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Abstract. Let A be a Banach algebra and X be a Banach A-bimodule.
In this paper, we characterize certain linear maps 7' : A — X by action
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1 Introduction and Preliminaries

Let A be a Banach algebra and X be an A-bimodule. A linear map T :
A — X is called a left multiplier (right multiplier) if for all aq,as € A,

T(araz) = T(a1)az,  (T(ara2) = a1T(az)),
and T is called a left Jordan multiplier (i“ight Jordan multiplier) if

T(a?) = T(a)a, (T(aQ) = aT(a)).
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The linear map 7' : A — X is called a left (right) derivation if for
each a,b € A,

T(ab) = aT(b) + bT(a), (T(ab) =T(a)b+ T(b)a),

and T is called a Jordan right derivation if T'(a 0 b) = 2T'(a)b + 2T'(b)a,
where a o b = ab + ba is a Jordan product of a,b € A.

Also T is called a generalized right derivation if there exists an ele-
ment £ in X', such that

T(ab) = T(a)b+ T(b)a — Eab,

for each a,b € A, and it is called a generalized Jordan right derivation
if there exists an element £ in X, such that for each a,b € A,

T(aob) =2T(a)b+ 2T (b)a — &(a o b).

Let X be a Banach space, and B(X) be the operator algebra of all
bounded linear operators on X, we denote by F(X), the algebra of all
finite rank operators in B(X). Any subalgebra of B(X) which cantains
F(X) is called standard operator algebra.

Linear mappings on standard operator algebras is studied in Section
2. We show that under mild conditions, the linear mapping becomes a
multiplier or Jordan multiplier.

In Section 3 we consider the subsequent condition on a linear map
T from Banach algebra A into its bimodule X:

a,be A, ab=ba=0 = aT(b)=0.

We investigate whether this condition characterizes multipliers on
von Neumann algebras, C*-algebras, standard operator algebra, or al-
gebras generated by idempotents.

For characterization of linear maps on algebras behaving like left
or right multipliers through zero products and different results; see for
example [1, 2, 3,5, 7, & 11] and the references therein.

2 Multipliers on Standard Operator Algebras

Let M,,(C) denote the algebra of all n x n matrices.
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Theorem 2.1. Let Tbe a linear map from M, (C) into algebra A such
that T(E) = T(E)E holds for all idempotent E in M, (C). Then T is a
Jordan multiplier.

Proof. Let B be a Hermitian matrix in M, (C). Then

B = f: NE;,
=1

where \; € C and E; are idempotents such that for ¢ # j, E;E; =
E;E; = 0. Since for 7 # j, F; + E; is an idempotent, we get

T(E; + Ej) =T(E; + Ej)(E; + Ej).

This implies that T'(E;)E; + T'(Ej)E; = 0. Thus, for each Hermitian
matrix B we arrive at

T(B?) = T(B)B. (1)
Replacing B by B+ C where B and C' are both Hermitian, we infer that

T(BC + CB) = T(B)C + T(C)B. 2)

Let H be an arbitrary matrix in M, (C). Then H can be written in the
form H = B + iC, where B and C' are Hermitian. Hence from (1) and
(2), we have T(H?) = T(H)H. Thus, T is a Jordan multiplier. — [J

In the proof of next theorem we will show that M, (C) is isomorphic
to a subalgebra of F(X) (the algebra of all finite rank operators in
B(X)). Thus, the product of elements of M,(C) and B(X) is well
defined.

Theorem 2.2. Let X be a Banach space, B(X) and F(X) be as above.
Let T : F(X) — B(X) be a linear map such that T(E) = T(E)E for
any idempotent E € F(X). Then T is a multiplier.

Proof. Let A = M,(C) & M, (C) ® B(X). Define a multiplication in A
by
(t1,di,a1) - (t2, d2, a2) = (tit2, dids, a1ds).

Then A becomes an algebra. Suppose that C' is a subalgebra of A
generated by all elements of the form (H,H,T(H)), for H € M,(C).
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Now we define a mapping « : M,,(C) — C by o(H) = (H,H,T(H)).
By the hypothesis on T we see that « maps idempotents in M, (C)
into idempothents in C. Thus, by [{, Theorem 2.1], a is a Jordan
homomorphism, and hence

a(HI+1H) =a(H)a(I) + a(l)a(H),

where [ is the identity element of M,,. By using standard arguments,
since a(I) is an idempotent we get «(H) = o(H)a(l) + a(l)a(H).
Since the elements of C' are in the form (H, H,T(H)) for all H € M,,
we conclude that «(7) is a unit element of C. Due to [, Theorem 2.1],
we see that a = § + v, where g : M,(C) — C is a homomorphism
and v : M,(C) — C is an anti-homomorphism. Take n = 3(I) and
¢ = v(I). Then n and ¢ are idempotents and ¢ + n = «(I) is a unit
element of C'. Therefore ¢n = n¢ = 0, which implies that

V(H) =a(H)p = pa(H) H € My,(C). (3)

Since ¢ € C'¢, we have ¢ = (P, P,n) for some P € M,(C), n € B(X).
The relation ¢? = ¢ yields that

P2 =P Pn+nP=n (4)

By relation (3), ¢ commutes with «(H) for any H € M,. Hence P
commutes with all elements in M,,. This result and (4) tell us that
P = tI for some element ¢t € C. Since v is an antihomomorphism, (3)
implies that a(WK)¢ = a(K)a(W)¢ for K,W € M,,. Therefore from
P = tI we conclude that t(KW — WK) = 0. Thus ¢t = 0, therefore
P =0, and so (4) gives us that n = 0 too. It follows that ¢ = 0, and
so, v = 0. Hence a = 8 is a homomorphism. Due to the definition
of 0 this implies that T is a multiplier. For R, S € F(X), there exists
an idempotent P € F(X) such that PRP = R and PSP = S. Let
{y1,92,...,yn} be a basis of the range of P. Define linear functionals
91,92, -, gn o0 X by gi(y;) = dij, gi(e) = 0 for all e in KerP. Let L C
F(X) be the algebra of all operators of the form [ = szzl Xij¥i @ gj,
Aij € C and note that L is isomorphic to M, via the isomorphism
[ — (Aij). Thus, for the resteriction of T" to L, T becomes a multiplier.
Let 29 € X and gg € X* be chosen such that gg(z¢) = 1. Define operator
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V:X — X by Ve =T(z® go)rog. For arbitrary A € F(X), we have
T(Ax ® go) = T(A)x @ go. Applying operator V' in this equation to x,
we get T(A)r = VAz, hence T(A) =VA. O

Corollary 2.3. Let A be a standard operator algebra related to B(X),
andT : A — B(X) be a linear map satisfying T(E) = T(E)E for every
idempotent E € A. If T is continuous with respect to the weak operator
topology, then for some S € B(X) we have T(A) = SA, for all A € A.

Proof. We know that F(X) is dense in the weak operator topology
in every standard operator algebra, since T' is continuous, so the result
follows from Theorem 2.1. O

3 Characterizing of Derivations and Multipliers

A Banach algebra A has the property (B) if for every continuous bilinear
map ¢ : A x A — X, where X is an arbitrary Banach space, the
condition

a,be A, ab=0 = ¢(a,b) =0,
implies that ¢(ab,c) = ¢(a,be), for all a,b,c € A.[1]

Proposition 3.1. Let A be a unital Banach algebra with property (B),
X be a unital Banach left A-module, and T : A — X be a continuous
linear operator satisfying

a,be A, ab=ba=0 = aT(b)=0. (5)
Then T is a generalized left derivation.

Proof. Let a;,b1 € A be such that a1by = 0. Define the bilinear
mapping ¢ : A x A — X via ¥(a,b) = bjaT'(bay). For every a,b € A
with ab = 0, byaba; = bai1bia = 0, so we have ¥ (a,b) = 0. Since A has
property (B), for each a,b,c € A, ¥(ab,c) = 9(a,be), i.e.,

biabT'(car) = braT (beay). (6)

For fixed elements a,b,c € A, we consider the bilinear mapping 7 :
A x A — X such that n(ai,b1) = brabT'(car) — biaT (bcay), for each
ay,b; € A. Now let ay,b; € A with a1b; = 0, then by (6),

77(&1, bl) =0.
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Since A has property (B), it follows that n(a1b1,c1) = n(a1,bic1) for all
ai,bi,c1 € A. Thus

c1abT (caiby) — craT'(becaiby) = bicrabT (cay) — bieraT (beay).
Take a = ¢ = a1 = ¢1 = e4 (the unit element of A), then we obtain
T(bby) = bT'(b1) + b1 T(b) — b1bT(e),

for all b,b1 € A. Thus, T is a generalized left derivation. O

It would be interesting to know whether (5) characterizes generalized
left derivations or not.

Recall that a C*-algebra A is called a W*-algebra (or von-Neumann
algebra) if it is a dual space as a Banach space [6], [10].

Let Z(A) be the set of idempotents of a given Banach algebra A. We
say that A is generated by idempotents if A = J(A), where J(A) is the
subalgebra of A generated by Z(A).

Theorem 3.2. Let A be a W*-algebra, X be a unital Banach left A-
module, T : A — X be a continuous linear operator satisfying condition
(5). Then T is a right multiplier.

Proof. We know that W*-algebras have property (B). For each idem-
potent p in A, p(eqa —p) = (e4 — p)p = 0, hence pT(eq — p) = 0, so
pT(eq) = pT(p). Let Ay denote the set of self-adjoint elements of A
and x € Ag,. Then

n
xr = 1i7{bn Z AkPk,
k=1

where {A;} are real numbers and {py} is an orthogonal family of pro-
jections in A. Since p;jp; = pjp; = 0, for i # j, condition (5) implies

that p;T'(p;) = 0. By Proposition 3.1, T' is a generalized left derivation.
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Thus for all z € Agg,
T(x?) = lim T(Z Aip?)
k=1

=lim Y ART(pi) = lim Y AR(2piT (pr) — PR (ea))
k=1 k=1

—lim > (2T (ea) — AT (ea)) = lim > MpiT(e.)
k=1 k=1
= 22T (ey).
Thus T(2?) = 22T (e4) for all z € Agq. It follows from the linearity of

T that
T(zy +yx) = (zy +yx)T(eq), z,y € Asa.

Now each arbitrary element a € A can be written as a = x + iy for
z,y € Agq. Thus
T(a®) = T(z* - y* + i(xy + yx))
= 2°T(ea) — y*T(e) +i(zy + yx)T(ea)
= (2 — v +i(zy + yx))T(ea) = a’T ().

Repelacing a by a + e4, we have T(a + e4)? = (a + e4)?T(e4). Thus
T(a) = aT(eq) for all a € A, and T is a right multiplier. O

~

Theorem 3.3. Suppose that A = J(A) is a unital Banach algebra and
X is a unital Banach right A-module. Let T : A — X be a continuous
linear operator satisfying condition (5). Then T'= D + ®, where D is a
Jordan right derivation and ® is a left multiplier.

Proof. Define bilinear mapping ¢ : A x A — X by ¢(a,b) = T(ao
b) — T'(a)b for each a,b € A. Then ab = ba = 0, implies ¢(a,b) = 0. By

[3, Lemma 2.2], we have
¢(a,b) + ¢(b,a) = ¢(ab, e4) + ¢(ea, ba).
Thus,

T(aob)—T(a)b+T(boa)—T(b)a = T'(aboe)—T (ab)es+T (e g40ba)—T (e 4)ba.
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So we conclude that
T(ab) =T(a)b+ T(b)a —T(ea)ba (7)

Settind a = b in (7), we arrive at T(a?) = 2T(a)a — T(e4)a>.
Define ® : A — X by ®(a) = T'(e4)a. It is obvious that ® is a left
multiplier. Now define D : A — X via

D(a) =T(a) — ®(a), ac€A
So D(a?) = T(a?) — ®(a?), thus

D(a®) = 2T (a)a — 2T (e4)a’. (8)

2D(a)a = 2(T(a) — ®(a))a = 2T (a)a — 2®(a)a = 2T (a)a — 2T (e 4)a’. (9)

From (8), (9), we get D(a?) = 2D(a)a. Thus, D is a Jordan right
derivation. This completes the proof. O

Consider the following Lemma from the complex analysis, see ([9]).
In order to prove our results we need it.

Lemma 3.4. Suppose that
(1) a function f is analytic throughout a domain D;

(2) f(z) =0 at each point z of a domain or line segment contained in
D.

Thus f(z) =0 in D; that is f(2) is identically equal to zero throughout
D.

For a Banach algebra A we say that w € A is a separating point of
A-bimodule X if the condition wx = 0 for all x € X implies that = 0.

Theorem 3.5. Suppose that A is a unital Banach algebra and X is a
Banach left A-module. Let s be in Z(A) (the center of A), such that s
s a separating point of X. Let T : A — X be a bounded linear map.
Then the following assertions are equivalent.
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(1) T(ab) = aT'(b), for all a,b € A with ab=ba = s,
(2) T is a right multiplier.
Proof. First suppose that (1) holds. Then we have
T(s) =T(sea) = sT(ea). (10)

Let a € A be nonzero. For scalars A with |\ < e —Aa is invertible

|| I
in A. Indeed, (eq4 — Aa)™! = >"2° A\"a". Then

T(s) =T[(eq — Xa)"ts(eq — Aa)] = (eA —a)7Ls T(eA — Aa)
= i Na"s(T(eq Z A"a"T (s Z AT (a
= Z A'a"T (s Z Na" 15T (a)

n=1
_ +Z/\” "T(s) = 3 Aa T (s).
n=1
Thus, for all A with |A| < , we get
[lall H
Z NY(a"T(s) — sa™ T (a)) = 0. (11)
n=1

Let p € A* and f : C — C be such that
= (3 (0" T(s) ~ 50" T(a)).
n=1

for all t € C. Due to relation (11) f(A) = 0. Now since f(\) = 0 for
each A with |A\| < Tal ||

throughout C and p arbitrary, Consequently a"T(s) — sa® 'T(a) = 0
for all n € N. For n = 1 we get aT'(s) — sT'(a) = 0, and by using
(10), we obtain asT'(e4) = sT'(a). Hence s(aT'(es) — T'(a)) = 0, since
s is a separating point of X we get T'(a) = aT'(e4). Thus T is a right
multiplier. The converce is clear. [l

, by Lemma 3.4, f()) is identically equal to zero
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Proposition 3.6. Let A be a von Neumann algebra, X be a Banach
left A-module and 6 : A — X be a bounded linear operator satisfying
5(p?) = pd(p) for every projection p € A. Then § is a right multiplier.

Proof. Let p,q € A be ortogonal projections. By assumption,
5((p+9)*) = (p+ a)(8(p) + 6(q)),

thus we conclude that pi(q) + ¢é(p) = 0. Let a = >, A\jp; be a
combination of matually orthogonal projections p1, pa, ..., pn € A. Then

pid(p;) + pid(pi) =0, (12)

for all 4,5 € {1,2,...,n} with i # j. So

8(a®) = 60> Nipj) =Y A3o(pj). (13)
j=1 j=1

On the other hand, by (12), we have

ad(a) = Z Ajp; Z Aid(pi) = Aip1 Z Aib(pi)+.-+Anpn Z Aid(pi) = Z N2pid(pi).
Jj=1 i=1 i=1 i=1 i=1

It follows from above equation and (13) that 6(a?) = ad(a). Let Asq
denote the set of self-adjoint elements of 4. Simillar to the proof of
Theorem 3.2 we deduce that §(a?) = ad(a), for all @ € A. Thus § is a
Jordan right multiplier. Due to [ 1, Theorem 2.3], d is a right multiplier.
Il

Proposition 3.7. Let A be a Banach algebra and X be a Banach left
A-module and w € Z(A) be a separating point of X. If § : A — X
is a left Jordan multiplier, then 6(ba) = d(b)a for each a,b € A with
ab=ba = w.

Proof. Suppose that § : A — X is a left Jordan multiplier. For
each b € A, we have wb = bw. Since § is a left Jordan multiplier, thus
§(b%) = §(b)b. Replacing b by w + b, we get &(bw +wb) = §(w)b+ §(b)w.
Therefore

26(bw) = d(w)b + d(b)w. (14)
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On the other hand, for every Jordan multiplier §, §(bab) = §(b)ab for
each a,b € A, thus relation(14) implies that 2§(b)ab = d(w)b + §(b)w
multiply this equation by a at the right side, we arrive at 26(b)aw =
d(ab)w 4 d(b)aw. Hence d(b)aw = d(ab)w. Since w is a separating point
of X, we obtain d(ba) = §(b)a for each a,b € A with ab = ba = w.
]

In the following theorem we give a complete description of linear

mappings 6, 7 satisfying 6(a)b + 7(b)a = 0 for all a,b € A with ab = e4.

Theorem 3.8. Let A be a unital Banach algebra and X be a unital
Banach right A-bimodule. Let 6,7 be continuous linear mappings from
A into X satisfying

a,be A, ab=e4q = 9d(a)b+7(b)a=0.

Then § and T are generalized Jordan right derivations.

Proof. Let a = b = ey, then d(e4) + 7(e4) = 0. Let t be an invertible
element of A. Then tt~! = ey, so §(t)t~ L + 7(t~ 1)t = 0, thus 6(¢t) =
—7(t71)t2. Let a € A, b = ney + a, then b and e4 — b are invertible in
A, for some n € N, with n > ||a|| + 2, so we have

5(b) = —7(b"H? = —7(b (e — b) + eq)b?
—7(eq)b?® —7(b"eq — b))b2

—7r(eq)b? =6 €A)<6A—b)2—7(€_,4—b)

—7(e4)b? — d(eq) +20(eq)b — d(eq)b® — T(eq) + 7(b).

11

'9))(07 (e — b)) (b7 (e.a — D))V

(ea)
—7(ea)b® = 7(((ea —b)~'0)~)b?
—7(ea)b” = 7(((ea—b)7"0) ") ((ea — b)) ((ea — b)~
—7(ea)b® +5((ea —b) D) (b~ (ea — ))((b™ " (ea — b))b?
—T(@A)b2 +0((eq — ) b)(eq —2b+ b2)
—7(eq)b? +6((eq —b) ™t —eq)(eq — 20+ b?)
—7(ea)b® + 0((ea — b)) (ea — 20+ b%) — b(ea)(ea — 20+ %)
—7(ea) (ea—b)""(ea—0)

(ea)

(ea)

)

(
(
(
(
b* — S(ea)(ea —b)? —(ea —b)(ea—b)""
(
(
)

)
—7(b) —25(ea)b+ (6(eq) +
6(b) — d(ea)b = 7(b)

Therefore §(b 7(e4))b? = 0. Thus

— 7(e4)b.
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Since 0(ea) + 7(e4) = 0, we have
5(b) — 25(eq)b=7(b), b€ A (15)
On the other hand,
S+ Hb=0. (16)

Multiple relation (15) by b~! from the right hand side, and applying
(16), we arrive at

7O 4+ 7(b1b = 27(e4).
For every b € A, let |A\| > ||b]| and A € C. Then Ae4 — b is invertible in

bk
Aand (e =)~ = 32 1550 50

27(ea) = T(Aeg —b)(Mea — b) L+ T((Aea —b)F(Aeyq — D))

00 k )
= Xrtea) ~r )2 ) + > e 0)0ea =0
T(eA)(Z )\k:-i-l) 7( )(Z ) T (Z N ) Z /\k+1T( )
k=0 k=0 k=0 k=0
Thus
>k 0 k - (pk oo
2r(en) = (e (3 o)~ ) S e+ 3 T S
k=0 k=0 k=0 k=0
Indeed,
o k X k-1 o0 - %)
o:T(eA)(HZQ—z)—T(b) Z)A,€+T(1)+Z(;’A’f—zik (B*")b
k=1 k=1 k=1 k=1
= 3 S rlebt = O 4 r0F) — (),
k=1

for any |A| > ||b]|. Similar to the proof of Theorem 3.5 we coclude that
7(ed)bF —7(D)bF L 47 (bF) =7 (b ~1)b = 0, for any k = 2,3, .... Let k = 2,
we have that

7(e4)b* — 7(b)b + 7(b?) — T(b)b = 0.
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Thus,

7(b%) = 27(b)b — T(e4)b%. (17)

Hence 7 is a generalized Jordan right derivation.

Replacing b by b? in (15), we get

5(b?) = 7(b%) — 27(eq)b?. (18)
Hence by (15), (17) and (18) we have §(b?) = 25(b)b — 6(e4)b?, it means
that § is a generalized Jordan right derivation. U
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