γ s = −1

ζ(−s)− ζ(−s, x+ 1) s < −1

where ψ(x) is the di-gama function, ζ(x) is the Riemann zeta function,
ζ(a, x) is the Hurwitz zeta function, and γ is the Euler−Mascheroni
constant (See [1]).

1.2 Bernoulli polynomials and analytic sumability of func-
tions

We recall some definitions and properties of Bernoulli polynomials and
numbers from [1]:
The Bernoulli polynomials Bk(t) for k = 0, 1, 2, ... are defined by

θetθ

eθ − 1
=

∞∑
n=0

Bk(t)
θk

k!
(| θ |< 2π, t ∈ C). (4)

The numbers Bk = Bk(0) are the first Bernoulli numbers and the second
Bernoulli numbers are denoted by bk = Bk(1). The first few polynomials
are

B0(t) = 1, B1(t) = t−1

2
, B2(t) = t2−t+1

6
, B3(t) = t3−3

2
t2+

1

2
t, (5)
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and related numbers are as follows

B0 = 1, B1 =
−1

2
, B2 =

1

6
, B3 = 0, B4 =

−1

30
, B5 = 0. (6)

All Bernoulli numbers are rational. Explicit formula for Bk(t) is given
by

Bk(t) =
k∑

i=0

(
k

i

)
Bit

k−i (7)

Also, Bernoulli polynomials follow many relations, such as the different
functional equation below

Bk(t+ 1)−Bk(t) = ktk−1. (8)

Some other basic relations are

Sk(t) :=
Bk+1(t+ 1)− bk+1

k + 1
; t ∈ C, k ⩾ 0, (9)

and

Sk(t) = tk + Sk(t− 1); t ∈ C, (10)

hence

Sk(r) = 1k + 2k + . . .+ rk; r ∈ Z+.

The topic of analytic summability studies the convergence and properties
of

∑∞
n=0 cnSn(z), for analytic functions f(z) =

∑∞
n=0 cnz

n defined on an
open domain D.

2 Limit Summability of Functions Relative to
Sequences of Polynomials

One limitations of the limit summability of functions is that some im-
portant functions, such as polynomials were not limit summable. In the
topic of analytic summability of functions with a new approach, those
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problems were solved for a wide range of functions, including polynomi-
als and trigonometric functions. moreover some new types of summable
functions were introduced. Here, by introducing p-limit summability of
functions, where p(x) = pm,n(x) is a sequence of given polynomials. Not
only limitation will be removed for polynomials, but also the topic of
limit summability is generalized, in this way, we create a much wider
space of desired functions.

2.1 p-Limit summability

One of the motivations for introducing p-limit summability of functions
(in addition to normal limit summability) is the fractional sum of func-
tions, which was introduced in [6]. In one of the next Sections of the
article, we will discuss the expressions and connections between the two
topics p-limit summability and the fractional sum of functions.

Let m ≥ 0 be a fixed integer and {a0(n)}∞n=1, · · · , {am(n)}∞n=1 be
sequences of (real or complex) numbers. Consider the sequence of poly-
nomials p(x) = pm(x) = pm,n(x) defined by

pm,n(x) :=
m∑
k=0

ak(n) x
k; x ∈ C.

Now, define

P (x) = Pm,n(x) :=

m∑
k=0

ak(n)Sk(x)

=

m∑
k=0

ak(n)

k + 1
(Bk+1(x+ 1)−Bk+1(1)) (11)

= a0(n)x+ a1(n)
x2 + x

2
+ ...+ am(n)

Bm+1(x+ 1)−Bm+1(1)

m+ 1

There are some interesting relationships between pm,n and Pm,n induced
by the properties of Sk(n), with the two most important identities as
follows.

P (x) = p(x) + P (x− 1); x ∈ C (12)
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P (r) =

r∑
j=1

p(j) = p(1) + ....+ p(r); r ∈ Z+. (13)

Let p = pm,n be a sequence of polynomials of the fixed degree m (as
mentioned above). For every function f : Df → C with Z+ ⊆ Df , we
assign the functional sequence fσn(p) defined by

fσn(p, x) : = Rn(−P, x) +
n∑

k=1

Rk(f, x)

= P (n+ x)− P (n) +

n∑
k=1

(f(k)− f(k + x)); x ∈ Σf .

Now we can introduce the main definition.

Definition 2.1. Let f be a real or complex function with Z+ ⊆ Df and
p = pm,n a sequence of polynomials of the fixed degree m. We call f
limit summable relative to p at x ∈ Σf (or p-limit summable at x) if the
functional sequence fσn(p, x) is convergent. Also, we put

fσ(p, x) := lim
n→∞

fσn(p, x)

and
Dfσ(p) := {x ∈ Σf ; fσn(p, x) is convergent}.

The function fσ(p, x) is called the p-limit sammand function of f.

Note that the domain of fσ(p) is Dfσ(p), {0} ⊆ Dfσ(p) ⊆ Σf and
fσ(p, 0) = 0 for every p.

Theorem 2.2. If deg(p) = 0 (i.e., m= 0), then p(x) = p0(x) = a0(n).
That is independent from x, P (x) = P0(x) = a0(n)x, and

fσn(p0, x) = xa0(n) +

n∑
k=1

(f(k)− f(k + x)); x ∈ Σf .

In particular, by setting a0(n) := f(n), we get fσn(p0, x) = fσn(x) which
is the same functional sequence in the topic of limit summability intro-
duced in [2].
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Example 2.3. Let p(x) = 1
n!x + 1

n , f(x) = bx (as a complex function)
where |b|< 1. Then Σf = C and

fσ(p, x) = lim
n→∞

(
1

n
x+

1

n!
(nx+

x2 + x

2
) + (1− bx)

n∑
k=1

bk
)

= (1− bx)
b

1− b
; x ∈ C.

Thus f is limit summable related to p which is a sequence of polynomials
of degree one on C.

From now on, we consider p as pm,n (a sequence of polynomials with
the degree m) and P = Pm,n as mentioned in (2.1).

Theorem 2.4. For every x ∈ Σf , the folloving statements hold.
(a) A necessary condition for p-limit summability of f at x is

lim
n→∞

(
Rn(p− f, x) + Sn,m(p, x)

)
= 0 (14)

where Sn,m(p, x) is defined by

Sn,m(p, x) :=
m∑
k=0

1

k + 1
Rn−1(ak, 1)Rn(Bk+1, x).

(note that

Rn(Bk+1, x) := Bk+1(n)−Bk+1(n+ x),

Rn−1(ak, 1) := ak(n− 1)− ak(n)).

(b) A necessary and sufficient condition for the p-limit summability of
f at x is the convergence of the functional series

∞∑
n=2

(
Rn(f − p, x) + Sn,m(p, x)

)
and we have

fσ(p, x) = fσ1(p, x) +

∞∑
n=2

Rn(f − p, x) + Sn,m(p, x).
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Also if 0 ∈ Df , then

fσ(p, x) = xf(0) +

∞∑
n=1

Rn(f − p, x) + Sn,m(p, x).

Proof. First, a calculation shows that

fσn(p, x)− fσn−1(p, x)

= Rn(p− f, x) +

m∑
k=0

1

k + 1
Rn−1(ak, 1)Rn(Bk+1, k),

because

fσn(p, x)− fσn−1(p, x)

= −Rn(Pm,n, x) +
n∑

k=1

Rk(f, x) +Rn−1(Pm,n−1, x)−
n−1∑
k=1

Rk(f, x)

= Rn(f, x) + Pm,n(n+ x)− Pm,n(n) + Pm,n−1(n− 1)

− Pm,n−1(n− 1 + x)

= Rn(f, x) +
m∑
k=0

ak(n)
Bk+1(n+ x+ 1)−Bk+1(n+ 1)

k + 1

−
m∑
k=0

ak(n− 1)
Bk+1(n+ x)−Bk+1(n)

k + 1

= Rn(f, x) +

m∑
k=0

ak(n)

k + 1

(
Bk+1(n+ x)−Bk+1(n)

)

−
m∑
k=0

ak(n− 1)

k + 1

(
Bk+1(n+ x)−Bk+1(n)

)

+

m∑
k=0

ak(n)

k + 1

(
(k + 1)((n+ x)k − nk)

)
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= Rn(f, x)−
m∑
k=0

ak(n− 1)− ak(n)

k + 1

(
Bk+1(n+ x)−Bk+1(n)

)

+

m∑
k=0

ak(n)((n+ x)k − nk)

= Rn(f, x) +

m∑
k=0

1

k + 1
Rn−1(ak, 1)Rn(Bk+1, x)

+

m∑
k=0

ak(n)(Sk(n+ x)− Sk(n))

= Rn(f, x) +

m∑
k=0

1

k + 1
Rn−1(ak, 1)Rn(Bk+1, x) + p(n+ x)

− p(n) = Rn(f − p, x) +
m∑
k=0

1

k + 1
Rn−1(ak, 1)Rn(Bk+1, x)

= Rn(f − p, x) + Sn,m(p, x).

Thus we obtain (2.4) if x ∈ Dfσ(p).
On the other hand, we have

N∑
n=2

(fσn(p, x)− fσn−1(p, x)) = fσN (p, x)− fσ1(p, x)

and so

fσN (p, x)− fσ1(p, x) =
N∑

n=2

(fσn(p, x)− fσn−1(p, x))

=
N∑

n=2

(Rn(f − p, x) + Sn,m(p, x)),

for every integer N ⩾ 2. Therefore

fσN (p, x) = fσ1(p, x) +
N∑

n=2

(Rn(f − p, x) + Sn,m(p, x)).
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for every x ∈ Σf . Also

fσN (p, x) = xf(0) +
N∑

n=2

(Rn(f − p, x) + Sn,m(p, x)) ;x ∈ Σf ,

if 0 ∈ Df and N ≥ 1.
Therefore, x ∈ Dfσ(p) if and only if the series (2.5) (similarly (2.6))
is convergent. □

Remark 2.5. By putting m = 0 and a0(n) = f(n) in the above identity
we obtain

fσn(x) = fσ1(x) +
n∑

k=1

Rk(f, x)− xRk−1(f, 1)

which is statement (∗5), page 78, section 2, Note, in [4].

Corollary 2.6. If x ∈ Dfσ(p) and Rn(f − p, x) is convergent, then

Sm(p, x) = lim
n→∞

Sn,m(p, x) = R(p− f, x).

For every function g and x ∈ Σg, we put g∞(x) := lim
n→∞

g(n+ x) (if the

limit exists).

Theorem 2.7. Let f be a function such that Z+ ⊆ Df .
(a) The functional sequence p(n+x)−f(n+x) is convergent on Dfσ(p)∩
(Dfσ(p) + 1) and for x ∈ Dfσ(p) ∩ (Dfσ(p) + 1)we have

fσ(p, x) = f(x) + fσ(p, x− 1) + (p− f)∞(x) (15)

(b) 1 ∈ Dfσ(p) if and only if the sequence (p − f)(n) is convergent, and
we have

R(f − p, x) = (p− f)∞(x) + (f − p)∞(1); x ∈ Dfσ(p), (16)

Thus if p(n)− f(n) → 0 as n→ ∞, then

fσ(p, x) = f(x) + fσ(p, x− 1) +R (f − p, x); x ∈ Dfσ(p) (17)
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Proof. (a) If x ∈ Dfσ(p)∩(Dfσ(p)+1), then x ∈ Σf+1 ( so x, x−1 ∈ Σf )
and we have

fσn(p, x)− fσn(p, x− 1) =
n∑

k=1

Rk(f, x)−Rn(P, x)

+Rn(P, x− 1)−
n∑

k=1

Rk(f, x− 1)

= P (n+ x)− P (n+ x− 1)

+
n∑

k=1

f(x+ k − 1)− f(x+ k)

= P (n+ x)− P (n+ x− 1) + f(x)− f(x+ n)

= p(n+ x) + f(x)− f(x+ n).

Thus

fσn(p, x) = f(x)+fσn(p, x−1)+p(n+x)−f(n+x); x ∈ Σf +1. (18)

Now, according to the assumption, if n→ ∞, then we obtain

fσ(p, x) = lim
n→∞

(f(x) + fσn(p, x− 1) + p(n+ x)− f(n+ x))

= f(x) + fσ(p, x− 1) + (p− f)∞(x).

On the other hand, by setting x = 1 in (18), we obtain

fσn(1)− fσn(0) = f(1) + p(n+ 1)− f(n+ 1).

Hence

fσn(1) = f(1) + (p− f)(n+ 1).

Therefore, 1 ∈ Dfσn (p)
if and only if the sequence (p−f)(n) is convergent,

and

fσ(1) = f(1) + (p− f)∞(1). (19)

□
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Theorem 2.8. Note that if m = 0 in the above theorem, then p(n) =
p(n+ 1) = a0(n) and

p(n+ 1)− f(n+ 1) = a0(n)− f(n+ 1).

Thus, by putting a0(n) = f(n), we obtain

(p− f)∞(1) = lim
n→∞

(
f(n)− f(n+ 1)

)
= lim

n→∞
Rn(f, 1) = R(f, 1)

and arrive at fσ(1) = f(1) + R(f, 1) which is mentioned in [2, p. 464]
(where n→ ∞).

The following theorem is a generalization of [2, Theorem1.2].

Theorem 2.9. The sequence (p−f)(n) is convergent (equivalently, 1 ∈
Dfσ(p)), and the functional sequence Sn,m(p, x) converges on Dfσ(p)∩Df

if and only if Df ∩Dfσ(p) = Dfσ(p) + 1.
Moreover, if this holds, then Sm(p, x) = R(p − f, x), where Sm(p, x) :=
lim
n→∞

Sn,m(p, x) for all x ∈ Dfσ(p) + 1(i.e., x ∈ Df ∩Dfσ(p)).

Proof. If x ∈ Df∩Dfσ(p), then the assumptions implies that Rn(f−p, x)
is convergent and by Theorem (2.4)(b) we obtain p(n+ x)− f(n+ x) is
convergent and so is fσn

(x− 1), by (18). Hence x− 1 ∈ Dfσ(p).
Conversely, if x ∈ Dfσ(p)+1, then x ∈ Df and x−1 ∈ Dfσ(p). Now (17)
and the hypothesis imply that Rn(f − p, x− 1) and p(n+ x)− f(n+ x)
are convergent. Thus (15) guarantees the convergence of fσn(p, x), so
x ∈ Df ∩Dfσ(p).
Now, let Df∩Dfσ(p) = Dfσ(p)+1. Clearly 1 ∈ Dfσ(p) and so the sequence
(p − f)(n) is convergent. If x ∈ Df ∩ Dfσ(p), then x − 1 ∈ Dfσ(p) and
so p(n + x) − f(n + x) and Rn(f − p, x) are convergent. On the other
hand, since x ∈ Dfσ(p), the left hand of (17) tends to zero, as n → ∞.
Regarding the convergence of Rn(f − p, x), we conclude that

Sm(p, x) = lim
n→∞

Sn,m(p, x) = −R(f − p, x) = R(p− f, x).

□

Example 2.10. Let 0 <|b|< 1, f(x) = bx, and p(x) = 1
n!x + 1

n . Then
f is limit summable related to p and we have fσ(p, x) − fσ(p, x − 1) =
f(x) + 3e

2 . Thus the function fσ(p, x) satisfies the functional equation
λ(x)− λ(x− 1) = f(x) + c, where c = 3e

2 .
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The next example is important because the considered function is
not a limit summable function with [2. Definitions 1.1], but is a p−limit
summable.

Example 2.11. The square function f(x) = x2 is limit summable only
at x = 0,−1 (i.e., Dfσ = {0,−1}). But, if we set p2,n(x) = x2 (i.e.,
a0(n) = a1(n) = 0 and a2(n) = 1), then f is limit summable related to
p on C and we obtain fσ(p, x) = 1

3x
3 + 1

2x
2 + 1

6 . Also, it satisfies the
related difference functional equation.

The next theorem and corollary state some important equivalent
conditions that enable us to state p-limit summable functions.

Theorem 2.12. The following statements are equivalent.

(a) fσ(p, x) = f(x) + fσ(p, x− 1) + (p− f)∞(x) for all x ∈ Df .

(b) Df ⊆ Dfσ(p)
and Sn,m(p, x) is convergent on Df

(and Sm(p, x) = R(p− f, x))

(c) Dfσ(p)
= Σf and Df ⊆ Df − 1

Proof. (a) ⇒ (b). The assumption (a) implies that Df ⊆ Dfσ(p) ∩
(Dfσ(p) + 1) and 1 ∈ Dfσ(p). Therefore Theorem (2.9) implies that the
sequence (p− f)n is convergent. Now if x ∈ Df , then x ∈ Dfσ(p). Thus
Theorem 2.3 illustrates the functional sequence Sn,m(p, x) is convergent
on Df and

Sm(p, x) = −R(f − p, x) = R(p− f, x); x ∈ Df .

(b) ⇒ (c). The first part of the assumption requires Df ⊆ Σf . Hence
Df = Σf ∩ Df = Σf + 1. So Σf = Df − 1 and Df ⊆ Df − 1. Since
1 ∈ Dfσ(p), we have

Σf = Df − 1 = (Df ∩Dfσ(p))− 1 = Dfσ(p),

by (2.9).
(c) ⇒ (a). First Df ⊆ Df − 1 requires Σf = Df − 1. Thus

Dfσ (p) = Σf ⊇ Df = Σf + 1 = Dfσ (p) + 1.

Then Theorem (2.7) (a) impllies that (15) holds for each x belongs to
Df = Dfσ (p) + 1 . □
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Corollary 2.13. The following statements are equivalent.

(a) fσ(p, x) = f(x) + fσ(p, x− 1) for all x ∈ Df .

(b) Sm(p, x) = (p− f)∞(1) = 0 for all x ∈ Df and Df ⊆ Dfσ .

(c) Sm(p, x) = (p− f)∞(1) = 0 for all x ∈ Df , Df ⊆ Dfσ − 1,

and Dfσ(p) = Σf .

Proof. This is a direct result of Theorem (2.9) and (2.12). □

Definition 2.14. Let p = pm,n be a sequence of polynomials of the fixed
degree m. The function f is called p−limit summable if it is p−limit
summable on its domain Df and Sm(p, x) = (p − f)∞(1) = 0 on Df .
In this case, the function fσ(p) is referred to as the p-limit summand
function of f.

The p-limit summand function of f (id exists) satisfies the difference
functional equation λ(x) = f(x)+λ(x−1), and so fσ(p, r) =

∑r
k=1 f(k)

for all r ∈ Z+.
One of the appropriate conditions for p-limit summability is that
Sn,m(p, x) is convergent. Below we state and prove a simple criteria that
states sufficient conditions for the convergence of Sn,m(p, x).

Theorem 2.15. If the sequences (ak(n)− ak(n− 1))nk are convergent
for k = 0, 1, ...,m, then Sn,m(p, x) converges on C.

Proof. First, we have

Rn(Bk+1, x) = Bk+1(n+ x)−Bk+1(n)

=

k+1∑
j=0

(
k + 1

j

)
Bk+1−j((n+ x)j − nj).

Therefore

Sn,m(p, x) =
m∑
k=0

(
ak(n− 1)− ak(n)

)Bk+1(n+ x)−Bk+1(n)

k + 1

=

m∑
k=0

k+1∑
j=0

(
k + 1

j

)
Bk+1−j

k + 1

(
ak(n− 1)− ak(n)

)(
(n+ x)j − nj

)
.
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Since the sequences

(a0(n)−a0(n−1)), (a1(n)−a1(n−1))n), ..., (am+1(n)−am+1(n−1))nm

are convergent, we conclude that the sequences (ak(n)−ak(n−1))
(
(n+

x)j − nj
)
are convergent for all 0 ≤ k ≤ m and j ∈ Z+. Therefore the

sequences Sn,m(p, x) are convergent as n→ ∞. □

Corollary 2.16. Fix an integer m ≥ 0 and suppose that the sequences
b0(n), · · · , bm(n) are convergent. Put

ak(n) :=
n∑

j=0

bk(j)

jk
; k = 0, 1, ...,m

Then, the sufficient conditions of Theorem 2.5 hold and so Sn,m(p, x) is
convergent.

2.2 Relations to the fractional sums.

There are some connections between the p-limit summability and frac-
tional sums, introduced by Muller and Schneider in [6]. For instance, if
m = 0 and a0(n) = 0 for all n (i.e., p0,n is the zero constant polynomial),
then we have

fσ(p, x) =

∞∑
k=1

(f(k)− f(k + x))

which is the fractional sum of degree −∞ in [6]. If m = 1, a0(n) = f(n)
for all n then

fσ(p, x) = lim
n→∞

(xf(n) +
n∑

k=1

f(k)− f(k + x))

that is the fractional sum of degree 0 in it. For m = 1, a0(n) = f(n),
and a1(n) = f(n+ 1)− f(n) = −Rn(f, 1) (for all n) we arrive at

lim
n→∞

(
xf(n) +

x(x+ 1)

2
(f(n+ 1)− f(n)) +

n∑
k=1

f(k)− f(k + x)
)
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that is the fractional sum of degree 1 in it. But no general form or
recurrence was observed in that paper to continue this process. However,
we have arrived at the following conjecture for it.

Conjecture. Define R
(0)
n (f, 1) := f(n), and let R

(j)
n (f, 1) be defined by

the recurrence relation

R(j)
n (f, 1) = R(j−1)

n (f, 1)−R
(j−1)
n+1 (f, 1) ; j = 1, 2, 3, · · · .

For every integer m ≥ 0, the fractional sum of degree m (mentioned
above) is of the form

ψn,m(f, x) +
n∑

k=0

(f(k)− f(k + x)) ;x ∈
∑

f
. (20)

where

ψn,m(f, x) = xf(n) +
m∑
j=1

(−1)jR(j)
n (f, 1)

(
x+ 1

j + 1

)
.

Note that
(
x+1
j+1

)
= (x+1)···(x−j+1)

(j+1)! ,
∑0

j=1 aj = 0, and the form is valid for

m = −∞ if we define ψn,−∞(f, x) := 0. Additionally, the above form is
equal to

fσn(x) +
m∑
j=1

(−1)jR(j)
n (f, 1)

(
x+ 1

j + 1

)
,

for all m ≥ 0, which shows its relation to the limit summability intro-
duced by Hooshmand.
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