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1 Introduction and Preliminaries

Let A be a Banach algebra and X be an A-bimodule. A linear map T :
A −→ X is called a left multiplier

(
right multiplier

)
if for all a1, a2 ∈ A,

T (a1a2) = T (a1)a2,
(
T (a1a2) = a1T (a2)

)
,

and T is called a left Jordan multiplier
(
right Jordan multiplier

)
if

T (a2) = T (a)a,
(
T (a2) = aT (a)

)
.
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2 A. MINAPOOR

The linear map T : A −→ X is called a left (right) derivation if for
each a, b ∈ A,

T (ab) = aT (b) + bT (a),
(
T (ab) = T (a)b+ T (b)a

)
,

and T is called a Jordan right derivation if T (a ◦ b) = 2T (a)b+ 2T (b)a,
where a ◦ b = ab+ ba is a Jordan product of a, b ∈ A.

Also T is called a generalized right derivation if there exists an ele-
ment ξ in X , such that

T (ab) = T (a)b+ T (b)a− ξab,

for each a, b ∈ A, and it is called a generalized Jordan right derivation
if there exists an element ξ in X , such that for each a, b ∈ A,

T (a ◦ b) = 2T (a)b+ 2T (b)a− ξ(a ◦ b).

Let X be a Banach space, and B(X) be the operator algebra of all
bounded linear operators on X, we denote by F (X), the algebra of all
finite rank operators in B(X). Any subalgebra of B(X) which cantains
F (X) is called standard operator algebra.

Linear mappings on standard operator algebras is studied in Section
2. We show that under mild conditions, the linear mapping becomes a
multiplier or Jordan multiplier.

In Section 3 we consider the subsequent condition on a linear map
T from Banach algebra A into its bimodule X :

a, b ∈ A, ab = ba = 0 =⇒ aT (b) = 0.

We investigate whether this condition characterizes multipliers on
von Neumann algebras, C∗-algebras, standard operator algebra, or al-
gebras generated by idempotents.

For characterization of linear maps on algebras behaving like left
or right multipliers through zero products and different results; see for
example [1, 2, 3, 5, 7, 8, 11] and the references therein.

2 Multipliers on Standard Operator Algebras

Let Mn(C) denote the algebra of all n× n matrices.
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Theorem 2.1. Let T be a linear map from Mn(C) into algebra A such
that T (E) = T (E)E holds for all idempotent E in Mn(C). Then T is a
Jordan multiplier.

Proof. Let B be a Hermitian matrix in Mn(C). Then

B =

n∑
i=1

λiEi,

where λi ∈ C and Ei are idempotents such that for i ̸= j, EiEj =
EjEi = 0. Since for i ̸= j, Ei + Ej is an idempotent, we get

T (Ei + Ej) = T (Ei + Ej)(Ei + Ej).

This implies that T (Ei)Ej + T (Ej)Ei = 0. Thus, for each Hermitian
matrix B we arrive at

T (B2) = T (B)B. (1)

Replacing B by B+C where B and C are both Hermitian, we infer that

T (BC + CB) = T (B)C + T (C)B. (2)

Let H be an arbitrary matrix in Mn(C). Then H can be written in the
form H = B + iC, where B and C are Hermitian. Hence from (1) and
(2), we have T (H2) = T (H)H. Thus, T is a Jordan multiplier. □

In the proof of next theorem we will show that Mn(C) is isomorphic
to a subalgebra of F (X) (the algebra of all finite rank operators in
B(X)). Thus, the product of elements of Mn(C) and B(X) is well
defined.

Theorem 2.2. Let X be a Banach space, B(X) and F (X) be as above.
Let T : F (X) −→ B(X) be a linear map such that T (E) = T (E)E for
any idempotent E ∈ F (X). Then T is a multiplier.

Proof. Let A =Mn(C)⊕Mn(C)⊕B(X). Define a multiplication in A
by

(t1, d1, a1) · (t2, d2, a2) = (t1t2, d1d2, a1d2).

Then A becomes an algebra. Suppose that C is a subalgebra of A
generated by all elements of the form (H,H, T (H)), for H ∈ Mn(C).
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Now we define a mapping α : Mn(C) −→ C by α(H) = (H,H, T (H)).
By the hypothesis on T we see that α maps idempotents in Mn(C)
into idempothents in C. Thus, by [4, Theorem 2.1], α is a Jordan
homomorphism, and hence

α(HI + IH) = α(H)α(I) + α(I)α(H),

where I is the identity element of Mn. By using standard arguments,
since α(I) is an idempotent we get α(H) = α(H)α(I) + α(I)α(H).
Since the elements of C are in the form (H,H, T (H)) for all H ∈ Mn,
we conclude that α(I) is a unit element of C. Due to [4, Theorem 2.1],
we see that α = β + γ, where β : Mn(C) −→ C is a homomorphism
and γ : Mn(C) −→ C is an anti-homomorphism. Take η = β(I) and
ϕ = γ(I). Then η and ϕ are idempotents and ϕ + η = α(I) is a unit
element of C. Therefore ϕη = ηϕ = 0, which implies that

γ(H) = α(H)ϕ = ϕα(H) H ∈Mn(C). (3)

Since ϕ ∈ Cϕ, we have ϕ = (P, P, n) for some P ∈ Mn(C), n ∈ B(X).
The relation ϕ2 = ϕ yields that

P 2 = P, Pn+ nP = n (4)

By relation (3), ϕ commutes with α(H) for any H ∈ Mn. Hence P
commutes with all elements in Mn. This result and (4) tell us that
P = tI for some element t ∈ C. Since γ is an antihomomorphism, (3)
implies that α(WK)ϕ = α(K)α(W )ϕ for K,W ∈ Mn. Therefore from
P = tI we conclude that t(KW − WK) = 0. Thus t = 0, therefore
P = 0, and so (4) gives us that n = 0 too. It follows that ϕ = 0, and
so, γ = 0. Hence α = β is a homomorphism. Due to the definition
of θ this implies that T is a multiplier. For R,S ∈ F (X), there exists
an idempotent P ∈ F (X) such that PRP = R and PSP = S. Let
{y1, y2, ..., yn} be a basis of the range of P . Define linear functionals
g1, g2, ..., gn on X by gi(yj) = δij , gi(e) = 0 for all e in KerP . Let L ⊆
F (X) be the algebra of all operators of the form l =

∑n
i,j=1 λijyi ⊗ gj ,

λij ∈ C and note that L is isomorphic to Mn via the isomorphism
l 7−→ (λij). Thus, for the resteriction of T to L, T becomes a multiplier.
Let x0 ∈ X and g0 ∈ X⋆ be chosen such that g0(x0) = 1. Define operator
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V : X −→ X by V x = T (x ⊗ g0)x0. For arbitrary A ∈ F (X), we have
T (Ax⊗ g0) = T (A)x⊗ g0. Applying operator V in this equation to x0,
we get T (A)x = V Ax, hence T (A) = V A. □

Corollary 2.3. Let A be a standard operator algebra related to B(X),
and T : A −→ B(X) be a linear map satisfying T (E) = T (E)E for every
idempotent E ∈ A. If T is continuous with respect to the weak operator
topology, then for some S ∈ B(X) we have T (A) = SA, for all A ∈ A.

Proof. We know that F (X) is dense in the weak operator topology
in every standard operator algebra, since T is continuous, so the result
follows from Theorem 2.1. □

3 Characterizing of Derivations and Multipliers

A Banach algebra A has the property (B) if for every continuous bilinear
map ϕ : A × A −→ X , where X is an arbitrary Banach space, the
condition

a, b ∈ A, ab = 0 =⇒ ϕ(a, b) = 0,

implies that ϕ(ab, c) = ϕ(a, bc), for all a, b, c ∈ A.[1]

Proposition 3.1. Let A be a unital Banach algebra with property (B),
X be a unital Banach left A-module, and T : A −→ X be a continuous
linear operator satisfying

a, b ∈ A, ab = ba = 0 =⇒ aT (b) = 0. (5)

Then T is a generalized left derivation.

Proof. Let a1, b1 ∈ A be such that a1b1 = 0. Define the bilinear
mapping ψ : A × A −→ X via ψ(a, b) = b1aT (ba1). For every a, b ∈ A
with ab = 0, b1aba1 = ba1b1a = 0, so we have ψ(a, b) = 0. Since A has
property (B), for each a, b, c ∈ A, ψ(ab, c) = ψ(a, bc), i.e.,

b1abT (ca1) = b1aT (bca1). (6)

For fixed elements a, b, c ∈ A, we consider the bilinear mapping η :
A × A −→ X such that η(a1, b1) = b1abT (ca1) − b1aT (bca1), for each
a1, b1 ∈ A. Now let a1, b1 ∈ A with a1b1 = 0, then by (6),

η(a1, b1) = 0.
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Since A has property (B), it follows that η(a1b1, c1) = η(a1, b1c1) for all
a1, b1, c1 ∈ A. Thus

c1abT (ca1b1)− c1aT (bca1b1) = b1c1abT (ca1)− b1c1aT (bca1).

Take a = c = a1 = c1 = eA (the unit element of A), then we obtain

T (bb1) = bT (b1) + b1T (b)− b1bT (eA),

for all b, b1 ∈ A. Thus, T is a generalized left derivation. □

It would be interesting to know whether (5) characterizes generalized
left derivations or not.

Recall that a C∗-algebra A is called a W ∗-algebra (or von-Neumann
algebra) if it is a dual space as a Banach space [6], [10].

Let I(A) be the set of idempotents of a given Banach algebra A. We
say that A is generated by idempotents if A = J(A), where J(A) is the
subalgebra of A generated by I(A).

Theorem 3.2. Let A be a W ∗-algebra, X be a unital Banach left A-
module, T : A −→ X be a continuous linear operator satisfying condition
(5). Then T is a right multiplier.

Proof. We know that W ∗-algebras have property (B). For each idem-
potent p in A, p(eA − p) = (eA − p)p = 0, hence pT (eA − p) = 0, so
pT (eA) = pT (p). Let Asa denote the set of self-adjoint elements of A
and x ∈ Asa. Then

x = lim
n

n∑
k=1

λkpk,

where {λk} are real numbers and {pk} is an orthogonal family of pro-
jections in A. Since pipj = pjpi = 0, for i ̸= j, condition (5) implies
that piT (pj) = 0. By Proposition 3.1, T is a generalized left derivation.
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Thus for all x ∈ Asa,

T (x2) = lim
n
T (

n∑
k=1

λ2kp
2
k)

= lim
n

n∑
k=1

λ2kT (p
2
k) = lim

n

n∑
k=1

λ2k(2pkT (pk)− p2kT (eA))

= lim
n

n∑
k=1

λ2k(2pkT (eA)− p2kT (eA)) = lim
n

n∑
k=1

λ2kp
2
kT (eA)

= x2T (eA).

Thus T (x2) = x2T (eA) for all x ∈ Asa. It follows from the linearity of
T that

T (xy + yx) = (xy + yx)T (eA), x, y ∈ Asa.

Now each arbitrary element a ∈ A can be written as a = x + iy for
x, y ∈ Asa. Thus

T (a2) = T (x2 − y2 + i(xy + yx))

= x2T (eA)− y2T (eA) + i(xy + yx)T (eA)

= (x2 − y2 + i(xy + yx))T (eA) = a2T (eA).

Repelacing a by a + eA, we have T (a + eA)
2 = (a + eA)

2T (eA). Thus
T (a) = aT (eA) for all a ∈ A, and T is a right multiplier. □

Theorem 3.3. Suppose that A = J(A) is a unital Banach algebra and
X is a unital Banach right A-module. Let T : A −→ X be a continuous
linear operator satisfying condition (5). Then T = D+Φ, where D is a
Jordan right derivation and Φ is a left multiplier.

Proof. Define bilinear mapping ϕ : A × A −→ X by ϕ(a, b) = T (a ◦
b)− T (a)b for each a, b ∈ A. Then ab = ba = 0, implies ϕ(a, b) = 0. By
[3, Lemma 2.2], we have

ϕ(a, b) + ϕ(b, a) = ϕ(ab, eA) + ϕ(eA, ba).

Thus,

T (a◦b)−T (a)b+T (b◦a)−T (b)a = T (ab◦eA)−T (ab)eA+T (eA◦ba)−T (eA)ba.
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So we conclude that

T (ab) = T (a)b+ T (b)a− T (eA)ba (7)

Settind a = b in (7), we arrive at T (a2) = 2T (a)a− T (eA)a
2.

Define Φ : A −→ X by Φ(a) = T (eA)a. It is obvious that Φ is a left
multiplier. Now define D : A −→ X via

D(a) = T (a)− Φ(a), a ∈ A.

So D(a2) = T (a2)− Φ(a2), thus

D(a2) = 2T (a)a− 2T (eA)a
2. (8)

On the other hand,

2D(a)a = 2(T (a)− Φ(a))a = 2T (a)a− 2Φ(a)a = 2T (a)a− 2T (eA)a
2. (9)

From (8), (9), we get D(a2) = 2D(a)a. Thus, D is a Jordan right
derivation. This completes the proof. □

Consider the following Lemma from the complex analysis, see ([9]).
In order to prove our results we need it.

Lemma 3.4. Suppose that

(1) a function f is analytic throughout a domain D;

(2) f(z) = 0 at each point z of a domain or line segment contained in
D.

Thus f(z) ≡ 0 in D; that is f(z) is identically equal to zero throughout
D.

For a Banach algebra A we say that w ∈ A is a separating point of
A-bimodule X if the condition wx = 0 for all x ∈ X implies that x = 0.

Theorem 3.5. Suppose that A is a unital Banach algebra and X is a
Banach left A-module. Let s be in Z(A) (the center of A), such that s
is a separating point of X . Let T : A −→ X be a bounded linear map.
Then the following assertions are equivalent.
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(1) T (ab) = aT (b), for all a, b ∈ A with ab = ba = s,

(2) T is a right multiplier.

Proof. First suppose that (1) holds. Then we have

T (s) = T (seA) = sT (eA). (10)

Let a ∈ A be nonzero. For scalars λ with |λ| < 1

∥a∥
, eA−λa is invertible

in A. Indeed, (eA − λa)−1 =
∑∞

n=0 λ
nan. Then

T (s) = T [(eA − λa)−1s(eA − λa)] = (eA − λa)−1sT (eA − λa)

=

∞∑
n=0

λnans(T (eA)− λT (a) =

∞∑
n=0

λnanT (s)−
∞∑
n=0

λn+1ansT (a)

=
∞∑
n=0

λnanT (s)−
∞∑
n=1

λnan−1sT (a)

= T (s) +

∞∑
n=1

λnanT (s)−
∞∑
n=1

λnan−1T (s).

Thus, for all λ with |λ| < 1

∥a∥
, we get

∞∑
n=1

λn(anT (s)− san−1T (a)) = 0. (11)

Let µ ∈ A∗ and f : C −→ C be such that

f(t) = µ(
∞∑
n=1

tn(anT (s)− san−1T (a))),

for all t ∈ C. Due to relation (11) f(λ) = 0. Now since f(λ) = 0 for

each λ with |λ| < 1

∥a∥
, by Lemma 3.4, f(λ) is identically equal to zero

throughout C and µ arbitrary, Consequently anT (s) − san−1T (a) = 0
for all n ∈ N. For n = 1 we get aT (s) − sT (a) = 0, and by using
(10), we obtain asT (eA) = sT (a). Hence s(aT (eA) − T (a)) = 0, since
s is a separating point of X we get T (a) = aT (eA). Thus T is a right
multiplier. The converce is clear. □
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Proposition 3.6. Let A be a von Neumann algebra, X be a Banach
left A-module and δ : A −→ X be a bounded linear operator satisfying
δ(p2) = pδ(p) for every projection p ∈ A. Then δ is a right multiplier.

Proof. Let p, q ∈ A be ortogonal projections. By assumption,

δ((p+ q)2) = (p+ q)(δ(p) + δ(q)),

thus we conclude that pδ(q) + qδ(p) = 0. Let a =
∑n

j=1 λjpj be a
combination of matually orthogonal projections p1, p2, ..., pn ∈ A. Then

piδ(pj) + pjδ(pi) = 0, (12)

for all i, j ∈ {1, 2, ..., n} with i ̸= j. So

δ(a2) = δ(

n∑
j=1

λ2jpj) =

n∑
j=1

λ2jδ(pj). (13)

On the other hand, by (12), we have

aδ(a) =
n∑

j=1

λjpj

n∑
i=1

λiδ(pi) = λ1p1

n∑
i=1

λiδ(pi)+...+λnpn

n∑
i=1

λiδ(pi) =
n∑

i=1

λ2i piδ(pi).

It follows from above equation and (13) that δ(a2) = aδ(a). Let Asa

denote the set of self-adjoint elements of A. Simillar to the proof of
Theorem 3.2 we deduce that δ(a2) = aδ(a), for all a ∈ A. Thus δ is a
Jordan right multiplier. Due to [11, Theorem 2.3], δ is a right multiplier.
□

Proposition 3.7. Let A be a Banach algebra and X be a Banach left
A-module and w ∈ Z(A) be a separating point of X . If δ : A −→ X
is a left Jordan multiplier, then δ(ba) = δ(b)a for each a, b ∈ A with
ab = ba = w.

Proof. Suppose that δ : A −→ X is a left Jordan multiplier. For
each b ∈ A, we have wb = bw. Since δ is a left Jordan multiplier, thus
δ(b2) = δ(b)b. Replacing b by w+ b, we get δ(bw+wb) = δ(w)b+ δ(b)w.
Therefore

2δ(bw) = δ(w)b+ δ(b)w. (14)
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On the other hand, for every Jordan multiplier δ, δ(bab) = δ(b)ab for
each a, b ∈ A, thus relation(14) implies that 2δ(b)ab = δ(w)b + δ(b)w,
multiply this equation by a at the right side, we arrive at 2δ(b)aw =
δ(ab)w+ δ(b)aw. Hence δ(b)aw = δ(ab)w. Since w is a separating point
of X , we obtain δ(ba) = δ(b)a for each a, b ∈ A with ab = ba = w.

□
In the following theorem we give a complete description of linear

mappings δ, τ satisfying δ(a)b+ τ(b)a = 0 for all a, b ∈ A with ab = eA.

Theorem 3.8. Let A be a unital Banach algebra and X be a unital
Banach right A-bimodule. Let δ, τ be continuous linear mappings from
A into X satisfying

a, b ∈ A, ab = eA =⇒ δ(a)b+ τ(b)a = 0.

Then δ and τ are generalized Jordan right derivations.

Proof. Let a = b = eA, then δ(eA) + τ(eA) = 0. Let t be an invertible
element of A. Then tt−1 = eA, so δ(t)t

−1 + τ(t−1)t = 0, thus δ(t) =
−τ(t−1)t2. Let a ∈ A, b = neA + a, then b and eA − b are invertible in
A, for some n ∈ N, with n ≥ ∥a∥+ 2, so we have

δ(b) = −τ(b−1)b2 = −τ(b−1(eA − b) + eA)b
2

= −τ(eA)b2 − τ(b−1(eA − b))b2

= −τ(eA)b2 − τ(((eA − b)−1b)−1)b2

= −τ(eA)b2 − τ(((eA − b)−1b)−1)((eA − b)−1b)((eA − b)−1b))(b−1(eA − b))(b−1(eA − b))b2

= −τ(eA)b2 + δ((eA − b)−1b)(b−1(eA − b))((b−1(eA − b))b2

= −τ(eA)b2 + δ((eA − b)−1b)(eA − 2b+ b2)

= −τ(eA)b2 + δ((eA − b)−1 − eA)(eA − 2b+ b2)

= −τ(eA)b2 + δ((eA − b)−1)(eA − 2b+ b2)− δ(eA)(eA − 2b+ b2)

= −τ(eA)b2 − δ(eA)(eA − b)2 − τ(eA − b)(eA − b)−1(eA − b)−1(eA − b)2

= −τ(eA)b2 − δ(eA)(eA − b)2 − τ(eA − b)

= −τ(eA)b2 − δ(eA) + 2δ(eA)b− δ(eA)b
2 − τ(eA) + τ(b).

Therefore δ(b)− τ(b)− 2δ(eA)b+ (δ(eA) + τ(eA))b
2 = 0. Thus

δ(b)− δ(eA)b = τ(b)− τ(eA)b.
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Since δ(eA) + τ(eA) = 0, we have

δ(b)− 2δ(eA)b = τ(b), b ∈ A. (15)

On the other hand,

δ(b)b−1 + τ(b−1)b = 0. (16)

Multiple relation (15) by b−1 from the right hand side, and applying
(16), we arrive at

τ(b)b−1 + τ(b−1)b = 2τ(eA).

For every b ∈ A, let |λ| ≥ ∥b∥ and λ ∈ C. Then λeA − b is invertible in

A and (λeA − b)−1 =
∑∞

k=0

bk

λk+1
, so

2τ(eA) = τ(λeA − b)(λeA − b)−1 + τ((λeA − b)−1(λeA − b))

= λ(τ(eA)− τ(b))(
∞∑
k=0

bk

λk+1
) +

∞∑
k=0

1

λk+1
τ(bk)(λeA − b)

= λτ(eA)(

∞∑
k=0

bk

λk+1
)− τ(b)(

∞∑
k=0

bk

λk+1
) + (

∞∑
k=0

τ(bk)

λk
)−

∞∑
k=0

1

λk+1
τ(bk)b.

Thus

2τ(eA) = τ(eA)((

∞∑
k=0

bk

λk
)− τ(b)

∞∑
k=0

(bk)

λk+1
+

∞∑
k=0

τ(bk)

λk
−

∞∑
k=0

1

λk+1
τ(bk)b.

Indeed,

0 = τ(eA)(I +

∞∑
k=1

(bk)

λk
− 2)− τ(b)

∞∑
k=1

bk−1

λk
+ τ(I) +

∞∑
k=1

τ(bk

)
λk −

∞∑
k=1

1

λk
τ(bk−1)b

=

∞∑
k=1

1

λk
(τ(eA)b

k − τ(b)bk−1 + τ(bk)− τ(bk−1)b),

for any |λ| ≥ ∥b∥. Similar to the proof of Theorem 3.5 we coclude that
τ(eA)b

k−τ(b)bk−1+τ(bk)−τ(bk−1)b = 0, for any k = 2, 3, .... Let k = 2,
we have that

τ(eA)b
2 − τ(b)b+ τ(b2)− τ(b)b = 0.



LINEAR MAPPINGS CHARACTERIZED ... 13

Thus,

τ(b2) = 2τ(b)b− τ(eA)b
2. (17)

Hence τ is a generalized Jordan right derivation.

Replacing b by b2 in (15), we get

δ(b2) = τ(b2)− 2τ(eA)b
2. (18)

Hence by (15), (17) and (18) we have δ(b2) = 2δ(b)b− δ(eA)b
2, it means

that δ is a generalized Jordan right derivation. □
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