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Abstract. In this paper, we investigate the solvability of some impul-
sive initial value fractional differential equations of arbitrary order via
providing a generalized weak Wardowski contraction. Our results in-
troduce a model for solving impulsive initial value fractional differential
equations of arbitrary order. An illustrative example is given to show
the usability and usefulness of our main result.
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1 Introduction

In many technical fields of science, including chemistry, mechanics, and
physics, fractional integro-differential operators have many applications
for investigating mathematical modeling of natural phenomena. For sev-
eral published articles in this field, we refer the reader to [14, &, 19, 9,

, 0, 13, 1,3, 22,17, 23]. Among these works, the fractional Riemann-
Liouville and Caputo operators have been the most widely used. A
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special type of differential equations, called impulsive differential equa-
tions, has played an important role in modeling phenomena, especially
in describing the dynamics of populations and their sudden changes, as
well as other phenomena such as crop harvests, diseases, etc. Over the
past century, some authors have used impulsive differential systems to
describe this model. For example, many physical situations are mod-
eled by problems of this kind: problems in optimal control theory and
problems in threshold theory in biology. The past ten years or so have
witnessed major developments in the field of impulse differential equa-
tions. For an introduction to the basic theory of impulsive differential
equations, the reader can refer to the monographs of Burton and Sime-
onov [2], Lakshmikantham et al. [I6] and Benchohra et al. [1]. In
[5], Benchohra and Slimani studied existence and uniqueness of solu-
tions for the following impulsive initial value problem (IVP for short)
for fractional order differential equation:

@@’yy(t) = f(t,y(t)), teJ= [O>T]7 t # t,
Ayli=t, = Ik(y(t;)), (1)
y(0) = yo,

where m € N, k = 1,...,m,0 < v < 1, D7 is the Caputo fractional
derivative, f : J xR — R is a given function, I : R — Rand yp € R,0 =
to <t1 <o <t <tmyr =T, Dyli=r, = y(t]) —y(ty), and y(t) =
limy, o+ y(tx, + h), y(t,) = limy,_,o- y(tx + h) represent the right and
left limits of y(t) at ¢ = ty, respectively. Afterwards, several researchers
have studied on this type of equations considering other conditions and
derivative operators (see for example [11, 12, 7, 21, 26, 24]). To the
author’s knowledge, no study has been done on this type of fractional
differential equations with arbitrary order.

Inspired with this vacuity, in this paper, we investigate solvability of the
following IVP:

“Dy(t) = fty(t), t JZ[OT]t#tka
Ay, = Ty ><t,;>> @)
y(])( )—yj Ik]( () (k)) ITo (l:))

using a generalized weak Wardowski contraction introduced in the se-
quel while f : J x R — R is a given function which does not apprise
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necessarily a Banach type contraction, where k = 1,....m,n — 1 <
v < n, ¥©7 is the Caputo fractional derivative, I, : R — R, and
Y; € R,7=012---n—-—10=t <t1 < - <ty <tmy1 =17,
Dy, = yO(E) — yD (), yD(EF) = limygr y@ (b + h) and
y\) (t,) = limy_,o- y9) (t; + h) represent the right and left limits of
yl) (t) at t = tg, respectively. Our results open a way to model phys-
ical situations that obey impulsive fractional differential equations of
arbitrary order. An example is given to show the usability of our new
results.

2 Preliminaries and Auxiliary Notiones

In 2012, Wardowski introduced a new proper generalization of Banach
contraction as follows. Suppose that F represents the collection of all
functions F' : RT — R satisfying the following conditions:

(F1) F is strictly increasing,

(F2) For each sequence {ay,} in (0,+00), ILm an, = 0 if and only if
lim F(a,) = —o0,

n—o0

(F3) There exists k € (0,1) such that lim o*F(a) = 0.

a—0t
Definition 2.1. [25] Let (X2, p) be a complete metric space. A mapping
T : Q — Q is said to be an F-contraction if there exist T € R* and
F € F such that for all §,€ € QQ,

p(T6,T€) > 0 —> 7+ F(p(T5,T%)) < F(p(5,€)). (3)

Theorem 2.2. [25] Let (2, p) be a complete metric space and let T :
Q — Q be an F-contraction. Then T has a unique fixed point 6* in 2
and for any point § € Q the sequence {T™§} converges to §*.

In order to obtain a new generalization of Banach contraction principle,
in this paper we replace the positive constant 7 with a function 6 and
to change some properties of function F' as follows: Denote by = the set
of all functions < : [0, 0o] — [—00, 00] such that:
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(61) Qis increasing and continuous,
(62) S(s)=0 & s=1.
As examples of elements of =:

In(t), t € (0,00),
(i) S1(t) = ¢ —oo, t=0,
00, t =00,

t+In(t) — 1, t € (0,00),
(ii)) So(t) =< —o0, t=0,
00, t =00,

—%—i—l, t € (0,00),

(iii) S3(t) =4 —o0, t=0,
1, t= o0,

—1+1, te(0,00),
(iv) SQu(t) =<¢ —oo, t=0,
1, t=o0.

Denote by © the collection of all functions ¢ : R — (0, 00) such that
9 is continuous.
As examples of elements of ©:
(i) M(s) =71, 7 >0,
(i) J2(s) =T1e %, 7> 0,
(iii) 93(s) =7 +e*, 7 >0,

(iv) 4(s) =7+ 8%, 7> 0,

(v) 95(s) = s>+ s+ 1.
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Definition 2.3. [20]Let Q be a non-empty set and n: Q x Q@ — [0,00)
be a function. A mapping A : Q — Q is said to be n-admissible if for all
5,6 €0, 1(8,€) > 1 implies (A5, A) > 1.

A mapping A : Q — Q is called triangular np-admissible, if A is #n-
admissible and for all §,&, 0 € , n(4,£) > 1 and n(§, ) > 1 imply that
n(d,0) = 1.

Througout this paper for any 6, ¢ € €, where (€2, p) is a metric space,
take

M, (6,€) = max {,0(5, €). p(6.A0), ple, Ag), LAY ; p(&; Ad) } |

3 Main Results

Now, we introduce a new generalization of Banach’ contraction in this
section.

Definition 3.1. Let (Q,p) be a metric space and A : Q@ — Q be a
self-mapping. We say A is a generalized weak Wardowski n-contraction
whenever there exist functions n : Q@ x Q — [0,00), 9 € © and § € =
such that

F(p(AS, AL)) < F(M)(9,)) — I(T(Mp(6,€))) (4)
for all 6,& € Q with n(5,€) > 1 and AS # AE.

Theorem 3.2. Let (2, p) be a complete metric space and A : Q@ — Q
be a triangular n-admissible generalized weak Wardowski n-contraction
self-mapping. Moreover, let

(i) there exists oy € Q such that n(dy, Ado) > 1,

(ii) for each sequence {6} in Q with n(dn,dp+1) > 1 for all n and
dn, — 0, then n(0y,0) > 1 for all n.

Then, A has a fized point. Moreover, if n(6*,&*) > 1 for any fized points
0%, &*, then the fixed point of A is unique.



B. MOHAMMADI

Proof. Construct the sequence {d,} by 0, = Td,_; for all n € N. If
0n = Op—1 for some n € N, then §,_1 is a fixed point of T. So, we may
assume 6, # 0,1 for all n € N. Then, from (4), for any n € N, we have

g(p<5n+17 571)) = g(p(Tén, T(sn—l)) (5)
< F(Mp(0n, 6n—1)) — I F(Mp(6n, 0n-1))),
where
max {P((Sn—ly 571)7 P(dna 6n+1)} < M((Sn—lv 5n)
= max {p(én_l, 0n)y P(On—1,Tn—1), p(0n, Ty)
P30T 1) +p(6n—1,T62) }
) 2 )
< max {p(&n_1,5n), p(0n, 5n+1)}.
Thus
M (0p—1,0,) = max {p(énla n)s P(Ons 5n+1)}-
If

max {p(5n1, 6n); p(On, 5n+1)} = p(0n; On+1),
then, by (5), we have

F(p(0ns 0n+1)) < F(p(6ns n+1)) — IS (p(6n, 0nt1)) < F(p(dny Ont1))

which gives a contradiction. Thus,

max {P(fsn—l, 5n)7 p<5n7 5n+1)} = p((sn—lv 571)
Therefore, from (5),

8(p(0n, 0n+1)) < F(P(0n-1,0n)) =0(F(p(0n-1,0n)) < F(P(0n-1,0n)). (6)

Since § is increasing, thus we have

p(0n,0n+1) < p(0p—1,0n), for each n > 0.
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So {p(zn-1,7,)} is a decreasing sequence in [0,00) and so there is
r > 0 such that p(d,_1,d,) — 7. Now, we show that r = 0. Suppose
to the contrary r > 0. Passing to the limit through (6),

§(r) < §(r) — I (r) <3(r),

which is a contradiction. So 1i_>m p(6n—1,0,) = 7 = 0. We claim that

{65} is Cauchy. If {6, } is not Cauchy, then there are ¢ > 0 and subse-
quences {0,,,} and {d,,} of {,,}

n; > mi > i, p(Om,;,0n;) > € (7)
and
P(Om;, On,—1) < €.
Using (7), we get
€ < p(Omys 0n;) < p(Omis Oni—1) + P(On;—1,0n;) < €+ p(On;—1,0n,)-

As i — oo, we find

lim p(0p;, 0n,) = €.

i—00
Also, we have

p(émw 5m) - p((smw 5m¢+1) - p(énm 5ni+1)
< p(émﬁ-lv 5ni+1)
< p(émiv 5m¢+1) + p(émiv 5m) + p(énw 5ni+1)'

As i — oo, we find

hm p((smi-‘rl? 5ni+1) =¢&.
i—00

By triangular a-admissibility of 7', we find a(dy,,, d,;) > 1, for all ¢ € N.
From (4), we get

S(P(émiJrl, 6ni+1)) < S(Mp((smm 5711)) - ﬂ(g(Mp(émw 5%))) (8)
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On the other hand

P (577%7 5’%) S Mp (577117 6711)
- max{p (5mz? 5”1) 4 (5mz’ T(sz) s P (5an5m)
14 (5mi’ Téni) +p (67%’ T(Smi)
, . }
< max{p (5mm 67%) P (5mm 5m¢+1) P (5nm 6ni+1) )

2p (577%7 57%) +p (5711'7 5ni+1) +p (5mi7 5mi+1)}
5 .

Taking the limit as ¢ — oo in the above inequality, we have

lim M), (6m;, 0n;) = €.

Taking limit in both sides of (8),
3(e) < §(e) —I(3(e)) < B(e),

a contradiction.
Thus, {0, } is a Cauchy sequence in the complete metric space (I, p).
Hence there is x € X such that

lim 6, = 0"
n—-m:uoo

Finally, we claim that T6* = ¢*. To show this, we have two cases:
(1) There is N € N such that T9,, # T¢* for each n > N,

(2) There is a subsequence {0y, } of {d,} such that T6,, = T0* for
each k£ > 0.

In the case (1), if p (6%, T9%) # 0, we have

§(d(0n41,T6%)) = F(d(Td,,T5*)) (9)
< S(Mﬂ(éna 6*)) - ﬁ(g(Mp((sn’ 5*)))
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On the other hand,

p (0%, T6*) < M, (6,,0%)
= max{p (0n,0%), p (6n, Tdp),p (6%, T5)
p (On, T0*) + p (0%, T6)
, ! )
< max{p (6n7 5*) P (5m 5n+1) ) P (5*7 T(S*) )
p(B0d) +p (57, T8) + (5 6usr)
2

Taking limit as ¢ — oo in the above inequality, we have

lim M, (5,,8%) = p (6%, T6") .
71— 00

Passing to the limit through (9), we obtain
3(p(8", T6%) < F(p(6*, T8")) — D(F(p(6", T6")))
<3(p(d7,T47)),
a contradiction. Thus p (6*,760*) = 0 and so 6* = T'¢*. In the case (2),
p(6*,T6") = nh_)rrgo d(Opyt1,T0%) = nh_}ngo p(T6,,T5*) =0.

We deduce that T0* = 6*. To show the uniqueness of fixed point,
suppose that §*, £* are two distinct fixed points of T'. Using (4), we have

§(p(67,€%)) = $(p(T6",TE7))
< B(p(6",67) — IS (p(67,£7)))
< 3(p(6%,€)),

a contradiction. Thus §* = £*. (]
If we take §(t) = —1, 9(t) = % and n(6,&) =1 for all §,£ € Q in (4)

_—
and Theorem 3.2, since p(6,&) < M,(5,€) and the function f(t) = 2%

3+t
is increasing, we have the following result:

Corollary 3.3. Let (2,p) be a complete metric space and A : @ — Q
be a self-mapping satisfying

p(A(S, Af) < M

= 3+ p(0,¢)
for all 5,& € €. Then, A has a unique fixed point.
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Example 3.4. Let Q = {1 > n € N} U{0}. Consider the usual metric
p(0,€) =16 —&| on Q. Then (£, p) is a complete metric space. Define
A:Q—Q by
% §=41
— n+1’ n?
A(9) { 0, §=0.

Then, it is easy to check that the conditions of Corollary 3.3 hold. Thus
A has a unique fixed point 0. Note that this mapping does not satisfy
the Banach contraction since

A(%),A(0 T
sup PAGAE) o (”1)’ (0) —sup EL = 1.
5,6€Q P(‘S, f) neN P(g,o) neN o

Remark 3.5. Taking §(t) = In(t), ¥(t) = 7 and n(5,£) = 1 for all
0,6 € Qin (4) and Theorem 3.2, this theorem reduces to the Banach
contraction principle. So, this theorem is a generalization of Banach con-
traction principle. However, Example 3.4 shows that this generalization
is real.

Now, let us recall some introductive definitions of fractional differ-
ential equations (see [1&], [15]):

Given a closed interval [a, b, for a continuous function f : [a,b] — R,
the Riemann-Liouville integral of fractional order v is defined by

0 = oy [ (€=

I(r)
The Caputo-derivative of fractional order « is defined by
1 t
CY - - n—vy—1 g(n)
D f(t) = /t—T T (rYdT (n—1 <y <n),
o+ f () F(n_,y)a( ) (r)dr ( )

where as the Riemann-Liouville fractional derivative of order ~y is defined
by

1 ( d
I'(n—~) dt
By AC"[a,b] we denote the set of all functions with an absolutely con-
tinuous (n — 1)st derivative and with nst derivative integrable on |[a, b].
The composition rules for the Caputo-derivative of fractional order and

the Riemann-Liouville integral of fractional order are recalled in the
following lemma:

m£©Z+f(t) = )"/ (t—7)" 77 f(r)dr (n—1<vy<n).
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Theorem 3.6. [15, (] Assume that v > 0, n = [v], and f € AC"[a,b].
Then

(J ) .
I’w@ﬁf Zf a —a).
7=0

Consider a closed interval [a, b] and the partition a =ty < t; < ... <
tm < tmt1 =b, where m € N. Let y >0andn—-1<~v<n,néeN.
From now on, assume that 2 = PC"([a, b],R) is the set of nonnegative
real valued functions y which y € AC™((¢;,t;+1],R) fori =1,2,...,m and
y € AC™(Jto,t1),R) and y) () = limy, o+ y9)(t; + h) and yI(t;) =
limy,_,o- ¥ (t; + h) exists and finite at each t; for i = 1,2, ...m. Define
a norm on ) with

lyll = sup [y(t)].
tela,b]

Define p(y1,y2) = |ly1 — y2|| for all yi,y2 € Q. Then (Q,p) is a
complete metric space.

Lemma 3.7. Let v > 0, n = [vy] and m € N. Given T > 0, for a
function h € L'([0,T],R), a function y € PC™([0,T],R) is a solution of
the equation

DYy (t) = h(t); t € [0,T] — {t1,....tm} = J';
Ay iy, = Ly (t7)),5 =0,1,2,..,n — 1,0 = 1,2,..,m; (10)
y(0) =y, =0,1,2,...,n—1

if and only if
(X5 HY

+Z]0]lr 5t =t [ (8 — 57 h(s)ds
y(t) = +305 Ik(y(])( Q) =)

+r0y o (8= s)”ilh(s)ds, te (tptp], P=1,2,....,m

Y000 $ + 1 fo (t—s)" L h(s)ds, tel0,t]

(11)

11
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Proof. If t € [0,¢1], then by Theorem 3.6,

n ()
y(t) = Z, 5 y(]>(°)tﬂ + o 7) N0 1h( )ds )
pl éy N fO h(s)ds.

Now let ¢t € (t1,t2]. Then applying I;Yl on equation (10), and using
Theorem 3.6 on t € (tl, t2] we have

1t _
Z Vit — ) +m)/“(ts)7 Un(s)ds.

Since
yI () =y D) + 2y =, =y () + (1)),
substituting this in the above equation, we get
y) =i -ty
+ Zn 1 I;( y(t ) (t _ tl)j (13)
7 ft1 (t — 5)7~Lh(s)ds.

Computing yY)(¢7) from (12), we have

n—1 (k

y 1 h i
y () =Y = F(7_])/0 (t1 — s) 77 h(s)ds. (14)

k=j
Substituting (14) in (13), we get
n— n— ( )
y(t) =520 Xhsj G ]()?J),t’f J(t—t)
+205- (}]1'( —t) ﬁ Dty — 8) I h(s)ds (15)
_I_ZTL 1[(2/]! ))(t '7+1—\ J‘t ,Y_lh( )d

By changing the order of the sums in the first expression, we have

1 y® () k- j
D szz;),j.tl Tt —ty)

(k) (0 :
=SS0 Sz ottt —t1)] (16)
n—1 y® (0 .
= k= é i kl( ) Zf 0 (h— ])rjvtl (t - tl)j

_ 1 y““)( )4k 1 y9(0)
- ZO ! t Z;L 0 4! .
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From (15) and (16), we get
n @ (o
y(t) =375 yjﬂ( g
+24= 331' o 6t =) 1(tl—S)V I=1h(s)ds. (17)
s)Y"Lh(s)ds

SR =t St
Then applying Z;) on equation

+En 1 I;(

for all t € (t1,t2]. Now let ¢t € (to, t3].
(10) and using Theorem 3.6 on t € (t2,t3], we have

B (J)(t) B L t el
(1) = *J? (1=t + 1 /t2<t 57 h(s)ds.

§=0
Using yU)(t3) = yV) () + DyWims, = y9(t5) + I;(y(t3)) and substi-
tuting this in the above equation, we get
yt) = P -t
+Zn 1 I( y(t ) (t — t)7
ftz 5)7"Lh(s)ds.

(18)

Computing ¥/ (t;) from (17) we have

1 y(k>(0)tk J
t —t)*) i1ty

y(j)(tQ_) ZZ j k —nrt2

— )Y "F1h(s)ds.

+ 05 e rem (te
+3 0, Izy(t Dty —ty) =)
ty — 5)77I= h(s)ds.
(19)

1
+F(’Y—j) ftl

Substituting (19) in (18), we get

n (k) ,
Wt = 5% iy gty (¢~ ta)
+Z Z ] (k— ])l I(t t2) (tQ _tl)(k 2
(20)

k—j)
'fttz (ty — 5)7 77 th(s)ds
ftz 5)7"h(s)ds.

N k)f tlfs7 k=1h(s)ds
n LIl ) )iy — )

Z 1Zk ] j'(k ])l
n 1
+Z] OJ'Fvl ])(t
+Zn 1I(yj )(t

J_|_F
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Changing the order of sums in the first term of (20), we have

Setyecl B0 f);.t’; J<t—t2>‘
= R0 S st~ 12’
=yl 1 y(k)(O) Z; o k]')w /2.3 j(t ta)?
_ Z:é y(k]j!(o)t _ Z? & y“;!( )4i

(21)

By changing the order of sums in the second term of (20), we have

7k,)f tl—svklh()ds
Z 0 (k— j)IJI(t t2) (t2 - tl)(k_j)

X ('yl 3l (tl—s)7 "=1h(s)ds

Zk omw k) fo (t1 — 5)7 " h(s)ds
P ].< £k (¢ — t2))

=D ke 0 kltr il k) ( — )77 F 1h(s)ds

= 3000 ey Jo' (t = $)7 I h(s)ds

Jj= OJ'F

(22)

A similar computation in third term of (20) gives us

S M-t
—Z?:olf( () —t2).

Substituting (21), (22) and (23) in (20), we get

n— > n i
y(t) = 500 S5 + 0 SR [ (= )7 (s)ds

+ 0 1wl ))(t—tl)

+Z? (}JI'F’Y ]) t2 j;: “/ j— lh( )ds

oy Ll Dy )J + Wftz (t — s)"1h(s)ds (24)
-y ““l H+ Y0 zz VL))~ 1)
+30 0 & F(’y =) i ft (ti = )77 h(s)ds

j=0 j!
+F('Y j;:2 PY lh( )dS
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for all t € (t2,t3]. Continuing this process, we get (11), as required.
The converce of the proof can be obtained easily from a inverese direct
computation. ]

In what follows we assume the function

57 [5@) —9(5(@)]
is nondecreasing on [0, 00).

Theorem 3.8. Let f:[0,7] x R" — R be a continuous mapping. Sup-
pose that there exist ¥ € © and § € = such that

Fw ) — Flw o) < 22§ [§u—o) =0 (Su—o))],  (@9)

for allw € [0,T] and u,v € R, where

1
M = T — ;) (At;)" 7
p= ]'F(V—J+1);( P (ak)
n—1 m 1
+ T—t) + Atma1)?,
jO;( ) F(’7+1)( +1)

with
At =t;—t;_1, i=1,2,....,m+ 1.

Moreover, let

and

o) = Lio(0)] < & [§(lu —ol) =9 (§(hu — o)) .

foralli=1,2,....m, j =0,1,2,...,n—1 and u,v € R. Then, the
problem (2) has a unique solution in

Q = PC™([0,T), R).
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Proof. Define a mapping 8 : PC™([0,T],R) — PC"™(]0,T],R) by

n—1 p
Zy] J 4 Z Z (t—t;) / (ti — s)V 971 f(s,y(s)) ds
z:l ti-1
XYY L (yﬁf)(t;))(t—ti)ﬂ‘ ity [ (=97 o) s
N(y)(t) = te (tytp], p=12,...,m, ’
yj]—t—sv_lss s
Z i | = ) ds
t e [O,tl].

(26)

The existence of a unique solution for (2) is equivalent to the exis-
tence of a unique fixed point for the mapping X. So, it is sufficient to
show that N has a unique fixed point.

Let y1,y2 € PC™([0,T],R). For any ¢ € [0,T7], if t € (tp, tpt1], then
from (25) we have

p

n—1
Z'F —j—l—lz i

=1

+ 2250 X (T =t + NGERY (Atp+1)7]

RO - Ra)0] < 5

xF! [&(|y1(t) —ya(t)]) — 19(5(|?/1(t) - yz@)D)]
n—1 m
Z jIiT(y—=73+1) Z "

z:l

IN

1
M

Z Zz 1( Z) ' + r(71+1) (Atm-i-lw]

xF! [S(h/l(t) —ya2(t)]) — 19(5(|?/1(t) - yz@)D)] :
(27)
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For t € [0,t1], we have

1 1

Ry =R O = 75077

—19(3(@1@) - y2(t>\)>] .

(Aty)7 ! [S(hﬂ(t) —y2(t)])

(28)
From (27) and (28), we get [

) (0) RO < HI1% ke S~ 10 (A7
PRI T (T~ 1)
oy (A5 [ (3 (1) — w2 ()
~I(([9 (1) — (1))
§ 1151 — 2l) — Dl — 321)]

for all ¢ € [0, 7). Taking sup on ¢ € [0,T], we get

IN(y1) = R(y2) | < T F(llyr — wa2ll) = 9F(lyr — w2ll)]

IN

and so

SUR1) = R(y2) D) < Flyr — val) = 2GS (lyr — y21)-
Thus

Fo(Ry1, Ny2)) < F(p(y1,92)) — IS (p(y1,42)))

(Mp(y1,92)) — I (F(Mp(y1,y2)))-

Taking n(x,y) = 1 for all z,y € PC™([0,T],R), the conditions of The-
orem (3.2) are satisfied. Thus, the mapping R has a unique fixed point
and so the problem (2) has a unique solution.

<3
<3

Example 3.9. Consider the fractional differential equation

%%y@):ewm [+121+ f;fr;?')‘ t €10,5]\ {2},
y<0>=1,y'<0>=2y<0) 3, (29)

Ay o=y = N9 (27)) = To(y(27)) = s 5 = 1,2.
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Note that,
1 3|ul
167[+21+ f3+\u|

Obviously, f is continuous. Here,

flt,u) =e" +

) )
’y—i,n:(51:3,T:5,t0:0,t1:2,t2:5,m:1.
We have
Atlztl—t():Q,AtQ:tQ—tl:S. Also
n—1 1 m
M = Z — 1) (At;)™
|
Ty =g+ 1)
n—1 m 1
+ Z _tz (Atm+1)
e (y+1)
2
D DR
jZOJ!F(§—J)
2
1 s 167 /2 8
3)/ 35 = \f 21 4+ —
+ ) ()+r(1) P2 VT
J=0 2
For any w € [0,T] and u,v € R, we have
1 3|ul 3|v]
|f(w,u) — f(w,v)| = | -
167\/7_’_21_’_ \F3+|u\ 3+ |y
Lol =) g
= <

“ M BTG = M3t
_ %3*1[3(@ — o)) = 9§ (Ju— ),

where
_% + 17 te (0700)7
S(t) =< —oo, t=0,
1, t=00
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and 9(t) = . Also

3|ul 3|v|
Lio(u) — Lip(v)| = -
’ 9([ul — Jo] B
BB+ ) T 3+ ju—o

§S (ju = vf) = IS (Ju — v])].

Thus, the conditions of Theorem 3.8 are satisfied. So, by this theorem
the problem (29) has a unique solution.

4 Conclusion

In this paper, we investigate the solvability of some impulsive initial
value fractional differential equations of arbitrary order (which does not
leads to Banach contraction necessarily) via generalized weak Wardowski
contractions. Our results introduce a model for solving impulsive initial
value fractional differential equations of arbitrary order. We propose to
the reader in the future to establish a fixed point theorem for multi-
valued mappings satisfying a generalized weak Wardowski contraction.
Then, we propose to introduce a model to the solution of impulsive
initial value problems for fractional differential inclusions of arbitrary
order where the right hand side functions apprise a generalized weak
Wardowski multi-valued contraction. It is also is proposed to the reader
to investigate the solvability of impulsive differential equations for other
forms of equations in literature using the model of solution which we
obtained here for arbitrary order impulsive differential equations.
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